1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
function []=display_problematic_vars_Jacobian(problemrow,problemcol,M_,x,type,caller_string)
% []=display_problematic_vars_Jacobian(problemrow,problemcol,M_,ys,caller_string)
% print the equation numbers and variables associated with problematic entries
% of the Jacobian
%
% INPUTS
% problemrow [vector] rows associated with problematic entries
% problemcol [vector] columns associated with problematic entries
% M_ [matlab structure] Definition of the model.
% x [vector] point at which the Jacobian was evaluated
% type [string] 'static' or 'dynamic' depending on the type of
% Jacobian
% caller_string [string] contains name of calling function for printing
%
% OUTPUTS
% none.
%
% Copyright (C) 2014-2018 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
skipline();
if nargin<6
caller_string='';
end
aux_eq_nbr=M_.eq_nbr-M_.orig_eq_nbr;
if strcmp(type,'dynamic')
for ii=1:length(problemrow)
if problemcol(ii)>max(M_.lead_lag_incidence)
var_row=2;
var_index=problemcol(ii)-max(max(M_.lead_lag_incidence));
else
[var_row,var_index]=find(M_.lead_lag_incidence==problemcol(ii));
end
if var_row==2
type_string='';
elseif var_row==1
type_string='lag of';
elseif var_row==3
type_string='lead of';
end
if problemcol(ii)<=max(max(M_.lead_lag_incidence)) && var_index<=M_.orig_endo_nbr
if problemrow(ii)<=aux_eq_nbr
eq_nbr = problemrow(ii);
fprintf('Derivative of Auxiliary Equation %d with respect to %s Variable %s (initial value of %s: %g) \n', ...
eq_nbr, type_string, M_.endo_names{var_index}, M_.endo_names{var_index}, x(var_index));
else
eq_nbr = problemrow(ii)-aux_eq_nbr;
fprintf('Derivative of Equation %d with respect to %s Variable %s (initial value of %s: %g) \n', ...
eq_nbr, type_string, M_.endo_names{var_index}, M_.endo_names{var_index}, x(var_index));
end
elseif problemcol(ii)<=max(max(M_.lead_lag_incidence)) && var_index>M_.orig_endo_nbr % auxiliary vars
if M_.aux_vars(1,problemcol(ii)-M_.orig_endo_nbr).type==6 %Ramsey Lagrange Multiplier
if problemrow(ii)<=aux_eq_nbr
eq_nbr = problemrow(ii);
fprintf('Derivative of Auxiliary Equation %d with respect to %s of Langrange multiplier of equation %s (initial value: %g) \n', ...
eq_nbr, type_string, M_.aux_vars(1,problemcol(ii)-M_.orig_endo_nbr).eq_nbr, x(problemcol(ii)));
else
eq_nbr = problemrow(ii)-aux_eq_nbr;
fprintf('Derivative of Equation %d with respect to %s of Langrange multiplier of equation %s (initial value: %g) \n', ...
eq_nbr, type_string, M_.aux_vars(1,problemcol(ii)-M_.orig_endo_nbr).eq_nbr, x(problemcol(ii)));
end
else
if problemrow(ii)<=aux_eq_nbr
eq_nbr = problemrow(ii);
orig_var_index = M_.aux_vars(1,var_index-M_.orig_endo_nbr).orig_index;
fprintf('Derivative of Auxiliary Equation %d with respect to %s Variable %s (initial value of %s: %g) \n', ...
eq_nbr, type_string, M_.endo_names{orig_var_index}, M_.endo_names{orig_var_index}, x(orig_var_index));
else
eq_nbr = problemrow(ii)-aux_eq_nbr;
orig_var_index = M_.aux_vars(1,var_index-M_.orig_endo_nbr).orig_index;
fprintf('Derivative of Equation %d with respect to %s Variable %s (initial value of %s: %g) \n', ...
