File: dynare_estimation_1.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (809 lines) | stat: -rw-r--r-- 39,261 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
function dynare_estimation_1(var_list_,dname)
% function dynare_estimation_1(var_list_,dname)
% runs the estimation of the model
%
% INPUTS
%   var_list_:  selected endogenous variables vector
%   dname:      alternative directory name
%
% OUTPUTS
%   none
%
% SPECIAL REQUIREMENTS
%   none

% Copyright (C) 2003-2018 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global M_ options_ oo_ estim_params_ bayestopt_ dataset_ dataset_info

if isempty(estim_params_)
    mode_compute_o = options_.mode_compute;
    mh_replic_o = options_.mh_replic;
    options_.mode_compute = 0;
    options_.mh_replic = 0;
    reset_options_related_to_estimation = true;
else
    reset_options_related_to_estimation = false;
end


%store qz_criterium
qz_criterium_old=options_.qz_criterium;
if isnan(options_.first_obs)
    first_obs_nan_indicator=true;
else
    first_obs_nan_indicator=false;
end

% Set particle filter flag.
if options_.order > 1
    if options_.particle.status
        skipline()
        disp('Estimation using a non linear filter!')
        skipline()
        if ~options_.nointeractive && ismember(options_.mode_compute,[1,3,4]) && ~strcmpi(options_.particle.filter_algorithm,'gf')% Known gradient-based optimizers
            disp('You are using a gradient-based mode-finder. Particle filtering introduces discontinuities in the')
            disp('objective function w.r.t the parameters. Thus, should use a non-gradient based optimizer.')
            fprintf('\nPlease choose a mode-finder:\n')
            fprintf('\t 0 - Continue using gradient-based method (it is most likely that you will no get any sensible result).\n')
            fprintf('\t 6 - Monte Carlo based algorithm\n')
            fprintf('\t 7 - Nelder-Mead simplex based optimization routine (Matlab optimization toolbox required)\n')
            fprintf('\t 8 - Nelder-Mead simplex based optimization routine (Dynare''s implementation)\n')
            fprintf('\t 9 - CMA-ES (Covariance Matrix Adaptation Evolution Strategy) algorithm\n')
            choice = [];
            while isempty(choice)
                choice = input('Please enter your choice: ');
                if isnumeric(choice) && isint(choice) && ismember(choice,[0 6 7 8 9])
                    if choice
                        options_.mode_compute = choice;
                    end
                else
                    fprintf('\nThis is an invalid choice (you have to choose between 0, 6, 7, 8 and 9).\n')
                    choice = [];
                end
            end
        end
    else
        error('For estimating the model with a second order approximation using a non linear filter, one should have options_.particle.status=true;')
    end
end

if ~options_.dsge_var
    if options_.particle.status
        objective_function = str2func('non_linear_dsge_likelihood');
        if strcmpi(options_.particle.filter_algorithm, 'sis')
            options_.particle.algorithm = 'sequential_importance_particle_filter';
        elseif strcmpi(options_.particle.filter_algorithm, 'apf')
            options_.particle.algorithm = 'auxiliary_particle_filter';
        elseif strcmpi(options_.particle.filter_algorithm, 'gf')
            options_.particle.algorithm = 'gaussian_filter';
        elseif strcmpi(options_.particle.filter_algorithm,  'gmf')
            options_.particle.algorithm = 'gaussian_mixture_filter';
        elseif strcmpi(options_.particle.filter_algorithm, 'cpf')
            options_.particle.algorithm = 'conditional_particle_filter';
        elseif strcmpi(options_.particle.filter_algorithm, 'nlkf')
            options_.particle.algorithm = 'nonlinear_kalman_filter';
        else
            error(['Estimation: Unknown filter ' options_.particle.filter_algorithm])
        end
    else
        objective_function = str2func('dsge_likelihood');
    end
else
    objective_function = str2func('dsge_var_likelihood');
end

[dataset_, dataset_info, xparam1, hh, M_, options_, oo_, estim_params_, bayestopt_, bounds] = ...
    dynare_estimation_init(var_list_, dname, [], M_, options_, oo_, estim_params_, bayestopt_);

if options_.dsge_var
    check_dsge_var_model(M_, estim_params_, bayestopt_);
    if dataset_info.missing.state
        error('Estimation::DsgeVarLikelihood: I cannot estimate a DSGE-VAR model with missing observations!')
    end
    if options_.noconstant
        var_sample_moments(options_.dsge_varlag, -1, dataset_);
    else
        % The steady state is non zero ==> a constant in the VAR is needed!
        var_sample_moments(options_.dsge_varlag, 0, dataset_);
    end
end

