File: disp_th_moments.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (213 lines) | stat: -rw-r--r-- 9,249 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
function oo_ = disp_th_moments(dr, var_list, M_, options_, oo_)

% Display theoretical moments of variables

% Copyright (C) 2001-2018 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

nodecomposition = options_.nodecomposition;
if options_.one_sided_hp_filter
    error(['disp_th_moments:: theoretical moments incompatible with one-sided HP filter. Use simulated moments instead'])
end
if isempty(var_list)
    var_list = M_.endo_names(1:M_.orig_endo_nbr);
end
nvar = length(var_list);
ivar=zeros(nvar,1);
for i=1:nvar
    i_tmp = strmatch(var_list{i}, M_.endo_names, 'exact');
    if isempty(i_tmp)
        error ('One of the variable specified does not exist');
    else
        ivar(i) = i_tmp;
    end
end

[oo_.gamma_y,stationary_vars] = th_autocovariances(dr, ivar, M_, options_, nodecomposition);
m = dr.ys(ivar);
non_stationary_vars = setdiff(1:length(ivar),stationary_vars);
m(non_stationary_vars) = NaN;

i1 = find(abs(diag(oo_.gamma_y{1})) > 1e-12);
s2 = diag(oo_.gamma_y{1});
sd = sqrt(s2);
if options_.order == 2 && ~M_.hessian_eq_zero
    m = m+oo_.gamma_y{options_.ar+3};
end

z = [ m sd s2 ];
oo_.mean = m;
oo_.var = oo_.gamma_y{1};

ME_present=0;
if ~all(diag(M_.H)==0)
    if (isoctave && octave_ver_less_than('6')) || (~isoctave && matlab_ver_less_than('8.1'))
        [observable_pos_requested_vars,index_subset,index_observables]=intersect_stable(ivar,options_.varobs_id);
    else
        [observable_pos_requested_vars,index_subset,index_observables]=intersect(ivar,options_.varobs_id,'stable');
    end
    if ~isempty(observable_pos_requested_vars)
        ME_present=1;
    end
end

if size(stationary_vars, 1) > 0
    if ~nodecomposition
        oo_.variance_decomposition=100*oo_.gamma_y{options_.ar+2};
        if ME_present
            ME_Variance=diag(M_.H);
            oo_.variance_decomposition_ME=oo_.variance_decomposition(index_subset,:).*repmat(diag(oo_.var(index_subset,index_subset))./(diag(oo_.var(index_subset,index_subset))+ME_Variance(index_observables)),1,M_.exo_nbr);
            oo_.variance_decomposition_ME(:,end+1)=100-sum(oo_.variance_decomposition_ME,2);
        end
    end
    if ~options_.noprint %options_.nomoments == 0
        if options_.order == 2
            title = 'APPROXIMATED THEORETICAL MOMENTS';
        else
            title = 'THEORETICAL MOMENTS';
        end
        title = add_filter_subtitle(title, options_);
        headers = {'VARIABLE';'MEAN';'STD. DEV.';'VARIANCE'};
        labels = M_.endo_names(ivar);
        lh = cellofchararraymaxlength(labels)+2;
        dyntable(options_, title, headers, labels, z, lh, 11, 4);
        if options_.TeX
            labels = M_.endo_names_tex(ivar);
            lh = cellofchararraymaxlength(labels)+2;
            dyn_latex_table(M_, options_, title, 'th_moments', headers, labels, z, lh, 11, 4);
        end

