1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
|
function [pdraws, STO_REDUCEDFORM, STO_MOMENTS, STO_DYNAMIC, STO_si_dDYNAMIC, STO_si_dREDUCEDFORM, STO_si_dMOMENTS, STO_dSPECTRUM, STO_dMINIMAL] = dynare_identification(options_ident, pdraws0)
%function [pdraws, STO_REDUCEDFORM, STO_MOMENTS, STO_DYNAMIC, STO_si_dDYNAMIC, STO_si_dREDUCEDFORM, STO_si_dMOMENTS, STO_dSPECTRUM, STO_dMINIMAL] = dynare_identification(options_ident, pdraws0)
% -------------------------------------------------------------------------
% This function is called, when the user specifies identification(...); in the mod file. It prepares all identification analysis:
% (1) set options, local and persistent variables for a new identification
% analysis either for a single point or a MC Sample. It also displays and plots the results
% (2) load, display and plot a previously saved identification analysis
%
% Note 1: This function does not output the arguments to the workspace, but saves results to the folder identification
% Note 2: If you want to use this function directly in the mod file and workspace, you still have
% to put identification in your mod file, otherwise the preprocessor won't provide all necessary objects
% =========================================================================
% INPUTS
% * options_ident [structure] identification options
% * pdraws0 [SampleSize by totparam_nbr] optional: matrix of MC sample of model parameters
% -------------------------------------------------------------------------
% OUTPUTS
% * pdraws [matrix] MC sample of model params used
% * STO_REDUCEDFORM, [matrix] MC sample of entries in steady state and reduced form model solution (stacked vertically)
% * STO_MOMENTS, [matrix] MC sample of entries in theoretical first two moments (stacked vertically)
% * STO_DYNAMIC, [matrix] MC sample of entries in steady state and dynamic model derivatives (stacked vertically)
% * STO_si_dDYNAMIC, [matrix] MC sample of derivatives of steady state and dynamic derivatives
% * STO_si_dREDUCEDFORM, [matrix] MC sample of derivatives of steady state and reduced form model solution
% * STO_si_dMOMENTS [matrix] MC sample of Iskrev (2010)'s J matrix
% * STO_dSPECTRUM [matrix] MC sample of Qu and Tkachenko (2012)'s \bar{G} matrix
% * STO_dMINIMAL [matrix] MC sample of Komunjer and Ng (2011)'s \bar{\Delta} matrix
% -------------------------------------------------------------------------
% This function is called by
% * driver.m
% * map_ident_.m
% -------------------------------------------------------------------------
% This function calls
% * checkpath
% * disp_identification
% * dyn_waitbar
% * dyn_waitbar_close
% * get_all_parameters
% * get_posterior_parameters
% * get_the_name
% * identification_analysis
% * isoctave
% * plot_identification
% * prior_draw
% * set_default_option
% * set_prior
% * skipline
% * vnorm
% =========================================================================
% Copyright (C) 2010-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% =========================================================================
global M_ options_ oo_ bayestopt_ estim_params_
store_options_ = options_; % store options to restore them at the end
fname = M_.fname; %model name
dname = M_.dname; %model name
%turn warnings off, either globally or only relevant ids
if isoctave
%warning('off'),
warning('off','Octave:singular-matrix');
warning('off','Octave:nearly-singular-matrix');
warning('off','Octave:neg-dim-as-zero');
warning('off','Octave:array-as-logical');
else
%warning off;
warning('off','MATLAB:rankDeficientMatrix');
warning('off','MATLAB:singularMatrix');
warning('off','MATLAB:nearlySingularMatrix');
warning('off','MATLAB:plot:IgnoreImaginaryXYPart');
warning('off','MATLAB:specgraph:private:specgraph:UsingOnlyRealComponentOfComplexData');
warning('off','MATLAB:handle_graphics:exceptions:SceneNode');
warning('off','MATLAB:divideByZero');
warning('off','MATLAB:log:logOfZero');
end
%% Set all options in options_ident and create objects
options_ident = set_default_option(options_ident,'gsa_sample_file',0);
% 0: do not use sample file
% 1: triggers gsa prior sample
% 2: triggers gsa Monte-Carlo sample (i.e. loads a sample corresponding to pprior=0 and ppost=0 in dynare_sensitivity options)
% FILENAME: use sample file in provided path
options_ident = set_default_option(options_ident,'parameter_set','prior_mean');
% 'calibration': use values in M_.params and M_.Sigma_e to update estimated stderr, corr and model parameters (get_all_parameters)
% 'prior_mode': use values in bayestopt_.p5 prior to update estimated stderr, corr and model parameters
% 'prior_mean': use values in bayestopt_.p1 prior to update estimated stderr, corr and model parameters
% 'posterior_mode': use posterior mode values in estim_params_ to update estimated stderr, corr and model parameters (get_posterior_parameters('mode',...))
% 'posterior_mean': use posterior mean values in estim_params_ to update estimated stderr, corr and model parameters (get_posterior_parameters('mean',...))
% 'posterior_median': use posterior median values in estim_params_ to update estimated stderr, corr and model parameters (get_posterior_parameters('median',...))
options_ident = set_default_option(options_ident,'load_ident_files',0);
% 1: load previously computed analysis from identification/fname_identif.mat
options_ident = set_default_option(options_ident,'useautocorr',0);
% 1: use autocorrelations in Iskrev (2010)'s theoretical second moments criteria
% 0: use autocovariances in Iskrev (2010)'s theoretical second moments criteria
options_ident = set_default_option(options_ident,'ar',1);
% number of lags to consider for autocovariances/autocorrelations in Iskrev (2010)'s criteria
options_ident = set_default_option(options_ident,'prior_mc',1);
% size of Monte-Carlo sample of parameter draws
options_ident = set_default_option(options_ident,'prior_range',0);
% 1: sample uniformly from prior ranges implied by the prior specifications (overwrites prior shape when prior_mc > 1)
% 0: sample from specified prior distributions (when prior_mc > 1)
options_ident = set_default_option(options_ident,'periods',300);
% length of stochastic simulation to compute simulated moment uncertainty (when analytic Hessian is not available)
options_ident = set_default_option(options_ident,'replic',100);
% number of replicas to compute simulated moment uncertainty (when analytic Hessian is not available)
options_ident = set_default_option(options_ident,'advanced',0);
% 1: show a more detailed analysis based on reduced-form model solution and dynamic model derivatives. Further, performs a brute force
% search of the groups of parameters best reproducing the behavior of each single parameter.