% Set sigma_e_is_diagonal flag (needed if the shocks block is not declared in the mod file).
M_.sigma_e_is_diagonal = true;
if estim_params_.ncx || any(nnz(tril(M_.Correlation_matrix,-1))) || isfield(estim_params_,'calibrated_covariances')
    M_.sigma_e_is_diagonal = false;
end

data = dataset_.data;
rawdata = dataset_info.rawdata;
data_index = dataset_info.missing.aindex;
missing_value = dataset_info.missing.state;

% Set number of observations
gend = dataset_.nobs;

% Set the number of observed variables.
n_varobs = length(options_.varobs);

% Get the number of parameters to be estimated.
nvx = estim_params_.nvx;  % Variance of the structural innovations (number of parameters).
nvn = estim_params_.nvn;  % Variance of the measurement innovations (number of parameters).
ncx = estim_params_.ncx;  % Covariance of the structural innovations (number of parameters).
ncn = estim_params_.ncn;  % Covariance of the measurement innovations (number of parameters).
np  = estim_params_.np ;  % Number of deep parameters.
nx  = nvx+nvn+ncx+ncn+np; % Total number of parameters to be estimated.

% Set the names of the priors.
pnames = {''; 'beta'; 'gamm'; 'norm'; 'invg'; 'unif'; 'invg2'; ''; 'weibl'};

dr = oo_.dr;

if ~isempty(estim_params_)
    M_ = set_all_parameters(xparam1,estim_params_,M_);
end


%% perform initial estimation checks;
try
    oo_ = initial_estimation_checks(objective_function,xparam1,dataset_,dataset_info,M_,estim_params_,options_,bayestopt_,bounds,oo_);
catch % if check fails, provide info on using calibration if present
    e = lasterror();
    if estim_params_.full_calibration_detected %calibrated model present and no explicit starting values
        skipline(1);
        fprintf('ESTIMATION_CHECKS: There was an error in computing the likelihood for initial parameter values.\n')
        fprintf('ESTIMATION_CHECKS: If this is not a problem with the setting of options (check the error message below),\n')
        fprintf('ESTIMATION_CHECKS: you should try using the calibrated version of the model as starting values. To do\n')
        fprintf('ESTIMATION_CHECKS: this, add an empty estimated_params_init-block with use_calibration option immediately before the estimation\n')
        fprintf('ESTIMATION_CHECKS: command (and after the estimated_params-block so that it does not get overwritten):\n');
        skipline(2);
    end
    rethrow(e);
end

if isequal(options_.mode_compute,0) && isempty(options_.mode_file) && options_.mh_posterior_mode_estimation==0
    if options_.smoother
        [atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,T,R,P,PK,decomp,Trend,state_uncertainty,M_,oo_,options_,bayestopt_] = DsgeSmoother(xparam1,gend,transpose(data),data_index,missing_value,M_,oo_,options_,bayestopt_,estim_params_);
        [oo_]=store_smoother_results(M_,oo_,options_,bayestopt_,dataset_,dataset_info,atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,P,PK,decomp,Trend,state_uncertainty);
    end
    %reset qz_criterium
    options_.qz_criterium=qz_criterium_old;
    return
end

%% Estimation of the posterior mode or likelihood mode

if ~isequal(options_.mode_compute,0) && ~options_.mh_posterior_mode_estimation
    %prepare settings for newrat
    if options_.mode_compute==5
        %get whether outer product Hessian is requested
        newratflag=[];
        if ~isempty(options_.optim_opt)
            options_list = read_key_value_string(options_.optim_opt);
            for i=1:rows(options_list)
                if strcmp(options_list{i,1},'Hessian')
                    newratflag=options_list{i,2};
                end
            end
        end
        if options_.analytic_derivation
            options_analytic_derivation_old = options_.analytic_derivation;
            options_.analytic_derivation = -1;
            if ~isempty(newratflag) && newratflag~=0 %numerical hessian explicitly specified
                error('newrat: analytic_derivation is incompatible with numerical Hessian.')
            else %use default
                newratflag=0; %exclude DYNARE numerical hessian
            end
        elseif ~options_.analytic_derivation
            if isempty(newratflag)
                newratflag=options_.newrat.hess; %use default numerical dynare hessian
            end
        end
    end

    [xparam1, fval, exitflag, hh, options_, Scale, new_rat_hess_info] = dynare_minimize_objective(objective_function,xparam1,options_.mode_compute,options_,[bounds.lb bounds.ub],bayestopt_.name,bayestopt_,hh,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,bounds,oo_);
    fprintf('\nFinal value of minus the log posterior (or likelihood):%f \n', fval);

