1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
|
function dynare_estimation_1(var_list_,dname)
% function dynare_estimation_1(var_list_,dname)
% runs the estimation of the model
%
% INPUTS
% var_list_: selected endogenous variables vector
% dname: alternative directory name
%
% OUTPUTS
% none
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2003-2018 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global M_ options_ oo_ estim_params_ bayestopt_ dataset_ dataset_info
if isempty(estim_params_)
mode_compute_o = options_.mode_compute;
mh_replic_o = options_.mh_replic;
options_.mode_compute = 0;
options_.mh_replic = 0;
reset_options_related_to_estimation = true;
else
reset_options_related_to_estimation = false;
end
%store qz_criterium
qz_criterium_old=options_.qz_criterium;
if isnan(options_.first_obs)
first_obs_nan_indicator=true;
else
first_obs_nan_indicator=false;
end
% Set particle filter flag.
if options_.order > 1
if options_.particle.status
skipline()
disp('Estimation using a non linear filter!')
skipline()
if ~options_.nointeractive && ismember(options_.mode_compute,[1,3,4]) && ~strcmpi(options_.particle.filter_algorithm,'gf')% Known gradient-based optimizers
disp('You are using a gradient-based mode-finder. Particle filtering introduces discontinuities in the')
disp('objective function w.r.t the parameters. Thus, should use a non-gradient based optimizer.')
fprintf('\nPlease choose a mode-finder:\n')
fprintf('\t 0 - Continue using gradient-based method (it is most likely that you will no get any sensible result).\n')
fprintf('\t 6 - Monte Carlo based algorithm\n')
fprintf('\t 7 - Nelder-Mead simplex based optimization routine (Matlab optimization toolbox required)\n')
fprintf('\t 8 - Nelder-Mead simplex based optimization routine (Dynare''s implementation)\n')
fprintf('\t 9 - CMA-ES (Covariance Matrix Adaptation Evolution Strategy) algorithm\n')
choice = [];
while isempty(choice)
choice = input('Please enter your choice: ');
if isnumeric(choice) && isint(choice) && ismember(choice,[0 6 7 8 9])
if choice
options_.mode_compute = choice;
end
else
fprintf('\nThis is an invalid choice (you have to choose between 0, 6, 7, 8 and 9).\n')
choice = [];
end
end
end
else
error('For estimating the model with a second order approximation using a non linear filter, one should have options_.particle.status=true;')
end
end
if ~options_.dsge_var
if options_.particle.status
objective_function = str2func('non_linear_dsge_likelihood');
if strcmpi(options_.particle.filter_algorithm, 'sis')
options_.particle.algorithm = 'sequential_importance_particle_filter';
elseif strcmpi(options_.particle.filter_algorithm, 'apf')
options_.particle.algorithm = 'auxiliary_particle_filter';
elseif strcmpi(options_.particle.filter_algorithm, 'gf')
options_.particle.algorithm = 'gaussian_filter';
elseif strcmpi(options_.particle.filter_algorithm, 'gmf')
options_.particle.algorithm = 'gaussian_mixture_filter';
elseif strcmpi(options_.particle.filter_algorithm, 'cpf')
options_.particle.algorithm = 'conditional_particle_filter';
elseif strcmpi(options_.particle.filter_algorithm, 'nlkf')
options_.particle.algorithm = 'nonlinear_kalman_filter';
else
error(['Estimation: Unknown filter ' options_.particle.filter_algorithm])
end
else
objective_function = str2func('dsge_likelihood');
end
else
objective_function = str2func('dsge_var_likelihood');
end
[dataset_, dataset_info, xparam1, hh, M_, options_, oo_, estim_params_, bayestopt_, bounds] = ...
dynare_estimation_init(var_list_, dname, [], M_, options_, oo_, estim_params_, bayestopt_);
if options_.dsge_var
check_dsge_var_model(M_, estim_params_, bayestopt_);
if dataset_info.missing.state
error('Estimation::DsgeVarLikelihood: I cannot estimate a DSGE-VAR model with missing observations!')
end
if options_.noconstant
var_sample_moments(options_.dsge_varlag, -1, dataset_);
else
% The steady state is non zero ==> a constant in the VAR is needed!
var_sample_moments(options_.dsge_varlag, 0, dataset_);
end
end
% Set sigma_e_is_diagonal flag (needed if the shocks block is not declared in the mod file).
