1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
function [s,nu] = inverse_gamma_specification(mu, sigma2, lb, type, use_fzero_flag, name) % --*-- Unitary tests --*--
% Computes the inverse Gamma hyperparameters from the prior mean and standard deviation.
%
% INPUTS
% - mu [double] scalar, prior mean.
% - sigma2 [double] positive scalar, prior variance.
% - type [integer] scalar equal to 1 or 2, type of the inverse gamma distribution
% - use_fzero_flag [logical] scalar, Use (matlab/octave's implementation of) fzero to solve for nu if true, use
% dynare's implementation of the secant method otherwise.
% - name [string] name of the parameter or random variable.
%
% OUTPUS
% - s [double] scalar, first hyperparameter.
% - nu [double] scalar, second hyperparameter.
%
% REMARKS
% 1. In the Inverse Gamma parameterization with alpha and beta, we have alpha=nu/2 and beta=2/s, where
% if X is IG(alpha,beta) then 1/X is Gamma(alpha,1/beta)
% 2. The call to the matlab's implementation of the secant method is here for testing purpose and should not be used. This routine fails
% more often in finding an interval for nu containing a signe change because it expands the interval on both sides and eventually
% violates the condition nu>2.
% Copyright (C) 2003-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
if nargin<4
error('At least four input arguments are required!')
end
if ~isnumeric(mu) || ~isscalar(mu) || ~isreal(mu)
error('First input argument must be a real scalar!')
end
if ~isnumeric(sigma2) || ~isscalar(sigma2) || ~isreal(sigma2) || sigma2<=0
error('Second input argument must be a real positive scalar!')
end
if ~isnumeric(lb) || ~isscalar(lb) || ~isreal(lb)
error('Third input argument must be a real scalar!')
end
if ~isnumeric(type) || ~isscalar(type) || ~ismember(type, [1, 2])
error('Fourth input argument must be equal to 1 or 2!')
end
if nargin==4 || isempty(use_fzero_flag)
use_fzero_flag = false;
else
if ~isscalar(use_fzero_flag) || ~islogical(use_fzero_flag)
error('Fifth input argument must be a scalar logical!')
end
end
if nargin>5 && (~ischar(name) || size(name, 1)>1)
error('Sixth input argument must be a string!')
else
name = '';
end
if ~isempty(name)
name = sprintf(' for %s', name);
end
if mu<=lb
error('The prior mean%s (%f) must be above the lower bound (%f)of the Inverse Gamma (type %d) prior distribution!', mu, lb, name, type);
end
check_solution_flag = true;
s = [];
nu = [];
sigma = sqrt(sigma2);
mu2 = mu*mu;
if type == 2 % Inverse Gamma 2
nu = 2*(2+mu2/sigma2);
s = 2*mu*(1+mu2/sigma2);
elseif type == 1 % Inverse Gamma 1
if sigma2 < Inf
nu = sqrt(2*(2+mu2/sigma2));
if use_fzero_flag
nu = fzero(@(nu)ig1fun(nu,mu2,sigma2),nu);
else
nu2 = 2*nu;
nu1 = 2;
err = ig1fun(nu,mu2,sigma2);
err2 = ig1fun(nu2,mu2,sigma2);
if err2 > 0 % Too short interval.
while nu2 < 1e12 % Shift the interval containing the root.
nu1 = nu2;
nu2 = nu2*2;
err2 = ig1fun(nu2,mu2,sigma2);
if err2<0
break
end
end
if err2>0
error('inverse_gamma_specification:: Failed in finding an interval containing a sign change! You should check that the prior variance is not too small compared to the prior mean...');
end
end
% Solve for nu using the secant method.
while abs(nu2/nu1-1) > 1e-14
if err > 0
nu1 = nu;
if nu < nu2
nu = nu2;
else
nu = 2*nu;
nu2 = nu;
end
else
nu2 = nu;
end
nu = (nu1+nu2)/2;
err = ig1fun(nu,mu2,sigma2);
end
end
s = (sigma2+mu2)*(nu-2);
if check_solution_flag
if abs(log(mu)-log(sqrt(s/2))-gammaln((nu-1)/2)+gammaln(nu/2))>1e-7
error('inverse_gamma_specification:: Failed in solving for the hyperparameters!');
end
if abs(sigma-sqrt(s/(nu-2)-mu*mu))>1e-7
error('inverse_gamma_specification:: Failed in solving for the hyperparameters!');
end
end
else
nu = 2;
s = 2*mu2/pi;
end
else
error('inverse_gamma_specification: unkown type')
end
%@test:1
%$ try
%$ [s, nu] = inverse_gamma_specification(.5, .05, 0, 1);
%$ t(1) = true;
%$ catch
%$ t(1) = false;
%$ end
%$
%$ if t(1)
%$ t(2) = abs(0.5-sqrt(.5*s)*gamma(.5*(nu-1))/gamma(.5*nu))<1e-12;
%$ t(3) = abs(0.05-s/(nu-2)+.5^2)<1e-12;
%$ end
%$ T = all(t);
%@eof:1
%@test:2
%$ try
%$ [s, nu] = inverse_gamma_specification(.5, .05, 0, 2);
%$ t(1) = true;
%$ catch
%$ t(1) = false;
%$ end
%$
%$ if t(1)
%$ t(2) = abs(0.5-s/(nu-2))<1e-12;
%$ t(3) = abs(0.05-2*.5^2/(nu-4))<1e-12;
%$ end
%$ T = all(t);
%@eof:2
%@test:3
%$ try
%$ [s, nu] = inverse_gamma_specification(.5, Inf, 0, 1);
%$ t(1) = true;
%$ catch
%$ t(1) = false;
%$ end
%$
%$ if t(1)
%$ t(2) = abs(0.5-sqrt(.5*s)*gamma(.5*(nu-1))/gamma(.5*nu))<1e-12;
%$ t(3) = isequal(nu, 2); %abs(0.05-2*.5^2/(nu-4))<1e-12;
%$ end
%$ T = all(t);
%@eof:3
%@test:4
%$ try
%$ [s, nu] = inverse_gamma_specification(.5, Inf, 0, 2);
%$ t(1) = true;
%$ catch
%$ t(1) = false;
%$ end
%$
%$ if t(1)
%$ t(2) = abs(0.5-s/(nu-2))<1e-12;
%$ t(3) = isequal(nu, 4);
%$ end
%$ T = all(t);
%@eof:4
|