    if isnumeric(options_.mode_compute) && options_.mode_compute==5 && options_.analytic_derivation==-1 %reset options changed by newrat
        options_.analytic_derivation = options_analytic_derivation_old; %reset
    elseif isnumeric(options_.mode_compute) && options_.mode_compute==6 %save scaling factor
        save([M_.fname '_optimal_mh_scale_parameter.mat'],'Scale');
        options_.mh_jscale = Scale;
        bayestopt_.jscale(:) = options_.mh_jscale;
    end
    if ~isnumeric(options_.mode_compute) || ~isequal(options_.mode_compute,6) %always already computes covariance matrix
        if options_.cova_compute == 1 %user did not request covariance not to be computed
            if options_.analytic_derivation && strcmp(func2str(objective_function),'dsge_likelihood')
                ana_deriv_old = options_.analytic_derivation;
                options_.analytic_derivation = 2;
                [~,~,~,~,hh] = feval(objective_function,xparam1, ...
                                     dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,bounds,oo_);
                options_.analytic_derivation = ana_deriv_old;
            elseif ~isnumeric(options_.mode_compute) || ~(isequal(options_.mode_compute,5) && newratflag~=1 && strcmp(func2str(objective_function),'dsge_likelihood'))
                % with flag==0, we force to use the hessian from outer product gradient of optimizer 5
                if options_.hessian.use_penalized_objective
                    penalized_objective_function = str2func('penalty_objective_function');
                    hh = hessian(penalized_objective_function, xparam1, options_.gstep, objective_function, fval, dataset_, dataset_info, options_, M_, estim_params_, bayestopt_, bounds,oo_);
                else
                    hh = hessian(objective_function, xparam1, options_.gstep, dataset_, dataset_info, options_, M_, estim_params_, bayestopt_, bounds,oo_);
                end
                hh = reshape(hh, nx, nx);
            elseif isnumeric(options_.mode_compute) && isequal(options_.mode_compute,5)
                % other numerical hessian options available with optimizer 5
                %
                % if newratflag == 0
                % compute outer product gradient of optimizer 5
                %
                % if newratflag == 2
                % compute 'mixed' outer product gradient of optimizer 5
                % with diagonal elements computed with numerical second order derivatives
                %
                % uses univariate filters, so to get max # of available
                % densitities for outer product gradient
                kalman_algo0 = options_.kalman_algo;
                compute_hessian = 1;
                if ~((options_.kalman_algo == 2) || (options_.kalman_algo == 4))
                    options_.kalman_algo=2;
                    if options_.lik_init == 3
                        options_.kalman_algo=4;
                    end
                elseif newratflag==0 % hh already contains outer product gradient with univariate filter
                    compute_hessian = 0;
                end
                if compute_hessian
                    crit = options_.newrat.tolerance.f;
                    newratflag = newratflag>0;
                    hh = reshape(mr_hessian(xparam1,objective_function,fval,newratflag,crit,new_rat_hess_info,dataset_, dataset_info, options_,M_,estim_params_,bayestopt_,bounds,oo_), nx, nx);
                end
                options_.kalman_algo = kalman_algo0;
            end
        end
    end
    parameter_names = bayestopt_.name;
    if options_.cova_compute || options_.mode_compute==5 || options_.mode_compute==6
        save([M_.fname '_mode.mat'],'xparam1','hh','parameter_names','fval');
    else
        save([M_.fname '_mode.mat'],'xparam1','parameter_names','fval');
    end
end

if ~options_.mh_posterior_mode_estimation && options_.cova_compute
    try
        chol(hh);
    catch
        skipline()
        disp('POSTERIOR KERNEL OPTIMIZATION PROBLEM!')
        disp(' (minus) the hessian matrix at the "mode" is not positive definite!')
        disp('=> posterior variance of the estimated parameters are not positive.')
        disp('You should try to change the initial values of the parameters using')
        disp('the estimated_params_init block, or use another optimization routine.')
        params_at_bound=find(abs(xparam1-bounds.ub)<1.e-10 | abs(xparam1-bounds.lb)<1.e-10);
        if ~isempty(params_at_bound)
            for ii=1:length(params_at_bound)
                params_at_bound_name{ii,1}=get_the_name(params_at_bound(ii),0,M_,estim_params_,options_);
            end
            disp_string=[params_at_bound_name{1,:}];
            for ii=2:size(params_at_bound_name,1)
                disp_string=[disp_string,', ',params_at_bound_name{ii,:}];
            end
            fprintf('\nThe following parameters are at the prior bound: %s\n', disp_string)
            fprintf('Some potential solutions are:\n')
            fprintf('   - Check your model for mistakes.\n')
            fprintf('   - Check whether model and data are consistent (correct observation equation).\n')
            fprintf('   - Shut off prior_trunc.\n')
            fprintf('   - Change the optimization bounds.\n')
            fprintf('   - Use a different mode_compute like 6 or 9.\n')
            fprintf('   - Check whether the parameters estimated are identified.\n')
            fprintf('   - Check prior shape (e.g. Inf density at bound(s)).\n')
            fprintf('   - Increase the informativeness of the prior.\n')
        end
        warning('The results below are most likely wrong!');
    end
end

