File: disp_identification.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (266 lines) | stat: -rw-r--r-- 13,356 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
function disp_identification(pdraws, ide_reducedform, ide_moments, ide_spectrum, ide_minimal, name, options_ident)
% disp_identification(pdraws, ide_reducedform, ide_moments, ide_spectrum, ide_minimal, name, options_ident)
% -------------------------------------------------------------------------
% This function displays all identification analysis to the command line
% =========================================================================
% INPUTS
%   pdraws:             [SampleSize by totparam_nbr] parameter draws
%   ide_reducedform:    [structure] Containing results from identification
%                       analysis based on the reduced-form solution (Ratto
%                       and Iskrev, 2011).
%   ide_moments:        [structure] Containing results from identification
%                       analysis based on moments (Iskrev, 2010).
%   ide_spectrum:       [structure] Containing results from identification
%                       analysis based on the spectrum (Qu and Tkachenko, 2012).
%   ide_minimal:        [structure] Containing results from identification
%                       analysis based on the minimal state space system
%                       (Komunjer and Ng, 2011).
%   name:               [totparam_nbr by 1] string cell of parameter names
%   options_ident:      [structure] identification options
% -------------------------------------------------------------------------
% OUTPUTS
%   * all output is printed on the command line
% -------------------------------------------------------------------------
% This function is called by
%   * dynare_identification.m
% =========================================================================
% Copyright (C) 2010-2019 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
% =========================================================================
[SampleSize, totparam_nbr] = size(pdraws);
no_identification_reducedform      = options_ident.no_identification_reducedform;
no_identification_moments          = options_ident.no_identification_moments;
no_identification_spectrum         = options_ident.no_identification_spectrum;
no_identification_minimal          = options_ident.no_identification_minimal;
tol_rank           = options_ident.tol_rank;
checks_via_subsets = options_ident.checks_via_subsets;

%% Display settings
disp(['  ']),
fprintf('Note that differences in the criteria could be due to numerical settings,\n')
fprintf('numerical errors or the method used to find problematic parameter sets.\n')
fprintf('Settings:\n')
if options_ident.analytic_derivation_mode == 0
    fprintf('    Derivation mode for Jacobians:                         Analytic using sylvester equations\n');
elseif options_ident.analytic_derivation_mode == 1
    fprintf('    Derivation mode for Jacobians:                         Analytic using kronecker products\n');
elseif options_ident.analytic_derivation_mode < 0
    fprintf('    Derivation mode for Jacobians:                         Numerical\n');
end
if checks_via_subsets
    fprintf('    Method to find problematic parameters:                 Rank condition on all possible subsets\n');
else
    fprintf('    Method to find problematic parameters:                 Nullspace and multicorrelation coefficients\n');
end
if options_ident.normalize_jacobians == 1
    fprintf('    Normalize Jacobians:                                   Yes\n');
else
    fprintf('    Normalize Jacobians:                                   No\n');
end
fprintf('    Tolerance level for rank computations:                 %s\n',num2str(options_ident.tol_rank));
fprintf('    Tolerance level for selecting nonzero columns:         %.0d\n',options_ident.tol_deriv);
fprintf('    Tolerance level for selecting nonzero singular values: %.0d\n',options_ident.tol_sv);


%% Display problematic parameter sets for different criteria in a loop
for jide = 1:4
    no_warning_message_display = 1;
    %% Set output strings depending on test
    if jide == 1
        strTest = 'REDUCED-FORM'; strJacobian = 'Tau'; strMeaning = 'Jacobian of steady state and reduced-form solution matrices';
        if ~no_identification_reducedform
            noidentification = 0; ide = ide_reducedform;
            if SampleSize == 1
                Jacob = ide.dREDUCEDFORM;
            end
        else %skip test
            noidentification = 1; no_warning_message_display = 0;
        end
    elseif jide == 2
        strTest = 'MINIMAL SYSTEM (Komunjer and Ng, 2011)'; strJacobian = 'Deltabar'; strMeaning = 'Jacobian of steady state and minimal system';
        if options_ident.order == 2
            strMeaning = 'Jacobian of first-order minimal system and second-order accurate mean';
        elseif options_ident.order == 3
            strMeaning = 'Jacobian of first-order minimal system and third-order accurate mean';
        end
        if ~no_identification_minimal
            noidentification = 0; ide = ide_minimal;
            if SampleSize == 1
                Jacob = ide.dMINIMAL;
            end
        else %skip test
            noidentification = 1; no_warning_message_display = 0;
        end
    elseif jide == 3
        strTest = 'SPECTRUM (Qu and Tkachenko, 2012)'; strJacobian = 'Gbar'; strMeaning = 'Jacobian of mean and spectrum';
        if options_ident.order > 1
            strTest = 'SPECTRUM (Mutschler, 2015)';
        end
        if ~no_identification_spectrum
            noidentification = 0; ide = ide_spectrum;
            if SampleSize == 1
                Jacob = ide.dSPECTRUM;
            end
        else %skip test
            noidentification = 1; no_warning_message_display = 0;
        end
    elseif jide == 4
        strTest = 'MOMENTS (Iskrev, 2010)'; strJacobian = 'J'; strMeaning = 'Jacobian of first two moments';
        if options_ident.order > 1
            strTest = 'MOMENTS (Mutschler, 2015)'; strJacobian = 'Mbar';
        end
        if ~no_identification_moments
            noidentification = 0; ide = ide_moments;
            if SampleSize == 1
                Jacob = ide.si_dMOMENTS;
            end
        else %skip test
            noidentification = 1; no_warning_message_display = 0;
        end
    end