M_.sigma_e_is_diagonal = true;
if estim_params_.ncx || any(nnz(tril(M_.Correlation_matrix,-1))) || isfield(estim_params_,'calibrated_covariances')
M_.sigma_e_is_diagonal = false;
end
data = dataset_.data;
rawdata = dataset_info.rawdata;
data_index = dataset_info.missing.aindex;
missing_value = dataset_info.missing.state;
% Set number of observations
gend = dataset_.nobs;
% Set the number of observed variables.
n_varobs = length(options_.varobs);
% Get the number of parameters to be estimated.
nvx = estim_params_.nvx; % Variance of the structural innovations (number of parameters).
nvn = estim_params_.nvn; % Variance of the measurement innovations (number of parameters).
ncx = estim_params_.ncx; % Covariance of the structural innovations (number of parameters).
ncn = estim_params_.ncn; % Covariance of the measurement innovations (number of parameters).
np = estim_params_.np ; % Number of deep parameters.
nx = nvx+nvn+ncx+ncn+np; % Total number of parameters to be estimated.
% Set the names of the priors.
pnames = {''; 'beta'; 'gamm'; 'norm'; 'invg'; 'unif'; 'invg2'; ''; 'weibl'};
dr = oo_.dr;
if ~isempty(estim_params_)
M_ = set_all_parameters(xparam1,estim_params_,M_);
end
%% perform initial estimation checks;
try
oo_ = initial_estimation_checks(objective_function,xparam1,dataset_,dataset_info,M_,estim_params_,options_,bayestopt_,bounds,oo_);
catch % if check fails, provide info on using calibration if present
e = lasterror();
if estim_params_.full_calibration_detected %calibrated model present and no explicit starting values
skipline(1);
fprintf('ESTIMATION_CHECKS: There was an error in computing the likelihood for initial parameter values.\n')
fprintf('ESTIMATION_CHECKS: If this is not a problem with the setting of options (check the error message below),\n')
fprintf('ESTIMATION_CHECKS: you should try using the calibrated version of the model as starting values. To do\n')
fprintf('ESTIMATION_CHECKS: this, add an empty estimated_params_init-block with use_calibration option immediately before the estimation\n')
fprintf('ESTIMATION_CHECKS: command (and after the estimated_params-block so that it does not get overwritten):\n');
skipline(2);
end
rethrow(e);
end
if isequal(options_.mode_compute,0) && isempty(options_.mode_file) && options_.mh_posterior_mode_estimation==0
if options_.smoother
[atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,T,R,P,PK,decomp,Trend,state_uncertainty,M_,oo_,options_,bayestopt_] = DsgeSmoother(xparam1,gend,transpose(data),data_index,missing_value,M_,oo_,options_,bayestopt_,estim_params_);
[oo_]=store_smoother_results(M_,oo_,options_,bayestopt_,dataset_,dataset_info,atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,P,PK,decomp,Trend,state_uncertainty);
end
%reset qz_criterium
options_.qz_criterium=qz_criterium_old;
return
end
%% Estimation of the posterior mode or likelihood mode
if ~isequal(options_.mode_compute,0) && ~options_.mh_posterior_mode_estimation
%prepare settings for newrat
if options_.mode_compute==5
%get whether outer product Hessian is requested
newratflag=[];
if ~isempty(options_.optim_opt)
options_list = read_key_value_string(options_.optim_opt);
for i=1:rows(options_list)
if strcmp(options_list{i,1},'Hessian')
newratflag=options_list{i,2};
end
end
end
if options_.analytic_derivation
options_analytic_derivation_old = options_.analytic_derivation;
options_.analytic_derivation = -1;
if ~isempty(newratflag) && newratflag~=0 %numerical hessian explicitly specified
error('newrat: analytic_derivation is incompatible with numerical Hessian.')
else %use default
newratflag=0; %exclude DYNARE numerical hessian
end
elseif ~options_.analytic_derivation
if isempty(newratflag)
newratflag=options_.newrat.hess; %use default numerical dynare hessian
end
end
end
[xparam1, fval, exitflag, hh, options_, Scale, new_rat_hess_info] = dynare_minimize_objective(objective_function,xparam1,options_.mode_compute,options_,[bounds.lb bounds.ub],bayestopt_.name,bayestopt_,hh,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,bounds,oo_);
fprintf('\nFinal value of minus the log posterior (or likelihood):%f \n', fval);
if isnumeric(options_.mode_compute) && options_.mode_compute==5 && options_.analytic_derivation==-1 %reset options changed by newrat
options_.analytic_derivation = options_analytic_derivation_old; %reset
elseif isnumeric(options_.mode_compute) && options_.mode_compute==6 %save scaling factor
save([M_.fname '_optimal_mh_scale_parameter.mat'],'Scale');
options_.mh_jscale = Scale;
bayestopt_.jscale(:) = options_.mh_jscale;
end
if ~isnumeric(options_.mode_compute) || ~isequal(options_.mode_compute,6) %always already computes covariance matrix
if options_.cova_compute == 1 %user did not request covariance not to be computed
if options_.analytic_derivation && strcmp(func2str(objective_function),'dsge_likelihood')
ana_deriv_old = options_.analytic_derivation;
options_.analytic_derivation = 2;
[~,~,~,~,hh] = feval(objective_function,xparam1, ...
dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,bounds,oo_);
options_.analytic_derivation = ana_deriv_old;
elseif ~isnumeric(options_.mode_compute) || ~(isequal(options_.mode_compute,5) && newratflag~=1 && strcmp(func2str(objective_function),'dsge_likelihood'))
% with flag==0, we force to use the hessian from outer product gradient of optimizer 5
if options_.hessian.use_penalized_objective
penalized_objective_function = str2func('penalty_objective_function');
hh = hessian(penalized_objective_function, xparam1, options_.gstep, objective_function, fval, dataset_, dataset_info, options_, M_, estim_params_, bayestopt_, bounds,oo_);
else
hh = hessian(objective_function, xparam1, options_.gstep, dataset_, dataset_info, options_, M_, estim_params_, bayestopt_, bounds,oo_);
end
hh = reshape(hh, nx, nx);
elseif isnumeric(options_.mode_compute) && isequal(options_.mode_compute,5)
% other numerical hessian options available with optimizer 5
%
% if newratflag == 0
% compute outer product gradient of optimizer 5
%
% if newratflag == 2
% compute 'mixed' outer product gradient of optimizer 5
% with diagonal elements computed with numerical second order derivatives
%
% uses univariate filters, so to get max # of available
% densitities for outer product gradient
kalman_algo0 = options_.kalman_algo;
compute_hessian = 1;
if ~((options_.kalman_algo == 2) || (options_.kalman_algo == 4))
options_.kalman_algo=2;
if options_.lik_init == 3
options_.kalman_algo=4;
end
elseif newratflag==0 % hh already contains outer product gradient with univariate filter
compute_hessian = 0;
end
if compute_hessian
crit = options_.newrat.tolerance.f;
newratflag = newratflag>0;
hh = reshape(mr_hessian(xparam1,objective_function,fval,newratflag,crit,new_rat_hess_info,dataset_, dataset_info, options_,M_,estim_params_,bayestopt_,bounds,oo_), nx, nx);
end
options_.kalman_algo = kalman_algo0;
end
end
end
parameter_names = bayestopt_.name;
if options_.cova_compute || options_.mode_compute==5 || options_.mode_compute==6
save([M_.fname '_mode.mat'],'xparam1','hh','parameter_names','fval');
else
save([M_.fname '_mode.mat'],'xparam1','parameter_names','fval');
end
end
if ~options_.mh_posterior_mode_estimation && options_.cova_compute
try
chol(hh);
catch
skipline()
disp('POSTERIOR KERNEL OPTIMIZATION PROBLEM!')
disp(' (minus) the hessian matrix at the "mode" is not positive definite!')
disp('=> posterior variance of the estimated parameters are not positive.')
disp('You should try to change the initial values of the parameters using')
disp('the estimated_params_init block, or use another optimization routine.')