if options_.mode_check.status && ~options_.mh_posterior_mode_estimation
    ana_deriv_old = options_.analytic_derivation;
    options_.analytic_derivation = 0;
    mode_check(objective_function,xparam1,hh,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,bounds,oo_);
    options_.analytic_derivation = ana_deriv_old;
end

oo_.posterior.optimization.mode = [];
oo_.posterior.optimization.Variance = [];
oo_.posterior.optimization.log_density=[];

invhess=[];
if ~options_.mh_posterior_mode_estimation
    oo_.posterior.optimization.mode = xparam1;
    if exist('fval','var')
        oo_.posterior.optimization.log_density=-fval;
    end
    if options_.cova_compute
        hsd = sqrt(diag(hh));
        invhess = inv(hh./(hsd*hsd'))./(hsd*hsd');
        stdh = sqrt(diag(invhess));
        oo_.posterior.optimization.Variance = invhess;
    end
else
    variances = bayestopt_.p2.*bayestopt_.p2;
    idInf = isinf(variances);
    variances(idInf) = 1;
    invhess = options_.mh_posterior_mode_estimation*diag(variances);
    xparam1 = bayestopt_.p5;
    idNaN = isnan(xparam1);
    xparam1(idNaN) = bayestopt_.p1(idNaN);
    outside_bound_pars=find(xparam1 < bounds.lb | xparam1 > bounds.ub);
    xparam1(outside_bound_pars) = bayestopt_.p1(outside_bound_pars);
end

if ~options_.cova_compute
    stdh = NaN(length(xparam1),1);
end

if any(bayestopt_.pshape > 0) && ~options_.mh_posterior_mode_estimation
    % display results table and store parameter estimates and standard errors in results
    oo_ = display_estimation_results_table(xparam1, stdh, M_, options_, estim_params_, bayestopt_, oo_, pnames, 'Posterior', 'posterior');
    % Laplace approximation to the marginal log density:
    if options_.cova_compute
        estim_params_nbr = size(xparam1,1);
        if ispd(invhess)
            log_det_invhess = log(det(invhess./(stdh*stdh')))+2*sum(log(stdh));
            likelihood = feval(objective_function,xparam1,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,bounds,oo_);
            oo_.MarginalDensity.LaplaceApproximation = .5*estim_params_nbr*log(2*pi) + .5*log_det_invhess - likelihood;
        else
            oo_.MarginalDensity.LaplaceApproximation = NaN;
        end
        skipline()
        disp(sprintf('Log data density [Laplace approximation] is %f.',oo_.MarginalDensity.LaplaceApproximation))
        skipline()
    end
    if options_.dsge_var
        [~,~,~,~,~,~,~,oo_.dsge_var.posterior_mode.PHI_tilde,oo_.dsge_var.posterior_mode.SIGMA_u_tilde,oo_.dsge_var.posterior_mode.iXX,oo_.dsge_var.posterior_mode.prior] =...
            feval(objective_function,xparam1,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,bounds,oo_);
    end

elseif ~any(bayestopt_.pshape > 0) && ~options_.mh_posterior_mode_estimation
    oo_=display_estimation_results_table(xparam1, stdh, M_, options_, estim_params_, bayestopt_, oo_, pnames, 'Maximum Likelihood', 'mle');
end

if np > 0
    pindx = estim_params_.param_vals(:,1);
    save([M_.fname '_params.mat'],'pindx');
end

switch options_.MCMC_jumping_covariance
  case 'hessian' %Baseline
                 %do nothing and use hessian from mode_compute
  case 'prior_variance' %Use prior variance
    if any(isinf(bayestopt_.p2))
        error('Infinite prior variances detected. You cannot use the prior variances as the proposal density, if some variances are Inf.')
    else
        hh = diag(1./(bayestopt_.p2.^2));
    end
    hsd = sqrt(diag(hh));
    invhess = inv(hh./(hsd*hsd'))./(hsd*hsd');
  case 'identity_matrix' %Use identity
    invhess = eye(nx);
  otherwise %user specified matrix in file
    try
        load(options_.MCMC_jumping_covariance,'jumping_covariance')
        hh=jumping_covariance;
    catch
        error(['No matrix named ''jumping_covariance'' could be found in ',options_.MCMC_jumping_covariance,'.mat'])
    end
    [nrow, ncol]=size(hh);
    if ~isequal(nrow,ncol) && ~isequal(nrow,nx) %check if square and right size
        error(['jumping_covariance matrix must be square and have ',num2str(nx),' rows and columns'])
    end
    try %check for positive definiteness
        chol(hh);
        hsd = sqrt(diag(hh));
        invhess = inv(hh./(hsd*hsd'))./(hsd*hsd');
    catch
        error(['Specified jumping_covariance is not positive definite'])
    end
end