options_ident = set_default_option(options_ident,'normalize_jacobians',1);
% 1: normalize Jacobians by either rescaling each row by its largest element in absolute value or for Gram (or Hessian-type) matrices by transforming into correlation-type matrices
options_ident = set_default_option(options_ident,'grid_nbr',5000);
% number of grid points in [-pi;pi] to approximate the integral to compute Qu and Tkachenko (2012)'s criteria
% note that grid_nbr needs to be even and actually we use (grid_nbr+1) points, as we add the 0 frequency and use symmetry
if mod(options_ident.grid_nbr,2) ~= 0
options_ident.grid_nbr = options_ident.grid_nbr+1;
fprintf('IDENTIFICATION: ''grid_nbr'' needs to be even, hence it is reset to %d\n',options_ident.grid_nbr)
if mod(options_ident.grid_nbr,2) ~= 0
error('IDENTIFICATION: You need to set an even value for ''grid_nbr''');
end
end
options_ident = set_default_option(options_ident,'tol_rank','robust');
% tolerance level used for rank computations
options_ident = set_default_option(options_ident,'tol_deriv',1.e-8);
% tolerance level for selecting columns of non-zero derivatives
options_ident = set_default_option(options_ident,'tol_sv',1.e-3);
% tolerance level for selecting non-zero singular values in identification_checks.m
%check whether to compute identification strength based on information matrix
if ~isfield(options_ident,'no_identification_strength')
options_ident.no_identification_strength = 0;
else
options_ident.no_identification_strength = 1;
end
%check whether to compute and display identification criteria based on steady state and reduced-form model solution
if ~isfield(options_ident,'no_identification_reducedform')
options_ident.no_identification_reducedform = 0;
else
options_ident.no_identification_reducedform = 1;
end
%check whether to compute and display identification criteria based on Iskrev (2010), i.e. derivative of first two moments
if ~isfield(options_ident,'no_identification_moments')
options_ident.no_identification_moments = 0;
else
options_ident.no_identification_moments = 1;
end
%check whether to compute and display identification criteria based on Komunjer and Ng (2011), i.e. derivative of first moment, minimal state space system and observational equivalent spectral density transformation
if ~isfield(options_ident,'no_identification_minimal')
options_ident.no_identification_minimal = 0;
else
options_ident.no_identification_minimal = 1;
end
%Check whether to compute and display identification criteria based on Qu and Tkachenko (2012), i.e. Gram matrix of derivatives of first moment plus outer product of derivatives of spectral density
if ~isfield(options_ident,'no_identification_spectrum')
options_ident.no_identification_spectrum = 0;
else
options_ident.no_identification_spectrum = 1;
end
%overwrite setting, as identification strength and advanced need both reducedform and moments criteria
if (isfield(options_ident,'no_identification_strength') && options_ident.no_identification_strength == 0) || (options_ident.advanced == 1)
options_ident.no_identification_reducedform = 0;
options_ident.no_identification_moments = 0;
end
%overwrite setting, as dynare_sensitivity does not make use of spectrum and minimal system
if isfield(options_,'opt_gsa') && isfield(options_.opt_gsa,'identification') && options_.opt_gsa.identification == 1
options_ident.no_identification_minimal = 1;
options_ident.no_identification_spectrum = 1;
end
%Deal with non-stationary cases
if isfield(options_ident,'diffuse_filter')
options_ident.lik_init=3; %overwrites any other lik_init set
options_.diffuse_filter=options_ident.diffuse_filter; %make options_ inherit diffuse filter; will overwrite any conflicting lik_init in dynare_estimation_init
else
if options_.diffuse_filter==1 %warning if estimation with diffuse filter was done, but not passed
fprintf('WARNING IDENTIFICATION: Previously the diffuse_filter option was used, but it was not passed to the identification command. This may result in problems if your model contains unit roots.\n');
end
end
options_ident = set_default_option(options_ident,'lik_init',1);
options_.lik_init=options_ident.lik_init; %make options_ inherit lik_init
if options_ident.lik_init==3 %user specified diffuse filter using the lik_init option
options_ident.analytic_derivation=0; %diffuse filter not compatible with analytic derivation
end
% Type of initialization of Kalman filter:
% 1: stationary models: initial matrix of variance of error of forecast is set equal to the unconditional variance of the state variables
% 2: nonstationary models: wide prior is used with an initial matrix of variance of the error of forecast diagonal with 10 on the diagonal (follows the suggestion of Harvey and Phillips(1979))
% 3: nonstationary models: use a diffuse filter (use rather the diffuse_filter option)
% 4: filter is initialized with the fixed point of the Riccati equation
% 5: i) option 2 for non-stationary elements by setting their initial variance in the forecast error matrix to 10 on the diagonal and all co-variances to 0 and
% ii) option 1 for the stationary elements
options_ident = set_default_option(options_ident,'analytic_derivation',1);
% 1: analytic derivation of gradient and hessian of likelihood in dsge_likelihood.m, only works for stationary models, i.e. kalman_algo<3
options_ident = set_default_option(options_ident,'order',1);
% 1: first-order perturbation approximation, identification is based on linear state space system
% 2: second-order perturbation approximation, identification is based on second-order pruned state space system
% 3: third-order perturbation approximation, identification is based on third-order pruned state space system
%overwrite values in options_, note that options_ is restored at the end of the function
if isfield(options_ident,'TeX')
options_.TeX=options_ident.TeX;
% requests printing of results and graphs in LaTeX
end
if isfield(options_ident,'nograph')
options_.nograph=options_ident.nograph;
% do not display and do not save graphs
end
if isfield(options_ident,'nodisplay')
options_.nodisplay=options_ident.nodisplay;
% do not display, but save graphs
end
if isfield(options_ident,'graph_format')
options_.graph_format=options_ident.graph_format;
% specify file formats to save graphs: eps, pdf, fig, none (do not save but only display)
end
% check for external draws, i.e. set pdraws0 for a gsa analysis
if options_ident.gsa_sample_file
GSAFolder = checkpath('gsa',dname);
if options_ident.gsa_sample_file==1
load([GSAFolder,filesep,fname,'_prior'],'lpmat','lpmat0','istable');
elseif options_ident.gsa_sample_file==2
load([GSAFolder,filesep,fname,'_mc'],'lpmat','lpmat0','istable');
else
load([GSAFolder,filesep,options_ident.gsa_sample_file],'lpmat','lpmat0','istable');
end
if isempty(istable)
istable=1:size(lpmat,1);
end
if ~isempty(lpmat0)
lpmatx=lpmat0(istable,:);
else
lpmatx=[];
end
pdraws0 = [lpmatx lpmat(istable,:)];
clear lpmat lpmat0 istable;