params_at_bound=find(abs(xparam1-bounds.ub)<1.e-10 | abs(xparam1-bounds.lb)<1.e-10);
if ~isempty(params_at_bound)
for ii=1:length(params_at_bound)
params_at_bound_name{ii,1}=get_the_name(params_at_bound(ii),0,M_,estim_params_,options_);
end
disp_string=[params_at_bound_name{1,:}];
for ii=2:size(params_at_bound_name,1)
disp_string=[disp_string,', ',params_at_bound_name{ii,:}];
end
fprintf('\nThe following parameters are at the prior bound: %s\n', disp_string)
fprintf('Some potential solutions are:\n')
fprintf(' - Check your model for mistakes.\n')
fprintf(' - Check whether model and data are consistent (correct observation equation).\n')
fprintf(' - Shut off prior_trunc.\n')
fprintf(' - Change the optimization bounds.\n')
fprintf(' - Use a different mode_compute like 6 or 9.\n')
fprintf(' - Check whether the parameters estimated are identified.\n')
fprintf(' - Check prior shape (e.g. Inf density at bound(s)).\n')
fprintf(' - Increase the informativeness of the prior.\n')
end
warning('The results below are most likely wrong!');
end
end
if options_.mode_check.status && ~options_.mh_posterior_mode_estimation
ana_deriv_old = options_.analytic_derivation;
options_.analytic_derivation = 0;
mode_check(objective_function,xparam1,hh,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,bounds,oo_);
options_.analytic_derivation = ana_deriv_old;
end
oo_.posterior.optimization.mode = [];
oo_.posterior.optimization.Variance = [];
oo_.posterior.optimization.log_density=[];
invhess=[];
if ~options_.mh_posterior_mode_estimation
oo_.posterior.optimization.mode = xparam1;
if exist('fval','var')
oo_.posterior.optimization.log_density=-fval;
end
if options_.cova_compute
hsd = sqrt(diag(hh));
invhess = inv(hh./(hsd*hsd'))./(hsd*hsd');
stdh = sqrt(diag(invhess));
oo_.posterior.optimization.Variance = invhess;
end
else
variances = bayestopt_.p2.*bayestopt_.p2;
idInf = isinf(variances);
variances(idInf) = 1;
invhess = options_.mh_posterior_mode_estimation*diag(variances);
xparam1 = bayestopt_.p5;
idNaN = isnan(xparam1);
xparam1(idNaN) = bayestopt_.p1(idNaN);
outside_bound_pars=find(xparam1 < bounds.lb | xparam1 > bounds.ub);
xparam1(outside_bound_pars) = bayestopt_.p1(outside_bound_pars);
end
if ~options_.cova_compute
stdh = NaN(length(xparam1),1);
end
if any(bayestopt_.pshape > 0) && ~options_.mh_posterior_mode_estimation
% display results table and store parameter estimates and standard errors in results
oo_ = display_estimation_results_table(xparam1, stdh, M_, options_, estim_params_, bayestopt_, oo_, pnames, 'Posterior', 'posterior');
% Laplace approximation to the marginal log density:
if options_.cova_compute
estim_params_nbr = size(xparam1,1);
if ispd(invhess)
log_det_invhess = log(det(invhess./(stdh*stdh')))+2*sum(log(stdh));
likelihood = feval(objective_function,xparam1,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,bounds,oo_);
oo_.MarginalDensity.LaplaceApproximation = .5*estim_params_nbr*log(2*pi) + .5*log_det_invhess - likelihood;
else
oo_.MarginalDensity.LaplaceApproximation = NaN;
end
skipline()
disp(sprintf('Log data density [Laplace approximation] is %f.',oo_.MarginalDensity.LaplaceApproximation))
skipline()
end
if options_.dsge_var
[~,~,~,~,~,~,~,oo_.dsge_var.posterior_mode.PHI_tilde,oo_.dsge_var.posterior_mode.SIGMA_u_tilde,oo_.dsge_var.posterior_mode.iXX,oo_.dsge_var.posterior_mode.prior] =...
feval(objective_function,xparam1,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,bounds,oo_);
end
elseif ~any(bayestopt_.pshape > 0) && ~options_.mh_posterior_mode_estimation
oo_=display_estimation_results_table(xparam1, stdh, M_, options_, estim_params_, bayestopt_, oo_, pnames, 'Maximum Likelihood', 'mle');
end
if np > 0
pindx = estim_params_.param_vals(:,1);
save([M_.fname '_params.mat'],'pindx');
end
switch options_.MCMC_jumping_covariance
case 'hessian' %Baseline
%do nothing and use hessian from mode_compute
case 'prior_variance' %Use prior variance
if any(isinf(bayestopt_.p2))
error('Infinite prior variances detected. You cannot use the prior variances as the proposal density, if some variances are Inf.')
else
hh = diag(1./(bayestopt_.p2.^2));
end
hsd = sqrt(diag(hh));
invhess = inv(hh./(hsd*hsd'))./(hsd*hsd');
case 'identity_matrix' %Use identity
invhess = eye(nx);
otherwise %user specified matrix in file
try
load(options_.MCMC_jumping_covariance,'jumping_covariance')
hh=jumping_covariance;
catch
error(['No matrix named ''jumping_covariance'' could be found in ',options_.MCMC_jumping_covariance,'.mat'])
end
[nrow, ncol]=size(hh);
if ~isequal(nrow,ncol) && ~isequal(nrow,nx) %check if square and right size
error(['jumping_covariance matrix must be square and have ',num2str(nx),' rows and columns'])
end
try %check for positive definiteness
chol(hh);
hsd = sqrt(diag(hh));
invhess = inv(hh./(hsd*hsd'))./(hsd*hsd');
catch
error(['Specified jumping_covariance is not positive definite'])
end
end
if (any(bayestopt_.pshape >0 ) && options_.mh_replic) || ...
