1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
function oo_ = disp_th_moments(dr, var_list, M_, options_, oo_)
% Display theoretical moments of variables
% Copyright (C) 2001-2018 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
nodecomposition = options_.nodecomposition;
if options_.one_sided_hp_filter
error(['disp_th_moments:: theoretical moments incompatible with one-sided HP filter. Use simulated moments instead'])
end
if isempty(var_list)
var_list = M_.endo_names(1:M_.orig_endo_nbr);
end
nvar = length(var_list);
ivar=zeros(nvar,1);
for i=1:nvar
i_tmp = strmatch(var_list{i}, M_.endo_names, 'exact');
if isempty(i_tmp)
error ('One of the variable specified does not exist');
else
ivar(i) = i_tmp;
end
end
[oo_.gamma_y,stationary_vars] = th_autocovariances(dr, ivar, M_, options_, nodecomposition);
m = dr.ys(ivar);
non_stationary_vars = setdiff(1:length(ivar),stationary_vars);
m(non_stationary_vars) = NaN;
i1 = find(abs(diag(oo_.gamma_y{1})) > 1e-12);
s2 = diag(oo_.gamma_y{1});
sd = sqrt(s2);
if options_.order == 2 && ~M_.hessian_eq_zero
m = m+oo_.gamma_y{options_.ar+3};
end
z = [ m sd s2 ];
oo_.mean = m;
oo_.var = oo_.gamma_y{1};
ME_present=0;
if ~all(diag(M_.H)==0)
if (isoctave && octave_ver_less_than('6')) || (~isoctave && matlab_ver_less_than('8.1'))
[observable_pos_requested_vars,index_subset,index_observables]=intersect_stable(ivar,options_.varobs_id);
else
[observable_pos_requested_vars,index_subset,index_observables]=intersect(ivar,options_.varobs_id,'stable');
end
if ~isempty(observable_pos_requested_vars)
ME_present=1;
end
end
if size(stationary_vars, 1) > 0
if ~nodecomposition
oo_.variance_decomposition=100*oo_.gamma_y{options_.ar+2};
if ME_present
ME_Variance=diag(M_.H);
oo_.variance_decomposition_ME=oo_.variance_decomposition(index_subset,:).*repmat(diag(oo_.var(index_subset,index_subset))./(diag(oo_.var(index_subset,index_subset))+ME_Variance(index_observables)),1,M_.exo_nbr);
oo_.variance_decomposition_ME(:,end+1)=100-sum(oo_.variance_decomposition_ME,2);
end
end
if ~options_.noprint %options_.nomoments == 0
if options_.order == 2
title = 'APPROXIMATED THEORETICAL MOMENTS';
else
title = 'THEORETICAL MOMENTS';
end
title = add_filter_subtitle(title, options_);
headers = {'VARIABLE';'MEAN';'STD. DEV.';'VARIANCE'};
labels = M_.endo_names(ivar);
lh = cellofchararraymaxlength(labels)+2;
dyntable(options_, title, headers, labels, z, lh, 11, 4);
if options_.TeX
labels = M_.endo_names_tex(ivar);
lh = cellofchararraymaxlength(labels)+2;
dyn_latex_table(M_, options_, title, 'th_moments', headers, labels, z, lh, 11, 4);
end
if M_.exo_nbr > 1 && ~nodecomposition
skipline()
if options_.order == 2
title = 'APPROXIMATED VARIANCE DECOMPOSITION (in percent)';
else
title = 'VARIANCE DECOMPOSITION (in percent)';
end
title = add_filter_subtitle(title, options_);
headers = M_.exo_names;
headers(M_.exo_names_orig_ord) = headers;
headers = vertcat(' ', headers);
lh = cellofchararraymaxlength(M_.endo_names(ivar(stationary_vars)))+2;
dyntable(options_, title, headers, M_.endo_names(ivar(stationary_vars)), 100*oo_.gamma_y{options_.ar+2}(stationary_vars,:), lh, 8, 2);
if ME_present
if (isoctave && octave_ver_less_than('6')) || (~isoctave && matlab_ver_less_than('8.1'))
[stationary_observables, pos_index_subset] = intersect_stable(index_subset, stationary_vars);
else
[stationary_observables, pos_index_subset] = intersect(index_subset, stationary_vars, 'stable');
end
headers_ME = vertcat(headers, 'ME');
dyntable(options_, [title,' WITH MEASUREMENT ERROR'], headers_ME, M_.endo_names(ivar(stationary_observables)), ...
oo_.variance_decomposition_ME(pos_index_subset,:), lh, 8, 2);
end
if options_.TeX
headers = M_.exo_names_tex;
headers = vertcat(' ', headers);
labels = M_.endo_names_tex(ivar(stationary_vars));
lh = cellofchararraymaxlength(labels)+2;
dyn_latex_table(M_, options_, title, 'th_var_decomp_uncond', headers, labels, 100*oo_.gamma_y{options_.ar+2}(stationary_vars,:), lh, 8, 2);
if ME_present
headers_ME = vertcat(headers, 'ME');
dyn_latex_table(M_, options_, [title,' WITH MEASUREMENT ERROR'], ...