elseif nargin==1
pdraws0=[];
end
external_sample=0;
if nargin==2 || ~isempty(pdraws0)
% change settings if there is an external sample provided as input argument
options_ident.prior_mc = size(pdraws0,1);
options_ident.load_ident_files = 0;
external_sample = 1;
end
% Check if estimated_params block is provided
if isempty(estim_params_)
prior_exist = 0;
%reset some options
options_ident.prior_mc = 1;
options_ident.prior_range = 0;
options_.identification_check_endogenous_params_with_no_prior = true; %needed to trigger endogenous steady state parameter check in dynare_estimation_init
else
prior_exist = 1;
parameters = options_ident.parameter_set;
end
% overwrite settings in options_ and prepare to call dynare_estimation_init
options_.order = options_ident.order;
if options_ident.order > 1
%order>1 is not compatible with analytic derivation in dsge_likelihood.m
options_ident.analytic_derivation=0;
%order>1 is based on pruned state space system
options_.pruning = true;
end
if options_ident.order == 3
options_.k_order_solver = 1;
end
options_.ar = options_ident.ar;
options_.prior_mc = options_ident.prior_mc;
options_.Schur_vec_tol = 1.e-8;
options_.nomoments = 0;
options_.analytic_derivation=options_ident.analytic_derivation;
% 1: analytic derivation of gradient and hessian of likelihood in dsge_likelihood.m, only works for stationary models, i.e. kalman_algo<3
options_ = set_default_option(options_,'datafile','');
options_.mode_compute = 0;
options_.plot_priors = 0;
options_.smoother = 1;
options_.options_ident = [];
[dataset_, dataset_info, xparam1, hh, M_, options_, oo_, estim_params_, bayestopt_, bounds] = dynare_estimation_init(M_.endo_names, fname, 1, M_, options_, oo_, estim_params_, bayestopt_);
% set method to compute identification Jacobians (kronflag). Default:0
options_ident = set_default_option(options_ident,'analytic_derivation_mode', options_.analytic_derivation_mode); % if not set by user, inherit default global one
% 0: efficient sylvester equation method to compute analytical derivatives as in Ratto & Iskrev (2012)
% 1: kronecker products method to compute analytical derivatives as in Iskrev (2010) (only for order=1)
% -1: numerical two-sided finite difference method to compute numerical derivatives of all identification Jacobians using function identification_numerical_objective.m (previously thet2tau.m)
% -2: numerical two-sided finite difference method to compute numerically dYss, dg1, dg2, dg3, d2Yss and d2g1, the identification Jacobians are then computed analytically as with 0
options_.analytic_derivation_mode = options_ident.analytic_derivation_mode; %overwrite setting in options_
% initialize persistent variables in prior_draw
if prior_exist
if any(bayestopt_.pshape > 0)
if options_ident.prior_range
%sample uniformly from prior ranges (overwrite prior specification)
prior_draw(bayestopt_, options_.prior_trunc, true);
else
%sample from prior distributions
prior_draw(bayestopt_, options_.prior_trunc, false);
end
else
options_ident.prior_mc = 1; %only one single point
end
end
% check if identification directory is already created
IdentifDirectoryName = CheckPath('identification',dname);
% Create indices for stderr, corr and model parameters
if prior_exist % use estimated_params block
indpmodel = []; %initialize index for model parameters
if ~isempty(estim_params_.param_vals)
indpmodel = estim_params_.param_vals(:,1); %values correspond to parameters declaration order, row number corresponds to order in estimated_params
end
indpstderr=[]; %initialize index for stderr parameters
if ~isempty(estim_params_.var_exo)
indpstderr = estim_params_.var_exo(:,1); %values correspond to varexo declaration order, row number corresponds to order in estimated_params
end
indpcorr=[]; %initialize matrix for corr paramters
if ~isempty(estim_params_.corrx)
indpcorr = estim_params_.corrx(:,1:2); %values correspond to varexo declaration order, row number corresponds to order in estimated_params
end
totparam_nbr = length(bayestopt_.name); % number of estimated stderr, corr and model parameters as declared in estimated_params
modparam_nbr = estim_params_.np; % number of model parameters as declared in estimated_params
stderrparam_nbr = estim_params_.nvx; % number of stderr parameters
corrparam_nbr = estim_params_.ncx; % number of corr parameters
if estim_params_.nvn || estim_params_.ncn %nvn is number of stderr parameters and ncn is number of corr parameters of measurement innovations as declared in estimated_params
error('Identification does not (yet) support measurement errors. Instead, define them explicitly as varexo and provide measurement equations in the model definition.')
end
name = cell(totparam_nbr,1); %initialize cell for parameter names
name_tex = cell(totparam_nbr,1); %initialize cell for TeX parameter names
for jj=1:totparam_nbr
if options_.TeX
[param_name_temp, param_name_tex_temp]= get_the_name(jj,options_.TeX,M_,estim_params_,options_);
name_tex{jj,1} = strrep(param_name_tex_temp,'$',''); %ordering corresponds to estimated_params
name{jj,1} = param_name_temp; %ordering corresponds to estimated_params
else
param_name_temp = get_the_name(jj,options_.TeX,M_,estim_params_,options_);
name{jj,1} = param_name_temp; %ordering corresponds to estimated_params
end
end
else % no estimated_params block, choose all model parameters and all stderr parameters, but no corr parameters
indpmodel = 1:M_.param_nbr; %all model parameters
indpstderr = 1:M_.exo_nbr; %all stderr parameters
indpcorr = []; %no corr parameters
stderrparam_nbr = M_.exo_nbr;
corrparam_nbr = 0;
modparam_nbr = M_.param_nbr;
totparam_nbr = modparam_nbr+stderrparam_nbr;
name = cellfun(@(x) horzcat('SE_', x), M_.exo_names, 'UniformOutput', false); %names for stderr parameters
name = vertcat(name, M_.param_names);
name_tex = cellfun(@(x) horzcat('$ SE_{', x, '} $'), M_.exo_names, 'UniformOutput', false);
name_tex = vertcat(name_tex, M_.param_names_tex);
if ~isequal(M_.H,0)
fprintf('\ndynare_identification:: Identification does not support measurement errors (yet) and will ignore them in the following. To test their identifiability, instead define them explicitly as varexo and provide measurement equations in the model definition.\n')
end
end
options_ident.name_tex = name_tex;
fprintf('\n======== Identification Analysis ========\n')
if options_ident.order > 1
fprintf('Based on Pruned State Space System (order=%d)\n',options_ident.order);
end
skipline()
if totparam_nbr < 2
options_ident.advanced = 0;
fprintf('There is only one parameter to study for identitification. The advanced option is re-set to 0.\n')
end
% settings dependent on number of parameters
options_ident = set_default_option(options_ident,'max_dim_cova_group',min([2,totparam_nbr-1]));
options_ident.max_dim_cova_group = min([options_ident.max_dim_cova_group,totparam_nbr-1]);
% In brute force search (ident_bruteforce.m) when advanced=1 this option sets the maximum dimension of groups of parameters that best reproduce the behavior of each single model parameter
