File: weibull_specification.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (142 lines) | stat: -rw-r--r-- 3,861 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
function [shape, scale] = weibull_specification(mu, sigma2, lb, name)   % --*-- Unitary tests --*--

% Returns the hyperparameters of the Weibull distribution given the expectation and variance.
%
% INPUTS
%
%
% OUTPUTS
%
%

% Copyright (C) 2015-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

if nargin<3
    lb = 0;
end

if nargin>3 && ~isempty(name)
    name1 = sprintf('for %s ', name);
    name2 = sprintf(' (for %s)', name);
else
    name1 = '';
    name2 = '';
end

if mu<lb
    error('The prior expectation (%f) %scannot be smaller than the lower bound of the Weibull distribution (%f)!', mu, name1, lb)
end

if isinf(sigma2)
    error('The variance of the Gamma distribution has to be finite%s!', name2)
end

scale = NaN;
shape = NaN;

mu = mu-lb;
mu2 = mu*mu;

eqn = @(k) gammaln(1+2./k) - 2*gammaln(1+1./k) - log(1+sigma2/mu2);
eqn2 = @(k) eqn(k).*eqn(k);

kstar = fminbnd(eqn2, 1e-9, 100);
[shape, fval, exitflag]  = fzero(eqn, kstar);

if exitflag<1
    shape = NaN;
    return
end

scale = mu/gamma(1+1/shape);

%@test:1
%$ debug = false;
%$ scales = 1:.01:5;
%$ shapes = .5:.01:2;
%$ n_scales = length(scales);
%$ n_shapes = length(shapes);
%$ mu = NaN(n_scales, n_shapes);
%$ s2 = NaN(n_scales, n_shapes);
%$ for i=1:n_shapes
%$     g1 = gamma(1+1/shapes(i));
%$     g2 = gamma(1+2/shapes(i));
%$     g3 = g1*g1;
%$     for j=1:n_scales
%$         mu(j, i) = scales(j)*g1;
%$         s2(j, i) = scales(j)*scales(j)*(g2-g3);
%$     end
%$ end
%$ if debug
%$    success = [];
%$    failed1 = [];
%$    failed1_ = [];
%$    failed2 = [];
%$ end
%$ try
%$    for i=1:n_shapes
%$        for j=1:n_scales
%$           if debug
%$               disp(sprintf('... mu=%s and s2=%s', num2str(mu(j,i)),num2str(s2(j,i))))
%$           end
%$           if ~isnan(mu(j,i)) && ~isnan(s2(j,i)) && ~isinf(mu(j,i)) && ~isinf(s2(j,i))
%$               [shape, scale] = weibull_specification(mu(j,i), s2(j,i));
%$               if isnan(scale)
%$                  t = false;
%$               else
%$                  if abs(scales(j)-scale)<1e-9 && abs(shapes(i)-shape)<1e-9
%$                      t = true;
%$                  else
%$                      t = false;
%$                  end
%$               end
%$               if ~t && debug
%$                  failed1 = [failed1; mu(j,i) s2(j,i)];
%$                  failed1_ = [failed1_; shapes(i) scales(j)];
%$                  error('UnitTest','Cannot compute scale and shape hyperparameters for mu=%s and s2=%s', num2str(mu(j,i)), num2str(s2(j,i)))
%$               end
%$               if debug
%$                   success = [success; mu(j,i) s2(j,i)];
%$               end
%$           else
%$               failed2 = [failed2; shapes(i) scales(j)];
%$               continue % Pass this test
%$           end
%$       end
%$   end
%$ catch
%$    t = false;
%$ end
%$
%$ if debug
%$     figure(1)
%$     plot(success(:,1),success(:,2),'ok');
%$     if ~isempty(failed1)
%$         hold on
%$         plot(failed1(:,1),failed1(:,2),'or');
%$         hold off
%$         figure(2)
%$         plot(failed1_(:,1),failed1_(:,2),'or')
%$     end
%$     if ~isempty(failed2)
%$         figure(2)
%$         plot(failed2(:,1),failed2(:,2),'or');
%$     end
%$ end
%$ T = all(t);
%@eof:1