if (any(bayestopt_.pshape  >0 ) && options_.mh_replic) || ...
        (any(bayestopt_.pshape >0 ) && options_.load_mh_file)  %% not ML estimation
    bounds = prior_bounds(bayestopt_, options_.prior_trunc); %reset bounds as lb and ub must only be operational during mode-finding
    outside_bound_pars=find(xparam1 < bounds.lb | xparam1 > bounds.ub);
    if ~isempty(outside_bound_pars)
        for ii=1:length(outside_bound_pars)
            outside_bound_par_names{ii,1}=get_the_name(ii,0,M_,estim_params_,options_);
        end
        disp_string=[outside_bound_par_names{1,:}];
        for ii=2:size(outside_bound_par_names,1)
            disp_string=[disp_string,', ',outside_bound_par_names{ii,:}];
        end
        if options_.prior_trunc>0
            error(['Estimation:: Mode value(s) of ', disp_string ,' are outside parameter bounds. Potentially, you should set prior_trunc=0.'])
        else
            error(['Estimation:: Mode value(s) of ', disp_string ,' are outside parameter bounds.'])
        end
    end
    % Tunes the jumping distribution's scale parameter
    if options_.mh_tune_jscale.status
        if strcmp(options_.posterior_sampler_options.posterior_sampling_method, 'random_walk_metropolis_hastings')
            options = options_.mh_tune_jscale;
            options.rwmh = options_.posterior_sampler_options.rwmh;
            options_.mh_jscale = calibrate_mh_scale_parameter(objective_function, ...
                                                              invhess, xparam1, [bounds.lb,bounds.ub], ...
                                                              options, dataset_, dataset_info, options_, M_, estim_params_, bayestopt_, bounds, oo_);
            bayestopt_.jscale(:) = options_.mh_jscale;
            disp(sprintf('mh_jscale has been set equal to %s', num2str(options_.mh_jscale)))
            skipline()
        else
            warning('mh_tune_jscale is only available with Random Walk Metropolis Hastings!')
        end
    end
    % runs MCMC
    if options_.mh_replic || options_.load_mh_file
        posterior_sampler_options = options_.posterior_sampler_options.current_options;
        posterior_sampler_options.invhess = invhess;
        [posterior_sampler_options, options_] = check_posterior_sampler_options(posterior_sampler_options, options_);
        % store current options in global
        options_.posterior_sampler_options.current_options = posterior_sampler_options;
        if options_.mh_replic
            ana_deriv_old = options_.analytic_derivation;
            options_.analytic_derivation = 0;
            posterior_sampler(objective_function,posterior_sampler_options.proposal_distribution,xparam1,posterior_sampler_options,bounds,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,oo_);
            options_.analytic_derivation = ana_deriv_old;
        end
    end
    %% Here I discard first mh_drop percent of the draws:
    CutSample(M_, options_, estim_params_);
    if options_.mh_posterior_mode_estimation
        %reset qz_criterium
        options_.qz_criterium=qz_criterium_old;
        return
    else
        %get stored results if required
        if options_.load_mh_file && options_.load_results_after_load_mh
            oo_load_mh=load([M_.fname '_results'],'oo_');
        end
        if ~options_.nodiagnostic
            if (options_.mh_replic>0 || (options_.load_mh_file && ~options_.load_results_after_load_mh))
                oo_= McMCDiagnostics(options_, estim_params_, M_,oo_);
            elseif options_.load_mh_file && options_.load_results_after_load_mh
                if isfield(oo_load_mh.oo_,'convergence')
                    oo_.convergence=oo_load_mh.oo_.convergence;
                end
            end
        end
        %% Estimation of the marginal density from the Mh draws:
        if options_.mh_replic || (options_.load_mh_file && ~options_.load_results_after_load_mh)
            [marginal,oo_] = marginal_density(M_, options_, estim_params_, oo_, bayestopt_);
            % Store posterior statistics by parameter name
            oo_ = GetPosteriorParametersStatistics(estim_params_, M_, options_, bayestopt_, oo_, pnames);
            if ~options_.nograph
                oo_ = PlotPosteriorDistributions(estim_params_, M_, options_, bayestopt_, oo_);
            end
            % Store posterior mean in a vector and posterior variance in
            % a matrix
            [oo_.posterior.metropolis.mean,oo_.posterior.metropolis.Variance] ...
                = GetPosteriorMeanVariance(M_,options_.mh_drop);
        elseif options_.load_mh_file && options_.load_results_after_load_mh
            %% load fields from previous MCMC run stored in results-file
            field_names={'posterior_mode','posterior_std_at_mode',...% fields set by marginal_density
                         'posterior_mean','posterior_hpdinf','posterior_hpdsup','posterior_median','posterior_variance','posterior_std','posterior_deciles','posterior_density',...% fields set by GetPosteriorParametersStatistics
                         'prior_density',...%fields set by PlotPosteriorDistributions
                        };
            for field_iter=1:size(field_names,2)
                if isfield(oo_load_mh.oo_,field_names{1,field_iter})
                    oo_.(field_names{1,field_iter})=oo_load_mh.oo_.(field_names{1,field_iter});
                end
            end
            % field set by marginal_density
            if isfield(oo_load_mh.oo_,'MarginalDensity') && isfield(oo_load_mh.oo_.MarginalDensity,'ModifiedHarmonicMean')
                oo_.MarginalDensity.ModifiedHarmonicMean=oo_load_mh.oo_.MarginalDensity.ModifiedHarmonicMean;
            end
            % field set by GetPosteriorMeanVariance
            if isfield(oo_load_mh.oo_,'posterior') && isfield(oo_load_mh.oo_.posterior,'metropolis')
                oo_.posterior.metropolis=oo_load_mh.oo_.posterior.metropolis;
            end
        end
        [error_flag,~,options_]= metropolis_draw(1,options_,estim_params_,M_);
        if ~(~isempty(options_.sub_draws) && options_.sub_draws==0)
            if options_.bayesian_irf
                if error_flag
                    error('Estimation::mcmc: I cannot compute the posterior IRFs!')
                end
                PosteriorIRF('posterior');
            end
            if options_.moments_varendo
                if error_flag
                    error('Estimation::mcmc: I cannot compute the posterior moments for the endogenous variables!')
                end
                oo_ = compute_moments_varendo('posterior',options_,M_,oo_,var_list_);
            end
            if options_.smoother || ~isempty(options_.filter_step_ahead) || options_.forecast
                if error_flag
                    error('Estimation::mcmc: I cannot compute the posterior statistics!')
                end
                prior_posterior_statistics('posterior',dataset_,dataset_info);
            end
        else
            fprintf('Estimation:mcmc: sub_draws was set to 0. Skipping posterior computations.')
        end
        xparam1 = get_posterior_parameters('mean',M_,estim_params_,oo_,options_);
        M_ = set_all_parameters(xparam1,estim_params_,M_);
    end
end