options_ident = set_default_option(options_ident,'checks_via_subsets',0);
% 1: uses identification_checks_via_subsets.m to compute problematic parameter combinations
% 0: uses identification_checks.m to compute problematic parameter combinations [default]
options_ident = set_default_option(options_ident,'max_dim_subsets_groups',min([4,totparam_nbr-1]));
% In identification_checks_via_subsets.m, when checks_via_subsets=1, this option sets the maximum dimension of groups of parameters for which the corresponding rank criteria is checked
% store identification options
options_.options_ident = options_ident;
store_options_ident = options_ident;
% get some options for quick reference
iload = options_ident.load_ident_files;
SampleSize = options_ident.prior_mc;
if iload <=0
%% Perform new identification analysis, i.e. do not load previous analysis
if prior_exist
% use information from estimated_params block
params = set_prior(estim_params_,M_,options_)';
if all(bayestopt_.pshape == 0)
% only bounds are specified in estimated_params
parameters = 'ML_Starting_value';
parameters_TeX = 'ML starting value';
fprintf('Testing ML Starting value\n');
else
% use user-defined option
switch parameters
case 'calibration'
parameters_TeX = 'Calibration';
fprintf('Testing calibration\n');
params(1,:) = get_all_parameters(estim_params_,M_);
case 'posterior_mode'
parameters_TeX = 'Posterior mode';
fprintf('Testing posterior mode\n');
params(1,:) = get_posterior_parameters('mode',M_,estim_params_,oo_,options_);
case 'posterior_mean'
parameters_TeX = 'Posterior mean';
fprintf('Testing posterior mean\n');
params(1,:) = get_posterior_parameters('mean',M_,estim_params_,oo_,options_);
case 'posterior_median'
parameters_TeX = 'Posterior median';
fprintf('Testing posterior median\n');
params(1,:) = get_posterior_parameters('median',M_,estim_params_,oo_,options_);
case 'prior_mode'
parameters_TeX = 'Prior mode';
fprintf('Testing prior mode\n');
params(1,:) = bayestopt_.p5(:);
case 'prior_mean'
parameters_TeX = 'Prior mean';
fprintf('Testing prior mean\n');
params(1,:) = bayestopt_.p1;
otherwise
fprintf('The option parameter_set has to be equal to: ''calibration'', ''posterior_mode'', ''posterior_mean'', ''posterior_median'', ''prior_mode'' or ''prior_mean''.\n');
error('IDENTIFICATION: The option ''parameter_set'' has an invalid value');
end
end
else
% no estimated_params block is available, all stderr and model parameters, but no corr parameters are chosen
params = [sqrt(diag(M_.Sigma_e))', M_.params'];
parameters = 'Current_params';
parameters_TeX = 'Current parameter values';
fprintf('Testing all current stderr and model parameter values\n');
end
options_ident.tittxt = parameters; %title text for graphs and figures
% perform identification analysis for single point
[ide_moments_point, ide_spectrum_point, ide_minimal_point, ide_hess_point, ide_reducedform_point, ide_dynamic_point, derivatives_info_point, info, options_ident] = ...
identification_analysis(params, indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, 1); %the 1 at the end implies initialization of persistent variables
if info(1)~=0
% there are errors in the solution algorithm
message = get_error_message(info,options_);
fprintf('-----------\n');
fprintf('The model does not solve for %s (info = %d: %s)\n', parameters, info(1), message);
fprintf('-----------\n');
if any(bayestopt_.pshape)
% if there are errors in the solution algorithm, try to sample a different point from the prior
fprintf('Try sampling up to 50 parameter sets from the prior.\n');
kk=0;
while kk<50 && info(1)
kk=kk+1;
params = prior_draw();
options_ident.tittxt = 'Random_prior_params'; %title text for graphs and figures
% perform identification analysis
[ide_moments_point, ide_spectrum_point, ide_minimal_point, ide_hess_point, ide_reducedform_point, ide_dynamic_point, derivatives_info_point, info, options_ident] = ...
identification_analysis(params, indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, 1);
end
end
if info(1)
fprintf('\n-----------\n');
fprintf('Identification stopped:\n');
if any(bayestopt_.pshape)
fprintf('The model did not solve for any of 50 attempts of random samples from the prior\n');
end
fprintf('-----------\n');
return
else
% found a (random) point that solves the model
fprintf('Found a random draw from the priors that solves the model:\n');
disp(params);
fprintf('Identification now continues for this draw.');
parameters = 'Random_prior_params';
parameters_TeX = 'Random prior parameter draw';
end
end
ide_hess_point.params = params;
% save all output into identification folder
save([IdentifDirectoryName '/' fname '_identif.mat'], 'ide_moments_point', 'ide_spectrum_point', 'ide_minimal_point', 'ide_hess_point', 'ide_reducedform_point', 'ide_dynamic_point', 'store_options_ident');
save([IdentifDirectoryName '/' fname '_' parameters '_identif.mat'], 'ide_moments_point', 'ide_spectrum_point', 'ide_minimal_point', 'ide_hess_point', 'ide_reducedform_point', 'ide_dynamic_point', 'store_options_ident');
% display results of identification analysis
disp_identification(params, ide_reducedform_point, ide_moments_point, ide_spectrum_point, ide_minimal_point, name, options_ident);
if ~options_ident.no_identification_strength && ~options_.nograph
% plot (i) identification strength and sensitivity measure based on the moment information matrix and (ii) plot advanced analysis graphs
plot_identification(params, ide_moments_point, ide_hess_point, ide_reducedform_point, ide_dynamic_point, options_ident.advanced, parameters, name, IdentifDirectoryName, parameters_TeX, name_tex);
end
if SampleSize > 1
% initializations for Monte Carlo Analysis
fprintf('\nMonte Carlo Testing\n');
h = dyn_waitbar(0,'Monte Carlo identification checks ...');
iteration = 0; % initialize counter for admissable draws
run_index = 0; % initialize counter for admissable draws after saving previous draws to file(s)
file_index = 0; % initialize counter for files (if options_.MaxNumberOfBytes is reached, we store results in files)
options_MC = options_ident; %store options structure for Monte Carlo analysis
options_MC.advanced = 0; %do not run advanced checking in a Monte Carlo analysis
options_ident.checks_via_subsets = 0; % for Monte Carlo analysis currently only identification_checks and not identification_checks_via_subsets is supported
else
iteration = 1; % iteration equals SampleSize and we are finished
pdraws = []; % to have output object otherwise map_ident.m may crash
end
while iteration < SampleSize
if external_sample
params = pdraws0(iteration+1,:); % loaded draws
else
params = prior_draw(); % new random draw from prior
end
options_ident.tittxt = []; % clear title text for graphs and figures
% run identification analysis
[ide_moments, ide_spectrum, ide_minimal, ide_hess, ide_reducedform, ide_dynamic, ide_derivatives_info, info, options_MC] = ...