(any(bayestopt_.pshape >0 ) && options_.load_mh_file) %% not ML estimation
bounds = prior_bounds(bayestopt_, options_.prior_trunc); %reset bounds as lb and ub must only be operational during mode-finding
outside_bound_pars=find(xparam1 < bounds.lb | xparam1 > bounds.ub);
if ~isempty(outside_bound_pars)
for ii=1:length(outside_bound_pars)
outside_bound_par_names{ii,1}=get_the_name(ii,0,M_,estim_params_,options_);
end
disp_string=[outside_bound_par_names{1,:}];
for ii=2:size(outside_bound_par_names,1)
disp_string=[disp_string,', ',outside_bound_par_names{ii,:}];
end
if options_.prior_trunc>0
error(['Estimation:: Mode value(s) of ', disp_string ,' are outside parameter bounds. Potentially, you should set prior_trunc=0.'])
else
error(['Estimation:: Mode value(s) of ', disp_string ,' are outside parameter bounds.'])
end
end
% Tunes the jumping distribution's scale parameter
if options_.mh_tune_jscale.status
if strcmp(options_.posterior_sampler_options.posterior_sampling_method, 'random_walk_metropolis_hastings')
options = options_.mh_tune_jscale;
options.rwmh = options_.posterior_sampler_options.rwmh;
options_.mh_jscale = calibrate_mh_scale_parameter(objective_function, ...
invhess, xparam1, [bounds.lb,bounds.ub], ...
options, dataset_, dataset_info, options_, M_, estim_params_, bayestopt_, bounds, oo_);
bayestopt_.jscale(:) = options_.mh_jscale;
disp(sprintf('mh_jscale has been set equal to %s', num2str(options_.mh_jscale)))
skipline()
else
warning('mh_tune_jscale is only available with Random Walk Metropolis Hastings!')
end
end
% runs MCMC
if options_.mh_replic || options_.load_mh_file
posterior_sampler_options = options_.posterior_sampler_options.current_options;
posterior_sampler_options.invhess = invhess;
[posterior_sampler_options, options_] = check_posterior_sampler_options(posterior_sampler_options, options_);
% store current options in global
options_.posterior_sampler_options.current_options = posterior_sampler_options;
if options_.mh_replic
ana_deriv_old = options_.analytic_derivation;
options_.analytic_derivation = 0;
posterior_sampler(objective_function,posterior_sampler_options.proposal_distribution,xparam1,posterior_sampler_options,bounds,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,oo_);
options_.analytic_derivation = ana_deriv_old;
end
end
%% Here I discard first mh_drop percent of the draws:
CutSample(M_, options_, estim_params_);
if options_.mh_posterior_mode_estimation
%reset qz_criterium
options_.qz_criterium=qz_criterium_old;
return
else
%get stored results if required
if options_.load_mh_file && options_.load_results_after_load_mh
oo_load_mh=load([M_.fname '_results'],'oo_');
end
if ~options_.nodiagnostic
if (options_.mh_replic>0 || (options_.load_mh_file && ~options_.load_results_after_load_mh))
oo_= McMCDiagnostics(options_, estim_params_, M_,oo_);
elseif options_.load_mh_file && options_.load_results_after_load_mh
if isfield(oo_load_mh.oo_,'convergence')
oo_.convergence=oo_load_mh.oo_.convergence;
end
end
end
%% Estimation of the marginal density from the Mh draws:
if options_.mh_replic || (options_.load_mh_file && ~options_.load_results_after_load_mh)
[marginal,oo_] = marginal_density(M_, options_, estim_params_, oo_, bayestopt_);
% Store posterior statistics by parameter name
oo_ = GetPosteriorParametersStatistics(estim_params_, M_, options_, bayestopt_, oo_, pnames);
if ~options_.nograph
oo_ = PlotPosteriorDistributions(estim_params_, M_, options_, bayestopt_, oo_);
end
% Store posterior mean in a vector and posterior variance in
% a matrix
[oo_.posterior.metropolis.mean,oo_.posterior.metropolis.Variance] ...
