File: dsge_simulated_theoretical_conditional_variance_decomposition.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (218 lines) | stat: -rw-r--r-- 10,517 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
function [nvar,vartan,NumberOfConditionalDecompFiles] = ...
    dsge_simulated_theoretical_conditional_variance_decomposition(SampleSize,Steps,M_,options_,oo_,type)
% function [nvar,vartan,NumberOfConditionalDecompFiles] = ...
%     dsge_simulated_theoretical_conditional_variance_decomposition(SampleSize,Steps,M_,options_,oo_,type)
% This function computes the posterior or prior distribution of the conditional variance
% decomposition of the endogenous variables (or a subset of the endogenous variables).
%
% INPUTS
%   SampleSize   [integer]       scalar, number of simulations.
%   Steps        [integers]      horizons at which to conduct decomposition
%   M_           [structure]     Dynare structure describing the model.
%   options_     [structure]     Dynare structure defining global options.
%   oo_          [structure]     Dynare structure where the results are saved.
%   type         [string]        'prior' or 'posterior'
%
%
% OUTPUTS
%   nvar                             [integer]  nvar is the number of stationary variables.
%   vartan                           [char]     array of characters (with nvar rows).
%   NumberOfConditionalDecompFiles   [integer]  scalar, number of prior or posterior data files (for covariance).

% Copyright (C) 2009-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.


% Get informations about the _posterior_draws files.
if strcmpi(type,'posterior')
    NumberOfDrawsFiles = length(dir([M_.dname '/metropolis/' M_.fname '_' type '_draws*' ]));
    posterior = 1;
elseif strcmpi(type,'prior')
    NumberOfDrawsFiles = length(dir([M_.dname '/prior/draws/' type '_draws*' ]));
    CheckPath('prior/moments',M_.dname);
    posterior = 0;
else
    disp('dsge_simulated_theoretical_conditional_variance_decomposition:: Unknown type!')
    error()
end

%delete old stale files before creating new ones
if posterior
    delete_stale_file([M_.dname '/metropolis/' M_.fname '_PosteriorConditionalVarianceDecomposition*'])
    delete_stale_file([M_.dname '/metropolis/' M_.fname '_PosteriorConditionalVarianceDecompositionME*'])
else
    delete_stale_file([M_.dname '/prior/moments/' M_.fname '_PriorConditionalVarianceDecomposition*'])
    delete_stale_file([M_.dname '/prior/moments/' M_.fname '_PriorConditionalVarianceDecompositionME*'])
end

% Set varlist (vartan)
if ~posterior
    if isfield(options_,'varlist')
        temp = options_.varlist;
    end
    options_.varlist = options_.prior_analysis_endo_var_list;
end
[ivar,vartan ] = get_variables_list(options_, M_);
if ~posterior
    if exist('temp','var')
        options_.varlist = temp;
    end
end
nvar = length(ivar);

% Set the size of the auto-correlation function to zero.
nar = options_.ar;
options_.ar = 0;

NumberOfSavedElementsPerSimulation = nvar*M_.exo_nbr*length(Steps);
MaXNumberOfConditionalDecompLines = ceil(options_.MaxNumberOfBytes/NumberOfSavedElementsPerSimulation/8);

ME_present=0;
if ~all(diag(M_.H)==0)
    if (isoctave && octave_ver_less_than('6')) || (~isoctave && matlab_ver_less_than('8.1'))
        [observable_pos_requested_vars,index_subset,index_observables]=intersect_stable(ivar,options_.varobs_id);
    else
        [observable_pos_requested_vars,index_subset,index_observables]=intersect(ivar,options_.varobs_id,'stable');
    end
    if ~isempty(observable_pos_requested_vars)
        ME_present=1;
        nobs_ME=length(observable_pos_requested_vars);
        NumberOfSavedElementsPerSimulation_ME = nobs_ME*(M_.exo_nbr+1)*length(Steps);
        MaXNumberOfConditionalDecompLines_ME = ceil(options_.MaxNumberOfBytes/NumberOfSavedElementsPerSimulation_ME/8);
    end
end

if SampleSize<=MaXNumberOfConditionalDecompLines
    Conditional_decomposition_array = zeros(nvar,length(Steps),M_.exo_nbr,SampleSize);
    NumberOfConditionalDecompFiles = 1;
else
    Conditional_decomposition_array = zeros(nvar,length(Steps),M_.exo_nbr,MaXNumberOfConditionalDecompLines);
    NumberOfLinesInTheLastConditionalDecompFile = mod(SampleSize,MaXNumberOfConditionalDecompLines);
    NumberOfConditionalDecompFiles = ceil(SampleSize/MaXNumberOfConditionalDecompLines);
end

if ME_present
    if SampleSize<=MaXNumberOfConditionalDecompLines_ME
        Conditional_decomposition_array_ME = zeros(nobs_ME,length(Steps),M_.exo_nbr+1,SampleSize);
        NumberOfConditionalDecompFiles_ME = 1;
    else
        Conditional_decomposition_array_ME = zeros(nobs_ME,length(Steps),M_.exo_nbr+1,SampleSize);
        NumberOfLinesInTheLastConditionalDecompFile_ME = mod(SampleSize,MaXNumberOfConditionalDecompLines_ME);
        NumberOfConditionalDecompFiles_ME = ceil(SampleSize/MaXNumberOfConditionalDecompLines_ME);
    end
    NumberOfConditionalDecompLines_ME = size(Conditional_decomposition_array_ME,4);
    ConditionalDecompFileNumber_ME = 0;
end