identification_analysis(params, indpmodel, indpstderr, indpcorr, options_MC, dataset_info, prior_exist, 0); % the 0 implies that we do not initialize persistent variables anymore
if iteration==0 && info(1)==0 % preallocate storage in the first admissable run
delete([IdentifDirectoryName '/' fname '_identif_*.mat']) % delete previously saved results
MAX_RUNS_BEFORE_SAVE_TO_FILE = min(SampleSize,ceil(options_.MaxNumberOfBytes/(size(ide_reducedform.si_dREDUCEDFORM,1)*totparam_nbr)/8)); % set how many runs can be stored before we save to files
pdraws = zeros(SampleSize,totparam_nbr); % preallocate storage for draws in each row
% preallocate storage for dynamic model
STO_si_dDYNAMIC = zeros([size(ide_dynamic.si_dDYNAMIC, 1), modparam_nbr, MAX_RUNS_BEFORE_SAVE_TO_FILE]);
STO_DYNAMIC = zeros(size(ide_dynamic.DYNAMIC, 1), SampleSize);
IDE_DYNAMIC.ind_dDYNAMIC = ide_dynamic.ind_dDYNAMIC;
IDE_DYNAMIC.in0 = zeros(SampleSize, modparam_nbr);
IDE_DYNAMIC.ind0 = zeros(SampleSize, modparam_nbr);
IDE_DYNAMIC.jweak = zeros(SampleSize, modparam_nbr);
IDE_DYNAMIC.jweak_pair = zeros(SampleSize, modparam_nbr*(modparam_nbr+1)/2);
IDE_DYNAMIC.cond = zeros(SampleSize, 1);
IDE_DYNAMIC.Mco = zeros(SampleSize, modparam_nbr);
% preallocate storage for reduced form
if ~options_MC.no_identification_reducedform
STO_si_dREDUCEDFORM = zeros([size(ide_reducedform.si_dREDUCEDFORM, 1), totparam_nbr, MAX_RUNS_BEFORE_SAVE_TO_FILE]);
STO_REDUCEDFORM = zeros(size(ide_reducedform.REDUCEDFORM, 1), SampleSize);
IDE_REDUCEDFORM.ind_dREDUCEDFORM = ide_reducedform.ind_dREDUCEDFORM;
IDE_REDUCEDFORM.in0 = zeros(SampleSize, 1);
IDE_REDUCEDFORM.ind0 = zeros(SampleSize, totparam_nbr);
IDE_REDUCEDFORM.jweak = zeros(SampleSize, totparam_nbr);
IDE_REDUCEDFORM.jweak_pair = zeros(SampleSize, totparam_nbr*(totparam_nbr+1)/2);
IDE_REDUCEDFORM.cond = zeros(SampleSize, 1);
IDE_REDUCEDFORM.Mco = zeros(SampleSize, totparam_nbr);
else
STO_si_dREDUCEDFORM = {};
STO_REDUCEDFORM = {};
IDE_REDUCEDFORM = {};
end
% preallocate storage for moments
if ~options_MC.no_identification_moments
STO_si_dMOMENTS = zeros([size(ide_moments.si_dMOMENTS, 1), totparam_nbr, MAX_RUNS_BEFORE_SAVE_TO_FILE]);
STO_MOMENTS = zeros(size(ide_moments.MOMENTS, 1), SampleSize);
IDE_MOMENTS.ind_dMOMENTS = ide_moments.ind_dMOMENTS;
IDE_MOMENTS.in0 = zeros(SampleSize, 1);
IDE_MOMENTS.ind0 = zeros(SampleSize, totparam_nbr);
IDE_MOMENTS.jweak = zeros(SampleSize, totparam_nbr);
IDE_MOMENTS.jweak_pair = zeros(SampleSize, totparam_nbr*(totparam_nbr+1)/2);
IDE_MOMENTS.cond = zeros(SampleSize, 1);
IDE_MOMENTS.Mco = zeros(SampleSize, totparam_nbr);
IDE_MOMENTS.S = zeros(SampleSize, min(8, totparam_nbr));
IDE_MOMENTS.V = zeros(SampleSize, totparam_nbr, min(8, totparam_nbr));
else
STO_si_dMOMENTS = {};
STO_MOMENTS = {};
IDE_MOMENTS = {};
end
% preallocate storage for spectrum
if ~options_MC.no_identification_spectrum
STO_dSPECTRUM = zeros([size(ide_spectrum.dSPECTRUM, 1), size(ide_spectrum.dSPECTRUM, 2), MAX_RUNS_BEFORE_SAVE_TO_FILE]);
IDE_SPECTRUM.ind_dSPECTRUM = ide_spectrum.ind_dSPECTRUM;
IDE_SPECTRUM.in0 = zeros(SampleSize, 1);
IDE_SPECTRUM.ind0 = zeros(SampleSize, totparam_nbr);
IDE_SPECTRUM.jweak = zeros(SampleSize, totparam_nbr);
IDE_SPECTRUM.jweak_pair = zeros(SampleSize, totparam_nbr*(totparam_nbr+1)/2);
IDE_SPECTRUM.cond = zeros(SampleSize, 1);
IDE_SPECTRUM.Mco = zeros(SampleSize, totparam_nbr);
else
STO_dSPECTRUM = {};
IDE_SPECTRUM = {};
end
% preallocate storage for minimal system
if ~options_MC.no_identification_minimal
STO_dMINIMAL = zeros([size(ide_minimal.dMINIMAL, 1), size(ide_minimal.dMINIMAL, 2), MAX_RUNS_BEFORE_SAVE_TO_FILE]);
IDE_MINIMAL.ind_dMINIMAL = ide_minimal.ind_dMINIMAL;
IDE_MINIMAL.in0 = zeros(SampleSize, 1);
IDE_MINIMAL.ind0 = zeros(SampleSize, totparam_nbr);
IDE_MINIMAL.jweak = zeros(SampleSize, totparam_nbr);
IDE_MINIMAL.jweak_pair = zeros(SampleSize, totparam_nbr*(totparam_nbr+1)/2);
IDE_MINIMAL.cond = zeros(SampleSize, 1);
IDE_MINIMAL.Mco = zeros(SampleSize, totparam_nbr);
else
STO_dMINIMAL = {};
IDE_MINIMAL = {};
end
end
if info(1)==0 % if admissable draw
iteration = iteration + 1; %increase total index of admissable draws
run_index = run_index + 1; %increase index of admissable draws after saving to files
pdraws(iteration,:) = params; % store draw
% store results for steady state and dynamic model derivatives
STO_DYNAMIC(:,iteration) = ide_dynamic.DYNAMIC;
STO_si_dDYNAMIC(:,:,run_index) = ide_dynamic.si_dDYNAMIC;
IDE_DYNAMIC.cond(iteration,1) = ide_dynamic.cond;
IDE_DYNAMIC.ino(iteration,1) = ide_dynamic.ino;
IDE_DYNAMIC.ind0(iteration,:) = ide_dynamic.ind0;
IDE_DYNAMIC.jweak(iteration,:) = ide_dynamic.jweak;
IDE_DYNAMIC.jweak_pair(iteration,:) = ide_dynamic.jweak_pair;
IDE_DYNAMIC.Mco(iteration,:) = ide_dynamic.Mco;
% store results for reduced form
if ~options_MC.no_identification_reducedform
STO_REDUCEDFORM(:,iteration) = ide_reducedform.REDUCEDFORM;
STO_si_dREDUCEDFORM(:,:,run_index) = ide_reducedform.si_dREDUCEDFORM;
IDE_REDUCEDFORM.cond(iteration,1) = ide_reducedform.cond;