    if ~noidentification
        %% display problematic parameters computed by identifcation_checks.m
        if ~checks_via_subsets
            if any(ide.ino) || any(any(ide.ind0==0)) || any(any(ide.jweak_pair))
                no_warning_message_display=0;
                skipline()
                disp([upper(strTest), ':'])
                disp('    !!!WARNING!!!');
                if SampleSize>1
                    disp(['    The rank of ', strJacobian, ' (', strMeaning, ') is deficient for ', num2str(length(find(ide.ino))),' out of ',int2str(SampleSize),' MC runs!'  ]),
                else
                    disp(['    The rank of ', strJacobian, ' (', strMeaning, ') is deficient!']),
                end
                skipline()
                for j=1:totparam_nbr
                    if any(ide.ind0(:,j)==0)
                        pno = 100*length(find(ide.ind0(:,j)==0))/SampleSize;
                        if SampleSize>1
                            disp(['    ',name{j},' is not identified for ',num2str(pno),'% of MC runs!' ])
                        else
                            disp(['    ',name{j},' is not identified!' ])
                        end
                    end
                end
                npairs=size(ide.jweak_pair,2);
                jmap_pair=dyn_unvech(1:npairs);
                jstore=[];
                for j=1:npairs
                    iweak = length(find(ide.jweak_pair(:,j)));
                    if iweak
                        [jx,jy]=find(jmap_pair==j);
                        jstore=[jstore jx(1) jy(1)];
                        if SampleSize > 1
                            disp(['    [',name{jx(1)},',',name{jy(1)},'] are PAIRWISE collinear for ',num2str((iweak)/SampleSize*100),'% of MC runs!' ])
                        else
                            disp(['    [',name{jx(1)},',',name{jy(1)},'] are PAIRWISE collinear!' ])
                        end
                    end
                end
                for j=1:totparam_nbr
                    iweak = length(find(ide.jweak(:,j)));
                    if iweak && ~ismember(j,jstore)
                        if SampleSize>1
                            disp(['    ',name{j},' is collinear w.r.t. all other parameters for ',num2str(iweak/SampleSize*100),'% of MC runs!' ])
                        else
                            disp(['    ',name{j},' is collinear w.r.t. all other parameters!' ])
                        end
                    end
                end
            end

            %% display problematic parameters computed by identification_checks_via_subsets
        elseif checks_via_subsets
            if ide.rank < size(Jacob,2)
                no_warning_message_display = 0;
                skipline()
                disp([upper(strTest), ':'])
                disp('    !!!WARNING!!!');
                if SampleSize>1
                    disp(['    The rank of ', strJacobian, ' (', strMeaning, ') is deficient for ', num2str(length(find(ide.ino))),' out of ',int2str(SampleSize),' MC runs!'  ]),
                else
                    disp(['    The rank of ', strJacobian, ' (', strMeaning, ') is deficient!']),
                end
                if all(cellfun(@isempty,ide.problpars))
                    disp(['    No problematic parameter combinations with maximum dimension ', num2str(size(ide.problpars,2)), ' were found. Increase max_dim_subsets_groups.']);
                    skipline()
                else
                    disp(['    Displaying problematic parameter combinations (with maximum dimension ', num2str(size(ide.problpars,2)), '):']);
                    skipline()
                    probparamset_nbr = 0;
                    for jset = 1:size(ide.problpars,2)
                        if isempty(ide.problpars{jset}) == 0
                            for jrow = 1:size(ide.problpars{jset},1)
                                for j = transpose(ide.problpars{jset}(jrow,:))
                                    probparamset_nbr = probparamset_nbr + 1;
                                    %pno = 100*length(find(ide.ind0(:,j)==0))/SampleSize;
                                    problparnamestring = strjoin(eval(['[', sprintf('name(%d), ', j), ']']),',');
                                    if SampleSize > 1
                                        if length(j) == 1
                                            disp(['    ',problparnamestring,' is not identified for ',num2str(pno),'% of MC runs!' ])
                                        else
                                            disp(['    [',problparnamestring,'] are collinear (with tol = ', num2str(tol_rank), ') for ',num2str((iweak)/SampleSize*100),'% of MC runs!' ])
                                        end
                                    else
                                        if length(j) == 1
                                            disp(['    ',problparnamestring, ' is not identified!' ])
                                        else
                                            disp(['    [',problparnamestring, '] are collinear!' ])
                                        end
                                    end
                                end
                            end
                        end
                    end
                end
            end
        end
    end
    %% All parameters are identified
    if no_warning_message_display
        skipline()
        disp([upper(strTest), ':']);
        disp(['    All parameters are identified in the ', strMeaning, ' (rank(', strJacobian, ') is full with tol = ', num2str(tol_rank), ').' ]),
    end
end



%% Advanced identificaton patterns
if SampleSize==1 && options_ident.advanced
    skipline()
    for j=1:size(ide_moments.cosndMOMENTS,2)
        pax=NaN(totparam_nbr,totparam_nbr);
        fprintf('\n')
        disp(['Collinearity patterns with ', int2str(j) ,' parameter(s)'])
        fprintf('%-15s [%-*s] %10s\n','Parameter',(15+1)*j,' Expl. params ','cosn')
        for i=1:totparam_nbr
            namx='';
            for in=1:j
                dumpindx = ide_moments.pars{i,j}(in);
                if isnan(dumpindx)
                    namx=[namx ' ' sprintf('%-15s','--')];
                else
                    namx=[namx ' ' sprintf('%-15s',name{dumpindx})];
                    pax(i,dumpindx)=ide_moments.cosndMOMENTS(i,j);
                end
            end
            fprintf('%-15s [%s] %14.7f\n',name{i},namx,ide_moments.cosndMOMENTS(i,j))
        end
    end
end