eq_nbr, type_string, M_.endo_names{orig_var_index}, M_.endo_names{orig_var_index}, x(orig_var_index));
end
end
elseif problemcol(ii)>max(max(M_.lead_lag_incidence)) && var_index<=M_.exo_nbr
if problemrow(ii)<=aux_eq_nbr
eq_nbr = problemrow(ii);
fprintf('Derivative of Auxiliary Equation %d with respect to %s shock %s \n', ...
eq_nbr, type_string, M_.exo_names{var_index});
else
eq_nbr = problemrow(ii)-aux_eq_nbr;
fprintf('Derivative of Equation %d with respect to %s shock %s \n', ...
eq_nbr, type_string, M_.exo_names{var_index});
end
else
error('display_problematic_vars_Jacobian:: The error should not happen. Please contact the developers')
end
end
fprintf('\n%s The problem most often occurs, because a variable with\n', caller_string)
fprintf('%s exponent smaller than 1 has been initialized to 0. Taking the derivative\n', caller_string)
fprintf('%s and evaluating it at the steady state then results in a division by 0.\n', caller_string)
fprintf('%s If you are using model-local variables (# operator), check their values as well.\n', caller_string)
elseif strcmp(type, 'static')
for ii=1:length(problemrow)
if problemcol(ii)<=M_.orig_endo_nbr
if problemrow(ii)<=aux_eq_nbr
eq_nbr = problemrow(ii);
fprintf('Derivative of Auxiliary Equation %d with respect to Variable %s (initial value of %s: %g) \n', ...
eq_nbr, M_.endo_names{problemcol(ii)}, M_.endo_names{problemcol(ii)}, x(problemcol(ii)));
else
eq_nbr = problemrow(ii)-aux_eq_nbr;
fprintf('Derivative of Equation %d with respect to Variable %s (initial value of %s: %g) \n', ...
eq_nbr, M_.endo_names{problemcol(ii)}, M_.endo_names{problemcol(ii)}, x(problemcol(ii)));
end
else %auxiliary vars
if M_.aux_vars(1,problemcol(ii)-M_.orig_endo_nbr).type ==6 %Ramsey Lagrange Multiplier
if problemrow(ii)<=aux_eq_nbr
eq_nbr = problemrow(ii);
fprintf('Derivative of Auxiliary Equation %d with respect to Lagrange multiplier of equation %d (initial value: %g) \n', ...
eq_nbr, M_.aux_vars(1,problemcol(ii)-M_.orig_endo_nbr).eq_nbr, x(problemcol(ii)));
else
eq_nbr = problemrow(ii)-aux_eq_nbr;
fprintf('Derivative of Equation %d with respect to Lagrange multiplier of equation %d (initial value: %g) \n', ...
eq_nbr, M_.aux_vars(1,problemcol(ii)-M_.orig_endo_nbr).eq_nbr, x(problemcol(ii)));
end
else
if problemrow(ii)<=aux_eq_nbr
eq_nbr = problemrow(ii);
orig_var_index = M_.aux_vars(1,problemcol(ii)-M_.orig_endo_nbr).orig_index;
fprintf('Derivative of Auxiliary Equation %d with respect to Variable %s (initial value of %s: %g) \n', ...
eq_nbr, M_.endo_names{orig_var_index}, M_.endo_names{orig_var_index}, x(problemcol(ii)));
else
eq_nbr = problemrow(ii)-aux_eq_nbr;
orig_var_index = M_.aux_vars(1,problemcol(ii)-M_.orig_endo_nbr).orig_index;
fprintf('Derivative of Equation %d with respect to Variable %s (initial value of %s: %g) \n', ...
eq_nbr, M_.endo_names{orig_var_index}, M_.endo_names{orig_var_index}, x(problemcol(ii)));
end
end
end
end
fprintf('\n%s The problem most often occurs, because a variable with\n', caller_string)
fprintf('%s exponent smaller than 1 has been initialized to 0. Taking the derivative\n', caller_string)
fprintf('%s and evaluating it at the steady state then results in a division by 0.\n', caller_string)
fprintf('%s If you are using model-local variables (# operator), check their values as well.\n', caller_string)
else
error('Unknown Type')
end
|