IDE_REDUCEDFORM.ino(iteration,1) = ide_reducedform.ino;
IDE_REDUCEDFORM.ind0(iteration,:) = ide_reducedform.ind0;
IDE_REDUCEDFORM.jweak(iteration,:) = ide_reducedform.jweak;
IDE_REDUCEDFORM.jweak_pair(iteration,:) = ide_reducedform.jweak_pair;
IDE_REDUCEDFORM.Mco(iteration,:) = ide_reducedform.Mco;
end
% store results for moments
if ~options_MC.no_identification_moments
STO_MOMENTS(:,iteration) = ide_moments.MOMENTS;
STO_si_dMOMENTS(:,:,run_index) = ide_moments.si_dMOMENTS;
IDE_MOMENTS.cond(iteration,1) = ide_moments.cond;
IDE_MOMENTS.ino(iteration,1) = ide_moments.ino;
IDE_MOMENTS.ind0(iteration,:) = ide_moments.ind0;
IDE_MOMENTS.jweak(iteration,:) = ide_moments.jweak;
IDE_MOMENTS.jweak_pair(iteration,:) = ide_moments.jweak_pair;
IDE_MOMENTS.Mco(iteration,:) = ide_moments.Mco;
IDE_MOMENTS.S(iteration,:) = ide_moments.S;
IDE_MOMENTS.V(iteration,:,:) = ide_moments.V;
end
% store results for spectrum
if ~options_MC.no_identification_spectrum
STO_dSPECTRUM(:,:,run_index) = ide_spectrum.dSPECTRUM;
IDE_SPECTRUM.cond(iteration,1) = ide_spectrum.cond;
IDE_SPECTRUM.ino(iteration,1) = ide_spectrum.ino;
IDE_SPECTRUM.ind0(iteration,:) = ide_spectrum.ind0;
IDE_SPECTRUM.jweak(iteration,:) = ide_spectrum.jweak;
IDE_SPECTRUM.jweak_pair(iteration,:) = ide_spectrum.jweak_pair;
IDE_SPECTRUM.Mco(iteration,:) = ide_spectrum.Mco;
end
% store results for minimal system
if ~options_MC.no_identification_minimal
STO_dMINIMAL(:,:,run_index) = ide_minimal.dMINIMAL;
IDE_MINIMAL.cond(iteration,1) = ide_minimal.cond;
IDE_MINIMAL.ino(iteration,1) = ide_minimal.ino;
IDE_MINIMAL.ind0(iteration,:) = ide_minimal.ind0;
IDE_MINIMAL.jweak(iteration,:) = ide_minimal.jweak;
IDE_MINIMAL.jweak_pair(iteration,:) = ide_minimal.jweak_pair;
IDE_MINIMAL.Mco(iteration,:) = ide_minimal.Mco;
end
% save results to file: either to avoid running into memory issues, i.e. (run_index==MAX_RUNS_BEFORE_SAVE_TO_FILE) or if finished (iteration==SampleSize)
if run_index==MAX_RUNS_BEFORE_SAVE_TO_FILE || iteration==SampleSize
file_index = file_index + 1;
if run_index < MAX_RUNS_BEFORE_SAVE_TO_FILE
%we are finished (iteration == SampleSize), so get rid of additional storage
STO_si_dDYNAMIC = STO_si_dDYNAMIC(:,:,1:run_index);
if ~options_MC.no_identification_reducedform
STO_si_dREDUCEDFORM = STO_si_dREDUCEDFORM(:,:,1:run_index);
end
if ~options_MC.no_identification_moments
STO_si_dMOMENTS = STO_si_dMOMENTS(:,:,1:run_index);
end
if ~options_MC.no_identification_spectrum
STO_dSPECTRUM = STO_dSPECTRUM(:,:,1:run_index);
end
if ~options_MC.no_identification_minimal
STO_dMINIMAL = STO_dMINIMAL(:,:,1:run_index);
end
end
save([IdentifDirectoryName '/' fname '_identif_' int2str(file_index) '.mat'], 'STO_si_dDYNAMIC');
STO_si_dDYNAMIC = zeros(size(STO_si_dDYNAMIC)); % reset storage
if ~options_MC.no_identification_reducedform
save([IdentifDirectoryName '/' fname '_identif_' int2str(file_index) '.mat'], 'STO_si_dREDUCEDFORM', '-append');
STO_si_dREDUCEDFORM = zeros(size(STO_si_dREDUCEDFORM)); % reset storage
end
if ~options_MC.no_identification_moments
save([IdentifDirectoryName '/' fname '_identif_' int2str(file_index) '.mat'], 'STO_si_dMOMENTS','-append');
STO_si_dMOMENTS = zeros(size(STO_si_dMOMENTS)); % reset storage
end
if ~options_MC.no_identification_spectrum
save([IdentifDirectoryName '/' fname '_identif_' int2str(file_index) '.mat'], 'STO_dSPECTRUM','-append');
STO_dSPECTRUM = zeros(size(STO_dSPECTRUM)); % reset storage
end
if ~options_MC.no_identification_minimal
save([IdentifDirectoryName '/' fname '_identif_' int2str(file_index) '.mat'], 'STO_dMINIMAL','-append');
STO_dMINIMAL = zeros(size(STO_dMINIMAL)); % reset storage
end
run_index = 0; % reset index
end
if SampleSize > 1
dyn_waitbar(iteration/SampleSize, h, ['MC identification checks ', int2str(iteration), '/', int2str(SampleSize)]);
end
end
end
if SampleSize > 1
dyn_waitbar_close(h);
normalize_STO_DYNAMIC = std(STO_DYNAMIC,0,2);
if ~options_MC.no_identification_reducedform
normalize_STO_REDUCEDFORM = std(STO_REDUCEDFORM,0,2);
end
if ~options_MC.no_identification_moments
normalize_STO_MOMENTS = std(STO_MOMENTS,0,2);
end
if ~options_MC.no_identification_minimal
normalize_STO_MINIMAL = 1; %not used (yet)
end
if ~options_MC.no_identification_spectrum
normalize_STO_SPECTRUM = 1; %not used (yet)
end
normaliz1 = std(pdraws);
iter = 0;
for ifile_index = 1:file_index
load([IdentifDirectoryName '/' fname '_identif_' int2str(ifile_index) '.mat'], 'STO_si_dDYNAMIC');
maxrun_dDYNAMIC = size(STO_si_dDYNAMIC,3);
if ~options_MC.no_identification_reducedform
load([IdentifDirectoryName '/' fname '_identif_' int2str(ifile_index) '.mat'], 'STO_si_dREDUCEDFORM');
maxrun_dREDUCEDFORM = size(STO_si_dREDUCEDFORM,3);
else
maxrun_dREDUCEDFORM = 0;
end
if ~options_MC.no_identification_moments
load([IdentifDirectoryName '/' fname '_identif_' int2str(ifile_index) '.mat'], 'STO_si_dMOMENTS');
maxrun_dMOMENTS = size(STO_si_dMOMENTS,3);
else
maxrun_dMOMENTS = 0;
end
if ~options_MC.no_identification_spectrum
load([IdentifDirectoryName '/' fname '_identif_' int2str(ifile_index) '.mat'], 'STO_dSPECTRUM');