= GetPosteriorMeanVariance(M_,options_.mh_drop);
elseif options_.load_mh_file && options_.load_results_after_load_mh
%% load fields from previous MCMC run stored in results-file
field_names={'posterior_mode','posterior_std_at_mode',...% fields set by marginal_density
'posterior_mean','posterior_hpdinf','posterior_hpdsup','posterior_median','posterior_variance','posterior_std','posterior_deciles','posterior_density',...% fields set by GetPosteriorParametersStatistics
'prior_density',...%fields set by PlotPosteriorDistributions
};
for field_iter=1:size(field_names,2)
if isfield(oo_load_mh.oo_,field_names{1,field_iter})
oo_.(field_names{1,field_iter})=oo_load_mh.oo_.(field_names{1,field_iter});
end
end
% field set by marginal_density
if isfield(oo_load_mh.oo_,'MarginalDensity') && isfield(oo_load_mh.oo_.MarginalDensity,'ModifiedHarmonicMean')
oo_.MarginalDensity.ModifiedHarmonicMean=oo_load_mh.oo_.MarginalDensity.ModifiedHarmonicMean;
end
% field set by GetPosteriorMeanVariance
if isfield(oo_load_mh.oo_,'posterior') && isfield(oo_load_mh.oo_.posterior,'metropolis')
oo_.posterior.metropolis=oo_load_mh.oo_.posterior.metropolis;
end
end
[error_flag,~,options_]= metropolis_draw(1,options_,estim_params_,M_);
if ~(~isempty(options_.sub_draws) && options_.sub_draws==0)
if options_.bayesian_irf
if error_flag
error('Estimation::mcmc: I cannot compute the posterior IRFs!')
end
PosteriorIRF('posterior');
end
if options_.moments_varendo
if error_flag
error('Estimation::mcmc: I cannot compute the posterior moments for the endogenous variables!')
end
oo_ = compute_moments_varendo('posterior',options_,M_,oo_,var_list_);
end
if options_.smoother || ~isempty(options_.filter_step_ahead) || options_.forecast
if error_flag
error('Estimation::mcmc: I cannot compute the posterior statistics!')
end
prior_posterior_statistics('posterior',dataset_,dataset_info);
end
else
fprintf('Estimation:mcmc: sub_draws was set to 0. Skipping posterior computations.')
end
xparam1 = get_posterior_parameters('mean',M_,estim_params_,oo_,options_);
M_ = set_all_parameters(xparam1,estim_params_,M_);
end
end
if options_.particle.status
%reset qz_criterium
options_.qz_criterium=qz_criterium_old;
return
end
if (~((any(bayestopt_.pshape > 0) && options_.mh_replic) || (any(bayestopt_.pshape> 0) && options_.load_mh_file)) ...
|| ~options_.smoother ) && ~options_.partial_information % to be fixed
%% ML estimation, or posterior mode without Metropolis-Hastings or Metropolis without Bayesian smoothes variables
[atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,T,R,P,PK,decomp,Trend,state_uncertainty,M_,oo_,options_,bayestopt_] = DsgeSmoother(xparam1,dataset_.nobs,transpose(dataset_.data),dataset_info.missing.aindex,dataset_info.missing.state,M_,oo_,options_,bayestopt_,estim_params_);
[oo_,yf]=store_smoother_results(M_,oo_,options_,bayestopt_,dataset_,dataset_info,atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,P,PK,decomp,Trend,state_uncertainty);
if ~options_.nograph
[nbplt,nr,nc,lr,lc,nstar] = pltorg(M_.exo_nbr);
if ~exist([M_.fname '/graphs'],'dir')
mkdir(M_.fname,'graphs');
end
if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
fidTeX = fopen([M_.fname, '/graphs/' M_.fname '_SmoothedShocks.tex'],'w');
fprintf(fidTeX,'%% TeX eps-loader file generated by dynare_estimation_1.m (Dynare).\n');
fprintf(fidTeX,['%% ' datestr(now,0) '\n']);
fprintf(fidTeX,' \n');
end
for plt = 1:nbplt
fh = dyn_figure(options_.nodisplay,'Name','Smoothed shocks');
NAMES = [];
if options_.TeX, TeXNAMES = []; end