NumberOfConditionalDecompLines = size(Conditional_decomposition_array,4);
ConditionalDecompFileNumber = 0;


StateSpaceModel.number_of_state_equations = M_.endo_nbr;
StateSpaceModel.number_of_state_innovations = M_.exo_nbr;

first_call = 1;

linea = 0;
linea_ME = 0;
for file = 1:NumberOfDrawsFiles
    if posterior
        temp=load([M_.dname '/metropolis/' M_.fname '_' type '_draws' num2str(file) ]);
    else
        temp=load([M_.dname '/prior/draws/' type '_draws' num2str(file) ]);
    end
    isdrsaved = columns(temp.pdraws)-1;
    NumberOfDraws = rows(temp.pdraws);
    for linee = 1:NumberOfDraws
        linea = linea+1;
        linea_ME = linea_ME+1;
        if isdrsaved
            M_=set_parameters_locally(M_,temp.pdraws{linee,1});% Needed to update the covariance matrix of the state innovations.
            dr = temp.pdraws{linee,2};
        else
            M_=set_parameters_locally(M_,temp.pdraws{linee,1});
            [dr,info,M_,options_,oo_] = resol(0,M_,options_,oo_);
        end
        if first_call
            endo_nbr = M_.endo_nbr;
            nstatic = M_.nstatic;
            nspred = M_.nspred;
            iv = (1:endo_nbr)';
            ic = [ nstatic+(1:nspred) endo_nbr+(1:size(dr.ghx,2)-nspred) ]';
            StateSpaceModel.number_of_state_equations = M_.endo_nbr;
            StateSpaceModel.number_of_state_innovations = M_.exo_nbr;
            StateSpaceModel.sigma_e_is_diagonal = M_.sigma_e_is_diagonal;
            StateSpaceModel.order_var = dr.order_var;
            StateSpaceModel.observable_pos=options_.varobs_id;
            first_call = 0;
            clear('endo_nbr','nstatic','nspred','k');
        end
        [StateSpaceModel.transition_matrix,StateSpaceModel.impulse_matrix] = kalman_transition_matrix(dr,iv,ic,M_.exo_nbr);
        StateSpaceModel.state_innovations_covariance_matrix = M_.Sigma_e;
        M_ = set_measurement_errors(temp.pdraws{linee,1},temp.estim_params_,M_);
        StateSpaceModel.measurement_error=M_.H;
        clear('dr');
        [ConditionalVarianceDecomposition, ConditionalVarianceDecomposition_ME]=conditional_variance_decomposition(StateSpaceModel, Steps, ivar);
        Conditional_decomposition_array(:,:,:,linea) =ConditionalVarianceDecomposition;
        if ME_present
            Conditional_decomposition_array_ME(:,:,:,linea) =ConditionalVarianceDecomposition_ME;
        end
        if linea == NumberOfConditionalDecompLines
            ConditionalDecompFileNumber = ConditionalDecompFileNumber + 1;
            linea = 0;
            if posterior
                save([M_.dname '/metropolis/' M_.fname '_PosteriorConditionalVarianceDecomposition' int2str(ConditionalDecompFileNumber) '.mat' ], ...
                     'Conditional_decomposition_array');
            else
                save([M_.dname '/prior/moments/' M_.fname '_PriorConditionalVarianceDecomposition' int2str(ConditionalDecompFileNumber) '.mat' ], ...
                     'Conditional_decomposition_array');
            end
            if (ConditionalDecompFileNumber==NumberOfConditionalDecompFiles-1)% Prepare last round.
                Conditional_decomposition_array = zeros(nvar, length(Steps),M_.exo_nbr,NumberOfLinesInTheLastConditionalDecompFile) ;
                NumberOfConditionalDecompLines = NumberOfLinesInTheLastConditionalDecompFile;
            elseif ConditionalDecompFileNumber<NumberOfConditionalDecompFiles-1
                Conditional_decomposition_array = zeros(nvar,length(Steps),M_.exo_nbr,MaXNumberOfConditionalDecompLines);
            else
                clear('Conditional_decomposition_array');
            end
        end
        %with measurement error
        if ME_present
            if linea_ME == NumberOfConditionalDecompLines_ME
                ConditionalDecompFileNumber_ME = ConditionalDecompFileNumber_ME + 1;
                linea_ME = 0;
                if posterior
                    save([M_.dname '/metropolis/' M_.fname '_PosteriorConditionalVarianceDecompME' int2str(ConditionalDecompFileNumber_ME) '.mat' ], ...
                         'Conditional_decomposition_array_ME');
                else
                    save([M_.dname '/prior/moments/' M_.fname '_PriorConditionalVarianceDecompME' int2str(ConditionalDecompFileNumber_ME) '.mat' ], ...
                         'Conditional_decomposition_array_ME');
                end
                if (ConditionalDecompFileNumber_ME==NumberOfConditionalDecompFiles_ME-1)% Prepare last round.
                    Conditional_decomposition_array_ME = zeros(nobs_ME, length(Steps),M_.exo_nbr+1,NumberOfLinesInTheLastConditionalDecompFile_ME) ;
                    NumberOfConditionalDecompLines_ME = NumberOfLinesInTheLastConditionalDecompFile_ME;
                elseif ConditionalDecompFileNumber_ME<NumberOfConditionalDecompFiles_ME-1
                    Conditional_decomposition_array_ME = zeros(nobs_ME,length(Steps),M_.exo_nbr+1,MaXNumberOfConditionalDecompLines_ME);
                else
                    clear('Conditional_decomposition_array_ME');
                end
            end
        end
    end
end

options_.ar = nar;