maxrun_dSPECTRUM = size(STO_dSPECTRUM,3);
else
maxrun_dSPECTRUM = 0;
end
if ~options_MC.no_identification_minimal
load([IdentifDirectoryName '/' fname '_identif_' int2str(ifile_index) '.mat'], 'STO_dMINIMAL');
maxrun_dMINIMAL = size(STO_dMINIMAL,3);
else
maxrun_dMINIMAL = 0;
end
for irun=1:max([maxrun_dDYNAMIC, maxrun_dREDUCEDFORM, maxrun_dMOMENTS, maxrun_dSPECTRUM, maxrun_dMINIMAL])
iter=iter+1;
% note that this is not the same si_dDYNAMICnorm as computed in identification_analysis
% given that we have the MC sample of the Jacobians, we also normalize by the std of the sample of Jacobian entries, to get a fully standardized sensitivity measure
si_dDYNAMICnorm(iter,:) = vnorm(STO_si_dDYNAMIC(:,:,irun)./repmat(normalize_STO_DYNAMIC,1,totparam_nbr-(stderrparam_nbr+corrparam_nbr))).*normaliz1((stderrparam_nbr+corrparam_nbr)+1:end);
if ~options_MC.no_identification_reducedform
% note that this is not the same si_dREDUCEDFORMnorm as computed in identification_analysis
% given that we have the MC sample of the Jacobians, we also normalize by the std of the sample of Jacobian entries, to get a fully standardized sensitivity measure
si_dREDUCEDFORMnorm(iter,:) = vnorm(STO_si_dREDUCEDFORM(:,:,irun)./repmat(normalize_STO_REDUCEDFORM,1,totparam_nbr)).*normaliz1;
end
if ~options_MC.no_identification_moments
% note that this is not the same si_dMOMENTSnorm as computed in identification_analysis
% given that we have the MC sample of the Jacobians, we also normalize by the std of the sample of Jacobian entries, to get a fully standardized sensitivity measure
si_dMOMENTSnorm(iter,:) = vnorm(STO_si_dMOMENTS(:,:,irun)./repmat(normalize_STO_MOMENTS,1,totparam_nbr)).*normaliz1;
end
if ~options_MC.no_identification_spectrum
% note that this is not the same dSPECTRUMnorm as computed in identification_analysis
dSPECTRUMnorm(iter,:) = vnorm(STO_dSPECTRUM(:,:,irun)); %not yet used
end
if ~options_MC.no_identification_minimal
% note that this is not the same dMINIMALnorm as computed in identification_analysis
dMINIMALnorm(iter,:) = vnorm(STO_dMINIMAL(:,:,irun)); %not yet used
end
end
end
IDE_DYNAMIC.si_dDYNAMICnorm = si_dDYNAMICnorm;
save([IdentifDirectoryName '/' fname '_identif.mat'], 'pdraws', 'IDE_DYNAMIC','STO_DYNAMIC','-append');
if ~options_MC.no_identification_reducedform
IDE_REDUCEDFORM.si_dREDUCEDFORMnorm = si_dREDUCEDFORMnorm;
save([IdentifDirectoryName '/' fname '_identif.mat'], 'IDE_REDUCEDFORM', 'STO_REDUCEDFORM','-append');
end
if ~options_MC.no_identification_moments
IDE_MOMENTS.si_dMOMENTSnorm = si_dMOMENTSnorm;
save([IdentifDirectoryName '/' fname '_identif.mat'], 'IDE_MOMENTS', 'STO_MOMENTS','-append');
end
end
else
%% load previous analysis
load([IdentifDirectoryName '/' fname '_identif']);
parameters = store_options_ident.parameter_set;
options_ident.parameter_set = parameters;
options_ident.prior_mc = size(pdraws,1);
SampleSize = options_ident.prior_mc;
options_.options_ident = options_ident;
end
%% if dynare_identification is called as it own function (not through identification command) and if we load files
if nargout>3 && iload
filnam = dir([IdentifDirectoryName '/' fname '_identif_*.mat']);
STO_si_dDYNAMIC = [];
STO_si_dREDUCEDFORM = [];
STO_si_dMOMENTS = [];
STO_dSPECTRUM = [];
STO_dMINIMAL = [];
for j=1:length(filnam)
load([IdentifDirectoryName '/' fname '_identif_',int2str(j),'.mat']);
STO_si_dDYNAMIC = cat(3,STO_si_dDYNAMIC, STO_si_dDYNAMIC(:,abs(iload),:));
if ~options_ident.no_identification_reducedform
STO_si_dREDUCEDFORM = cat(3,STO_si_dREDUCEDFORM, STO_si_dREDUCEDFORM(:,abs(iload),:));
end
if ~options_ident.no_identification_moments
STO_si_dMOMENTS = cat(3,STO_si_dMOMENTS, STO_si_dMOMENTS(:,abs(iload),:));
end
if ~options_ident.no_identification_spectrum
STO_dSPECTRUM = cat(3,STO_dSPECTRUM, STO_dSPECTRUM(:,abs(iload),:));
end
if ~options_ident.no_identification_minimal
STO_dMINIMAL = cat(3,STO_dMINIMAL, STO_dMINIMAL(:,abs(iload),:));
end
end
end
if iload
%if previous analysis is loaded
fprintf(['Testing %s\n',parameters]);
disp_identification(ide_hess_point.params, ide_reducedform_point, ide_moments_point, ide_spectrum_point, ide_minimal_point, name, options_ident);
if ~options_.nograph
% plot (i) identification strength and sensitivity measure based on the sample information matrix and (ii) advanced analysis graphs
plot_identification(ide_hess_point.params, ide_moments_point, ide_hess_point, ide_reducedform_point, ide_dynamic_point, options_ident.advanced, parameters, name, IdentifDirectoryName, [], name_tex);
end
end
%displaying and plotting of results for MC sample
if SampleSize > 1
fprintf('\nTesting MC sample\n');
%print results to console but make sure advanced=0
advanced0 = options_ident.advanced;
options_ident.advanced = 0;
disp_identification(pdraws, IDE_REDUCEDFORM, IDE_MOMENTS, IDE_SPECTRUM, IDE_MINIMAL, name, options_ident);
options_ident.advanced = advanced0; % reset advanced setting
if ~options_.nograph