nstar0=min(nstar,M_.exo_nbr-(plt-1)*nstar);
if gend==1
marker_string{1,1}='-ro';
marker_string{2,1}='-ko';
else
marker_string{1,1}='-r';
marker_string{2,1}='-k';
end
for i=1:nstar0
k = (plt-1)*nstar+i;
subplot(nr,nc,i);
plot([1 gend],[0 0],marker_string{1,1},'linewidth',.5)
hold on
plot(1:gend,innov(k,:),marker_string{2,1},'linewidth',1)
hold off
name = M_.exo_names{k};
if isempty(NAMES)
NAMES = name;
else
NAMES = char(NAMES,name);
end
if ~isempty(options_.XTick)
set(gca,'XTick',options_.XTick)
set(gca,'XTickLabel',options_.XTickLabel)
end
if gend>1
xlim([1 gend])
end
if options_.TeX
texname = M_.exo_names_tex{k};
if isempty(TeXNAMES)
TeXNAMES = ['$ ' deblank(texname) ' $'];
else
TeXNAMES = char(TeXNAMES,['$ ' deblank(texname) ' $']);
end
end
title(name,'Interpreter','none')
end
dyn_saveas(fh,[M_.fname, '/graphs/' M_.fname '_SmoothedShocks' int2str(plt)],options_.nodisplay,options_.graph_format);
if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
fprintf(fidTeX,'\\begin{figure}[H]\n');
for jj = 1:nstar0
fprintf(fidTeX,'\\psfrag{%s}[1][][0.5][0]{%s}\n',deblank(NAMES(jj,:)),deblank(TeXNAMES(jj,:)));
end
fprintf(fidTeX,'\\centering \n');
fprintf(fidTeX,'\\includegraphics[width=%2.2f\\textwidth]{%s_SmoothedShocks%s}\n',options_.figures.textwidth*min(i/nc,1),[M_.fname, '/graphs/' M_.fname],int2str(plt));
fprintf(fidTeX,'\\caption{Smoothed shocks.}');
fprintf(fidTeX,'\\label{Fig:SmoothedShocks:%s}\n',int2str(plt));
fprintf(fidTeX,'\\end{figure}\n');
fprintf(fidTeX,'\n');
end
end
if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
fprintf(fidTeX,'\n');
fprintf(fidTeX,'%% End of TeX file.\n');
fclose(fidTeX);
end
end
if nvn
number_of_plots_to_draw = 0;
index = [];
for obs_iter=1:n_varobs
if max(abs(measurement_error(obs_iter,:))) > options_.ME_plot_tol;
number_of_plots_to_draw = number_of_plots_to_draw + 1;
index = cat(1,index,obs_iter);
end
end
if ~options_.nograph
[nbplt,nr,nc,lr,lc,nstar] = pltorg(number_of_plots_to_draw);
if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
fidTeX = fopen([M_.fname, '/graphs/' M_.fname '_SmoothedObservationErrors.tex'],'w');
fprintf(fidTeX,'%% TeX eps-loader file generated by dynare_estimation_1.m (Dynare).\n');
fprintf(fidTeX,['%% ' datestr(now,0) '\n']);
fprintf(fidTeX,' \n');
end
for plt = 1:nbplt
fh = dyn_figure(options_.nodisplay,'Name','Smoothed observation errors');
NAMES = [];
if options_.TeX, TeXNAMES = []; end
nstar0=min(nstar,number_of_plots_to_draw-(plt-1)*nstar);
if gend==1
marker_string{1,1}='-ro';
marker_string{2,1}='-ko';
else
marker_string{1,1}='-r';
marker_string{2,1}='-k';
end
for i=1:nstar0
k = (plt-1)*nstar+i;
subplot(nr,nc,i);
plot([1 gend],[0 0],marker_string{1,1},'linewidth',.5)
hold on
plot(1:gend,measurement_error(index(k),:),marker_string{2,1},'linewidth',1)
hold off
name = options_.varobs{index(k)};
if gend>1
xlim([1 gend])
end
if isempty(NAMES)
NAMES = name;
else
NAMES = char(NAMES,name);
end
if ~isempty(options_.XTick)
set(gca,'XTick',options_.XTick)
set(gca,'XTickLabel',options_.XTickLabel)
end
if options_.TeX
idx = strmatch(options_.varobs{index(k)}, M_.endo_names, 'exact');
texname = M_.endo_names_tex{idx};
if isempty(TeXNAMES)
TeXNAMES = ['$ ' texname ' $'];
else
TeXNAMES = char(TeXNAMES,['$ ' texname ' $']);
end
end
title(name,'Interpreter','none')
end
dyn_saveas(fh,[M_.fname, '/graphs/' M_.fname '_SmoothedObservationErrors' int2str(plt)],options_.nodisplay,options_.graph_format);
if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
fprintf(fidTeX,'\\begin{figure}[H]\n');