        if M_.exo_nbr > 1 && ~nodecomposition
            skipline()
            if options_.order == 2
                title = 'APPROXIMATED VARIANCE DECOMPOSITION (in percent)';
            else
                title = 'VARIANCE DECOMPOSITION (in percent)';
            end
            title = add_filter_subtitle(title, options_);
            headers = M_.exo_names;
            headers(M_.exo_names_orig_ord) = headers;
            headers = vertcat(' ', headers);
            lh = cellofchararraymaxlength(M_.endo_names(ivar(stationary_vars)))+2;
            dyntable(options_, title, headers, M_.endo_names(ivar(stationary_vars)), 100*oo_.gamma_y{options_.ar+2}(stationary_vars,:), lh, 8, 2);
            if ME_present
                if (isoctave && octave_ver_less_than('6')) || (~isoctave && matlab_ver_less_than('8.1'))
                    [stationary_observables, pos_index_subset] = intersect_stable(index_subset, stationary_vars);
                else
                    [stationary_observables, pos_index_subset] = intersect(index_subset, stationary_vars, 'stable');
                end
                headers_ME = vertcat(headers, 'ME');
                dyntable(options_, [title,' WITH MEASUREMENT ERROR'], headers_ME, M_.endo_names(ivar(stationary_observables)), ...
                         oo_.variance_decomposition_ME(pos_index_subset,:), lh, 8, 2);
            end
            if options_.TeX
                headers = M_.exo_names_tex;
                headers = vertcat(' ', headers);
                labels = M_.endo_names_tex(ivar(stationary_vars));
                lh = cellofchararraymaxlength(labels)+2;
                dyn_latex_table(M_, options_, title, 'th_var_decomp_uncond', headers, labels, 100*oo_.gamma_y{options_.ar+2}(stationary_vars,:), lh, 8, 2);
                if ME_present
                    headers_ME = vertcat(headers, 'ME');
                    dyn_latex_table(M_, options_, [title,' WITH MEASUREMENT ERROR'], ...
                                    'th_var_decomp_uncond_ME', headers_ME, labels, oo_.variance_decomposition_ME(pos_index_subset,:), lh, 8, 2);
                end
            end
        end
    end
    conditional_variance_steps = options_.conditional_variance_decomposition;
    if length(conditional_variance_steps)
        StateSpaceModel.number_of_state_equations = M_.endo_nbr;
        StateSpaceModel.number_of_state_innovations = M_.exo_nbr;
        StateSpaceModel.sigma_e_is_diagonal = M_.sigma_e_is_diagonal;
        [StateSpaceModel.transition_matrix, StateSpaceModel.impulse_matrix] = ...
            kalman_transition_matrix(dr,(1:M_.endo_nbr)',M_.nstatic+(1:M_.nspred)',M_.exo_nbr);
        StateSpaceModel.state_innovations_covariance_matrix = M_.Sigma_e;
        StateSpaceModel.order_var = dr.order_var;
        StateSpaceModel.measurement_error = M_.H;
        StateSpaceModel.observable_pos = options_.varobs_id;
        [oo_.conditional_variance_decomposition, oo_.conditional_variance_decomposition_ME] = ...
            conditional_variance_decomposition(StateSpaceModel, conditional_variance_steps, ivar);
        if ~options_.noprint
            display_conditional_variance_decomposition(oo_.conditional_variance_decomposition, conditional_variance_steps, ivar, M_, options_);
            if ME_present
                display_conditional_variance_decomposition(oo_.conditional_variance_decomposition_ME, conditional_variance_steps, ...
                                                           observable_pos_requested_vars, M_, options_);
            end
        end
    end
end

if length(i1) == 0
    skipline()
    disp('All endogenous are constant or non stationary, not displaying correlations and auto-correlations')
    skipline()
    return
end

if ~options_.nocorr && size(stationary_vars, 1)>0
    corr = NaN(size(oo_.gamma_y{1}));
    corr(i1,i1) = oo_.gamma_y{1}(i1,i1)./(sd(i1)*sd(i1)');
    if options_.contemporaneous_correlation
        oo_.contemporaneous_correlation = corr;
    end
    if ~options_.noprint
        skipline()
        if options_.order==2
            title = 'APPROXIMATED MATRIX OF CORRELATIONS';
        else
            title = 'MATRIX OF CORRELATIONS';
        end
        title = add_filter_subtitle(title, options_);
        labels = M_.endo_names(ivar(i1));
        headers = vertcat('Variables', labels);
        lh = cellofchararraymaxlength(labels)+2;
        dyntable(options_, title, headers, labels, corr(i1,i1), lh, 8, 4);
        if options_.TeX
            labels = M_.endo_names_tex(ivar(i1));
            headers = vertcat('Variables', labels);
            lh = cellofchararraymaxlength(labels)+2;
            dyn_latex_table(M_, options_, title, 'th_corr_matrix', headers, labels, corr(i1,i1), lh, 8, 4);
        end
    end
end

if options_.ar > 0 && size(stationary_vars, 1) > 0
    z=[];
    for i=1:options_.ar
        oo_.autocorr{i} = oo_.gamma_y{i+1};
        z(:,i) = diag(oo_.gamma_y{i+1}(i1,i1));
    end
    if ~options_.noprint
        skipline()
        if options_.order == 2
            title = 'APPROXIMATED COEFFICIENTS OF AUTOCORRELATION';
        else
            title = 'COEFFICIENTS OF AUTOCORRELATION';
        end
        title = add_filter_subtitle(title, options_);
        labels = M_.endo_names(ivar(i1));
        headers = vertcat('Order ', cellstr(int2str([1:options_.ar]')));
        lh = cellofchararraymaxlength(labels)+2;
        dyntable(options_, title, headers, labels, z, lh, 8, 4);
        if options_.TeX
            labels = M_.endo_names_tex(ivar(i1));
            headers = vertcat('Order ', cellstr(int2str([1:options_.ar]')));
            lh = cellofchararraymaxlength(labels)+2;
            dyn_latex_table(M_, options_, title, 'th_autocorr_matrix', headers, labels, z, lh, 8, 4);
        end
    end
end