if options_.particle.status
    %reset qz_criterium
    options_.qz_criterium=qz_criterium_old;
    return
end

if (~((any(bayestopt_.pshape > 0) && options_.mh_replic) || (any(bayestopt_.pshape> 0) && options_.load_mh_file)) ...
    || ~options_.smoother ) && ~options_.partial_information  % to be fixed
    %% ML estimation, or posterior mode without Metropolis-Hastings or Metropolis without Bayesian smoothes variables
    [atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,T,R,P,PK,decomp,Trend,state_uncertainty,M_,oo_,options_,bayestopt_] = DsgeSmoother(xparam1,dataset_.nobs,transpose(dataset_.data),dataset_info.missing.aindex,dataset_info.missing.state,M_,oo_,options_,bayestopt_,estim_params_);
    [oo_,yf]=store_smoother_results(M_,oo_,options_,bayestopt_,dataset_,dataset_info,atT,innov,measurement_error,updated_variables,ys,trend_coeff,aK,P,PK,decomp,Trend,state_uncertainty);

    if ~options_.nograph
        [nbplt,nr,nc,lr,lc,nstar] = pltorg(M_.exo_nbr);
        if ~exist([M_.fname '/graphs'],'dir')
            mkdir(M_.fname,'graphs');
        end
        if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
            fidTeX = fopen([M_.fname, '/graphs/' M_.fname '_SmoothedShocks.tex'],'w');
            fprintf(fidTeX,'%% TeX eps-loader file generated by dynare_estimation_1.m (Dynare).\n');
            fprintf(fidTeX,['%% ' datestr(now,0) '\n']);
            fprintf(fidTeX,' \n');
        end
        for plt = 1:nbplt
            fh = dyn_figure(options_.nodisplay,'Name','Smoothed shocks');
            NAMES = [];
            if options_.TeX, TeXNAMES = []; end
            nstar0=min(nstar,M_.exo_nbr-(plt-1)*nstar);
            if gend==1
                marker_string{1,1}='-ro';
                marker_string{2,1}='-ko';
            else
                marker_string{1,1}='-r';
                marker_string{2,1}='-k';
            end
            for i=1:nstar0
                k = (plt-1)*nstar+i;
                subplot(nr,nc,i);
                plot([1 gend],[0 0],marker_string{1,1},'linewidth',.5)
                hold on
                plot(1:gend,innov(k,:),marker_string{2,1},'linewidth',1)
                hold off
                name = M_.exo_names{k};
                if isempty(NAMES)
                    NAMES = name;
                else
                    NAMES = char(NAMES,name);
                end
                if ~isempty(options_.XTick)
                    set(gca,'XTick',options_.XTick)
                    set(gca,'XTickLabel',options_.XTickLabel)
                end
                if gend>1
                    xlim([1 gend])
                end
                if options_.TeX
                    texname = M_.exo_names_tex{k};
                    if isempty(TeXNAMES)
                        TeXNAMES = ['$ ' deblank(texname) ' $'];
                    else
                        TeXNAMES = char(TeXNAMES,['$ ' deblank(texname) ' $']);
                    end
                end
                title(name,'Interpreter','none')
            end
            dyn_saveas(fh,[M_.fname, '/graphs/' M_.fname '_SmoothedShocks' int2str(plt)],options_.nodisplay,options_.graph_format);
            if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
                fprintf(fidTeX,'\\begin{figure}[H]\n');
                for jj = 1:nstar0
                    fprintf(fidTeX,'\\psfrag{%s}[1][][0.5][0]{%s}\n',deblank(NAMES(jj,:)),deblank(TeXNAMES(jj,:)));
                end
                fprintf(fidTeX,'\\centering \n');
                fprintf(fidTeX,'\\includegraphics[width=%2.2f\\textwidth]{%s_SmoothedShocks%s}\n',options_.figures.textwidth*min(i/nc,1),[M_.fname, '/graphs/' M_.fname],int2str(plt));
                fprintf(fidTeX,'\\caption{Smoothed shocks.}');
                fprintf(fidTeX,'\\label{Fig:SmoothedShocks:%s}\n',int2str(plt));
                fprintf(fidTeX,'\\end{figure}\n');
                fprintf(fidTeX,'\n');
            end
        end
        if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