for jj = 1:nstar0
fprintf(fidTeX,'\\psfrag{%s}[1][][0.5][0]{%s}\n',deblank(NAMES(jj,:)),deblank(TeXNAMES(jj,:)));
end
fprintf(fidTeX,'\\centering \n');
fprintf(fidTeX,'\\includegraphics[width=%2.2f\\textwidth]{%s_SmoothedObservationErrors%s}\n',options_.figures.textwidth*min(i/nc,1),[M_.fname, '/graphs/' M_.fname],int2str(plt));
fprintf(fidTeX,'\\caption{Smoothed observation errors.}');
fprintf(fidTeX,'\\label{Fig:SmoothedObservationErrors:%s}\n',int2str(plt));
fprintf(fidTeX,'\\end{figure}\n');
fprintf(fidTeX,'\n');
end
end
if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
fprintf(fidTeX,'\n');
fprintf(fidTeX,'%% End of TeX file.\n');
fclose(fidTeX);
end
end
end
%%
%% Historical and smoothed variabes
%%
if ~options_.nograph
[nbplt,nr,nc,lr,lc,nstar] = pltorg(n_varobs);
if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
fidTeX = fopen([M_.fname, '/graphs/' M_.fname '_HistoricalAndSmoothedVariables.tex'],'w');
fprintf(fidTeX,'%% TeX eps-loader file generated by dynare_estimation_1.m (Dynare).\n');
fprintf(fidTeX,['%% ' datestr(now,0) '\n']);
fprintf(fidTeX,' \n');
end
for plt = 1:nbplt
fh = dyn_figure(options_.nodisplay,'Name','Historical and smoothed variables');
NAMES = [];
if options_.TeX, TeXNAMES = []; end
nstar0=min(nstar,n_varobs-(plt-1)*nstar);
if gend==1
marker_string{1,1}='-ro';
marker_string{2,1}='--ko';
else
marker_string{1,1}='-r';
marker_string{2,1}='--k';
end
for i=1:nstar0
k = (plt-1)*nstar+i;
subplot(nr,nc,i);
plot(1:gend,yf(k,:),marker_string{1,1},'linewidth',1)
hold on
plot(1:gend,rawdata(:,k),marker_string{2,1},'linewidth',1)
hold off
name = options_.varobs{k};
if isempty(NAMES)
NAMES = name;
else
NAMES = char(NAMES,name);
end
if ~isempty(options_.XTick)
set(gca,'XTick',options_.XTick)
set(gca,'XTickLabel',options_.XTickLabel)
end
if gend>1
xlim([1 gend])
end
if options_.TeX
idx = strmatch(options_.varobs{k}, M_.endo_names,'exact');
texname = M_.endo_names_tex{idx};
if isempty(TeXNAMES)
TeXNAMES = ['$ ' texname ' $'];
else
TeXNAMES = char(TeXNAMES,['$ ' texname ' $']);
end
end
title(name,'Interpreter','none')
end
dyn_saveas(fh,[M_.fname, '/graphs/' M_.fname '_HistoricalAndSmoothedVariables' int2str(plt)],options_.nodisplay,options_.graph_format);
if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
fprintf(fidTeX,'\\begin{figure}[H]\n');
for jj = 1:nstar0
fprintf(fidTeX,'\\psfrag{%s}[1][][0.5][0]{%s}\n',deblank(NAMES(jj,:)),deblank(TeXNAMES(jj,:)));
end
fprintf(fidTeX,'\\centering \n');
fprintf(fidTeX,'\\includegraphics[width=%2.2f\\textwidth]{%s_HistoricalAndSmoothedVariables%s}\n',options_.figures.textwidth*min(i/nc,1),[M_.fname, '/graphs/' M_.fname],int2str(plt));
fprintf(fidTeX,'\\caption{Historical and smoothed variables.}');
fprintf(fidTeX,'\\label{Fig:HistoricalAndSmoothedVariables:%s}\n',int2str(plt));
fprintf(fidTeX,'\\end{figure}\n');
fprintf(fidTeX,'\n');
end
end
if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
fprintf(fidTeX,'\n');
fprintf(fidTeX,'%% End of TeX file.\n');
fclose(fidTeX);
end
end
end
if options_.forecast > 0 && options_.mh_replic == 0 && ~options_.load_mh_file
oo_.forecast = dyn_forecast(var_list_,M_,options_,oo_,'smoother',dataset_info);
end
if np > 0
pindx = estim_params_.param_vals(:,1);
save([M_.fname '_pindx.mat'] ,'pindx');
end
%reset qz_criterium
options_.qz_criterium=qz_criterium_old;
if reset_options_related_to_estimation
options_.mode_compute = mode_compute_o;
options_.mh_replic = mh_replic_o;
end
if first_obs_nan_indicator
options_.first_obs=NaN;
end
|