% plot (i) identification strength and sensitivity measure based on the sample information matrix and (ii) advanced analysis graphs
plot_identification(pdraws, IDE_MOMENTS, ide_hess_point, IDE_REDUCEDFORM, IDE_DYNAMIC, options_ident.advanced, 'MC sample ', name, IdentifDirectoryName, [], name_tex);
end
%advanced display and plots for MC Sample, i.e. look at draws with highest/lowest condition number
if options_ident.advanced
jcrit = find(IDE_MOMENTS.ino);
if length(jcrit) < SampleSize
if isempty(jcrit)
% Make sure there is no overflow of plots produced (these are saved to the disk anyways)
store_nodisplay = options_.nodisplay;
options_.nodisplay = 1;
% HIGHEST CONDITION NUMBER
[~, jmax] = max(IDE_MOMENTS.cond);
tittxt = 'Draw with HIGHEST condition number';
fprintf('\nTesting %s.\n',tittxt);
if ~iload
options_ident.tittxt = tittxt; %title text for graphs and figures
[ide_moments_max, ide_spectrum_max, ide_minimal_max, ide_hess_max, ide_reducedform_max, ide_dynamic_max, derivatives_info_max, info_max, options_ident] = ...
identification_analysis(pdraws(jmax,:), indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, 1); %the 1 at the end initializes some persistent variables
save([IdentifDirectoryName '/' fname '_identif.mat'], 'ide_hess_max', 'ide_moments_max', 'ide_spectrum_max', 'ide_minimal_max','ide_reducedform_max', 'ide_dynamic_max', 'jmax', '-append');
end
advanced0 = options_ident.advanced; options_ident.advanced = 1; % make sure advanced setting is on
disp_identification(pdraws(jmax,:), ide_reducedform_max, ide_moments_max, ide_spectrum_max, ide_minimal_max, name, options_ident);
options_ident.advanced = advanced0; %reset advanced setting
if ~options_.nograph
% plot (i) identification strength and sensitivity measure based on the sample information matrix and (ii) advanced analysis graphs
plot_identification(pdraws(jmax,:), ide_moments_max, ide_hess_max, ide_reducedform_max, ide_dynamic_max, 1, tittxt, name, IdentifDirectoryName, tittxt, name_tex);
end
% SMALLEST condition number
[~, jmin] = min(IDE_MOMENTS.cond);
tittxt = 'Draw with SMALLEST condition number';
fprintf('Testing %s.\n',tittxt);
if ~iload
options_ident.tittxt = tittxt; %title text for graphs and figures
[ide_moments_min, ide_spectrum_min, ide_minimal_min, ide_hess_min, ide_reducedform_min, ide_dynamic_min, derivatives_info_min, info_min, options_ident] = ...
identification_analysis(pdraws(jmin,:), indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, 1); %the 1 at the end initializes persistent variables
save([IdentifDirectoryName '/' fname '_identif.mat'], 'ide_hess_min', 'ide_moments_min','ide_spectrum_min','ide_minimal_min','ide_reducedform_min', 'ide_dynamic_min', 'jmin', '-append');
end
advanced0 = options_ident.advanced; options_ident.advanced = 1; % make sure advanced setting is on
disp_identification(pdraws(jmin,:), ide_reducedform_min, ide_moments_min, ide_spectrum_min, ide_minimal_min, name, options_ident);
options_ident.advanced = advanced0; %reset advanced setting
if ~options_.nograph
% plot (i) identification strength and sensitivity measure based on the sample information matrix and (ii) advanced analysis graphs
plot_identification(pdraws(jmin,:),ide_moments_min,ide_hess_min,ide_reducedform_min,ide_dynamic_min,1,tittxt,name,IdentifDirectoryName,tittxt,name_tex);
end
% reset nodisplay option
options_.nodisplay = store_nodisplay;
else
% Make sure there is no overflow of plots produced (these are saved to the disk anyways)
store_nodisplay = options_.nodisplay;
options_.nodisplay = 1;
for j=1:length(jcrit)
tittxt = ['Rank deficient draw nr. ',int2str(j)];
fprintf('\nTesting %s.\n',tittxt);
if ~iload
options_ident.tittxt = tittxt; %title text for graphs and figures
[ide_moments_(j), ide_spectrum_(j), ide_minimal_(j), ide_hess_(j), ide_reducedform_(j), ide_dynamic_(j), derivatives_info_(j), info_resolve, options_ident] = ...
identification_analysis(pdraws(jcrit(j),:), indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, 1);
end
advanced0 = options_ident.advanced; options_ident.advanced = 1; %make sure advanced setting is on
disp_identification(pdraws(jcrit(j),:), ide_reducedform_(j), ide_moments_(j), ide_spectrum_(j), ide_minimal_(j), name, options_ident);
options_ident.advanced = advanced0; % reset advanced
if ~options_.nograph
% plot (i) identification strength and sensitivity measure based on the sample information matrix and (ii) advanced analysis graphs
plot_identification(pdraws(jcrit(j),:), ide_moments_(j), ide_hess_(j), ide_reducedform_(j), ide_dynamic_(j), 1, tittxt, name, IdentifDirectoryName, tittxt, name_tex);
end
end
if ~iload
save([IdentifDirectoryName '/' fname '_identif.mat'], 'ide_hess_', 'ide_moments_', 'ide_reducedform_', 'ide_dynamic_', 'ide_spectrum_', 'ide_minimal_', 'jcrit', '-append');
end
% reset nodisplay option
options_.nodisplay = store_nodisplay;
end
end
end
end
%reset warning state
if isoctave
warning('on')
else
warning on
end
fprintf('\n==== Identification analysis completed ====\n\n')
options_ = store_options_; %restore options set
|