            fprintf(fidTeX,'\n');
            fprintf(fidTeX,'%% End of TeX file.\n');
            fclose(fidTeX);
        end
    end
    if nvn
        number_of_plots_to_draw = 0;
        index = [];
        for obs_iter=1:n_varobs
            if max(abs(measurement_error(obs_iter,:))) > options_.ME_plot_tol;
                number_of_plots_to_draw = number_of_plots_to_draw + 1;
                index = cat(1,index,obs_iter);
            end
        end
        if ~options_.nograph
            [nbplt,nr,nc,lr,lc,nstar] = pltorg(number_of_plots_to_draw);
            if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
                fidTeX = fopen([M_.fname, '/graphs/' M_.fname '_SmoothedObservationErrors.tex'],'w');
                fprintf(fidTeX,'%% TeX eps-loader file generated by dynare_estimation_1.m (Dynare).\n');
                fprintf(fidTeX,['%% ' datestr(now,0) '\n']);
                fprintf(fidTeX,' \n');
            end
            for plt = 1:nbplt
                fh = dyn_figure(options_.nodisplay,'Name','Smoothed observation errors');
                NAMES = [];
                if options_.TeX, TeXNAMES = []; end
                nstar0=min(nstar,number_of_plots_to_draw-(plt-1)*nstar);
                if gend==1
                    marker_string{1,1}='-ro';
                    marker_string{2,1}='-ko';
                else
                    marker_string{1,1}='-r';
                    marker_string{2,1}='-k';
                end
                for i=1:nstar0
                    k = (plt-1)*nstar+i;
                    subplot(nr,nc,i);
                    plot([1 gend],[0 0],marker_string{1,1},'linewidth',.5)
                    hold on
                    plot(1:gend,measurement_error(index(k),:),marker_string{2,1},'linewidth',1)
                    hold off
                    name = options_.varobs{index(k)};
                    if gend>1
                        xlim([1 gend])
                    end
                    if isempty(NAMES)
                        NAMES = name;
                    else
                        NAMES = char(NAMES,name);
                    end
                    if ~isempty(options_.XTick)
                        set(gca,'XTick',options_.XTick)
                        set(gca,'XTickLabel',options_.XTickLabel)
                    end
                    if options_.TeX
                        idx = strmatch(options_.varobs{index(k)}, M_.endo_names, 'exact');
                        texname = M_.endo_names_tex{idx};
                        if isempty(TeXNAMES)
                            TeXNAMES = ['$ ' texname ' $'];
                        else
                            TeXNAMES = char(TeXNAMES,['$ ' texname ' $']);
                        end
                    end
                    title(name,'Interpreter','none')
                end
                dyn_saveas(fh,[M_.fname, '/graphs/' M_.fname '_SmoothedObservationErrors' int2str(plt)],options_.nodisplay,options_.graph_format);
                if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
                    fprintf(fidTeX,'\\begin{figure}[H]\n');
                    for jj = 1:nstar0
                        fprintf(fidTeX,'\\psfrag{%s}[1][][0.5][0]{%s}\n',deblank(NAMES(jj,:)),deblank(TeXNAMES(jj,:)));
                    end
                    fprintf(fidTeX,'\\centering \n');
                    fprintf(fidTeX,'\\includegraphics[width=%2.2f\\textwidth]{%s_SmoothedObservationErrors%s}\n',options_.figures.textwidth*min(i/nc,1),[M_.fname, '/graphs/' M_.fname],int2str(plt));
                    fprintf(fidTeX,'\\caption{Smoothed observation errors.}');
                    fprintf(fidTeX,'\\label{Fig:SmoothedObservationErrors:%s}\n',int2str(plt));
                    fprintf(fidTeX,'\\end{figure}\n');
                    fprintf(fidTeX,'\n');
                end
            end
            if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
                fprintf(fidTeX,'\n');