'th_var_decomp_uncond_ME', headers_ME, labels, oo_.variance_decomposition_ME(pos_index_subset,:), lh, 8, 2);
end
end
end
end
conditional_variance_steps = options_.conditional_variance_decomposition;
if length(conditional_variance_steps)
StateSpaceModel.number_of_state_equations = M_.endo_nbr;
StateSpaceModel.number_of_state_innovations = M_.exo_nbr;
StateSpaceModel.sigma_e_is_diagonal = M_.sigma_e_is_diagonal;
[StateSpaceModel.transition_matrix, StateSpaceModel.impulse_matrix] = ...
kalman_transition_matrix(dr,(1:M_.endo_nbr)',M_.nstatic+(1:M_.nspred)',M_.exo_nbr);
StateSpaceModel.state_innovations_covariance_matrix = M_.Sigma_e;
StateSpaceModel.order_var = dr.order_var;
StateSpaceModel.measurement_error = M_.H;
StateSpaceModel.observable_pos = options_.varobs_id;
[oo_.conditional_variance_decomposition, oo_.conditional_variance_decomposition_ME] = ...
conditional_variance_decomposition(StateSpaceModel, conditional_variance_steps, ivar);
if ~options_.noprint
display_conditional_variance_decomposition(oo_.conditional_variance_decomposition, conditional_variance_steps, ivar, M_, options_);
if ME_present
display_conditional_variance_decomposition(oo_.conditional_variance_decomposition_ME, conditional_variance_steps, ...
observable_pos_requested_vars, M_, options_);
end
end
end
end
if length(i1) == 0
skipline()
disp('All endogenous are constant or non stationary, not displaying correlations and auto-correlations')
skipline()
return
end
if ~options_.nocorr && size(stationary_vars, 1)>0
corr = NaN(size(oo_.gamma_y{1}));
corr(i1,i1) = oo_.gamma_y{1}(i1,i1)./(sd(i1)*sd(i1)');
if options_.contemporaneous_correlation
oo_.contemporaneous_correlation = corr;
end
if ~options_.noprint
skipline()
if options_.order==2
title = 'APPROXIMATED MATRIX OF CORRELATIONS';
else
title = 'MATRIX OF CORRELATIONS';
end
title = add_filter_subtitle(title, options_);
labels = M_.endo_names(ivar(i1));
headers = vertcat('Variables', labels);
lh = cellofchararraymaxlength(labels)+2;
dyntable(options_, title, headers, labels, corr(i1,i1), lh, 8, 4);
if options_.TeX
labels = M_.endo_names_tex(ivar(i1));
headers = vertcat('Variables', labels);
lh = cellofchararraymaxlength(labels)+2;
dyn_latex_table(M_, options_, title, 'th_corr_matrix', headers, labels, corr(i1,i1), lh, 8, 4);
end
end
end
if options_.ar > 0 && size(stationary_vars, 1) > 0
z=[];
for i=1:options_.ar
oo_.autocorr{i} = oo_.gamma_y{i+1};
z(:,i) = diag(oo_.gamma_y{i+1}(i1,i1));
end
if ~options_.noprint
skipline()
if options_.order == 2
title = 'APPROXIMATED COEFFICIENTS OF AUTOCORRELATION';
else
title = 'COEFFICIENTS OF AUTOCORRELATION';
end
title = add_filter_subtitle(title, options_);
labels = M_.endo_names(ivar(i1));
headers = vertcat('Order ', cellstr(int2str([1:options_.ar]')));
lh = cellofchararraymaxlength(labels)+2;
dyntable(options_, title, headers, labels, z, lh, 8, 4);
if options_.TeX
labels = M_.endo_names_tex(ivar(i1));
headers = vertcat('Order ', cellstr(int2str([1:options_.ar]')));
lh = cellofchararraymaxlength(labels)+2;
dyn_latex_table(M_, options_, title, 'th_autocorr_matrix', headers, labels, z, lh, 8, 4);
end
end
end
|