                fprintf(fidTeX,'%% End of TeX file.\n');
                fclose(fidTeX);
            end
        end
    end
    %%
    %%  Historical and smoothed variabes
    %%
    if ~options_.nograph
        [nbplt,nr,nc,lr,lc,nstar] = pltorg(n_varobs);
        if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
            fidTeX = fopen([M_.fname, '/graphs/' M_.fname '_HistoricalAndSmoothedVariables.tex'],'w');
            fprintf(fidTeX,'%% TeX eps-loader file generated by dynare_estimation_1.m (Dynare).\n');
            fprintf(fidTeX,['%% ' datestr(now,0) '\n']);
            fprintf(fidTeX,' \n');
        end
        for plt = 1:nbplt
            fh = dyn_figure(options_.nodisplay,'Name','Historical and smoothed variables');
            NAMES = [];
            if options_.TeX, TeXNAMES = []; end
            nstar0=min(nstar,n_varobs-(plt-1)*nstar);
            if gend==1
                marker_string{1,1}='-ro';
                marker_string{2,1}='--ko';
            else
                marker_string{1,1}='-r';
                marker_string{2,1}='--k';
            end
            for i=1:nstar0
                k = (plt-1)*nstar+i;
                subplot(nr,nc,i);
                plot(1:gend,yf(k,:),marker_string{1,1},'linewidth',1)
                hold on
                plot(1:gend,rawdata(:,k),marker_string{2,1},'linewidth',1)
                hold off
                name = options_.varobs{k};
                if isempty(NAMES)
                    NAMES = name;
                else
                    NAMES = char(NAMES,name);
                end
                if ~isempty(options_.XTick)
                    set(gca,'XTick',options_.XTick)
                    set(gca,'XTickLabel',options_.XTickLabel)
                end
                if gend>1
                    xlim([1 gend])
                end
                if options_.TeX
                    idx = strmatch(options_.varobs{k}, M_.endo_names,'exact');
                    texname = M_.endo_names_tex{idx};
                    if isempty(TeXNAMES)
                        TeXNAMES = ['$ ' texname ' $'];
                    else
                        TeXNAMES = char(TeXNAMES,['$ ' texname ' $']);
                    end
                end
                title(name,'Interpreter','none')
            end
            dyn_saveas(fh,[M_.fname, '/graphs/' M_.fname '_HistoricalAndSmoothedVariables' int2str(plt)],options_.nodisplay,options_.graph_format);
            if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
                fprintf(fidTeX,'\\begin{figure}[H]\n');
                for jj = 1:nstar0
                    fprintf(fidTeX,'\\psfrag{%s}[1][][0.5][0]{%s}\n',deblank(NAMES(jj,:)),deblank(TeXNAMES(jj,:)));
                end
                fprintf(fidTeX,'\\centering \n');
                fprintf(fidTeX,'\\includegraphics[width=%2.2f\\textwidth]{%s_HistoricalAndSmoothedVariables%s}\n',options_.figures.textwidth*min(i/nc,1),[M_.fname, '/graphs/' M_.fname],int2str(plt));
                fprintf(fidTeX,'\\caption{Historical and smoothed variables.}');
                fprintf(fidTeX,'\\label{Fig:HistoricalAndSmoothedVariables:%s}\n',int2str(plt));
                fprintf(fidTeX,'\\end{figure}\n');
                fprintf(fidTeX,'\n');
            end
        end
        if options_.TeX && any(strcmp('eps',cellstr(options_.graph_format)))
            fprintf(fidTeX,'\n');
            fprintf(fidTeX,'%% End of TeX file.\n');
            fclose(fidTeX);
        end
    end
end

if options_.forecast > 0 && options_.mh_replic == 0 && ~options_.load_mh_file
    oo_.forecast = dyn_forecast(var_list_,M_,options_,oo_,'smoother',dataset_info);
end

if np > 0
    pindx = estim_params_.param_vals(:,1);
    save([M_.fname '_pindx.mat'] ,'pindx');
end

%reset qz_criterium
options_.qz_criterium=qz_criterium_old;

if reset_options_related_to_estimation
    options_.mode_compute = mode_compute_o;
    options_.mh_replic = mh_replic_o;
end
if first_obs_nan_indicator
    options_.first_obs=NaN;
end