File: fjaco.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (73 lines) | stat: -rw-r--r-- 3,110 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
function fjac = fjaco(f,x,varargin)

% FJACO Computes two-sided finite difference Jacobian
% USAGE
%   fjac = fjaco(f,x,P1,P2,...)
% INPUTS
%   f         : name of function of form fval = f(x)
%   x         : evaluation point
%   P1,P2,... : additional arguments for f (optional)
% OUTPUT
%   fjac      : finite difference Jacobian
%
% Copyright (C) 2010-2017,2019-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

ff=feval(f,x,varargin{:});

tol = eps.^(1/3); %some default value
if strcmp(func2str(f),'get_perturbation_params_derivs_numerical_objective') || strcmp(func2str(f),'identification_numerical_objective')
    tol= varargin{5}.dynatol.x;
end
h = tol.*max(abs(x),1);
xh1=x+h; xh0=x-h;
h=xh1-xh0;
fjac = NaN(length(ff),length(x));
for j=1:length(x)
    xx = x;
    xx(j) = xh1(j); f1=feval(f,xx,varargin{:});
    if isempty(f1) && (strcmp(func2str(f),'get_perturbation_params_derivs_numerical_objective') || strcmp(func2str(f),'identification_numerical_objective') )
        [~,info]=feval(f,xx,varargin{:});
        disp_info_error_identification_perturbation(info,j);
    end
    xx(j) = xh0(j); f0=feval(f,xx,varargin{:});
    if isempty(f0) && (strcmp(func2str(f),'get_perturbation_params_derivs_numerical_objective') || strcmp(func2str(f),'identification_numerical_objective') )
        [~,info]=feval(f,xx,varargin{:});
        disp_info_error_identification_perturbation(info,j)
    end
    fjac(:,j) = (f1-f0)/h(j);
end

feval(f,x,varargin{:});

%Auxiliary functions
function disp_info_error_identification_perturbation(info,j)
    % there are errors in the solution algorithm
    probl_par = get_the_name(j,varargin{5}.TeX,varargin{3},varargin{2},varargin{5});
    skipline()
    message = get_error_message(info,varargin{5});
    fprintf('Parameter error in numerical two-sided difference method:\n')
    fprintf('Cannot solve the model for %s (info = %d, %s)\n', probl_par, info(1), message);
    fprintf('Possible solutions:\n')
    fprintf('  -- check your mod file, calibration and steady state computations carefully\n');
    fprintf('  -- use analytic derivatives, i.e. set analytic_derivation_mode=0\n');
    fprintf('  -- use an estimated_params block without %s or change its value\n', probl_par);
    fprintf('  -- change numerical tolerance level in fjaco.m (you can tune ''options_.dynatol.x'' or change fjaco.m function directly)\n');
    error('fjaco.m: numerical two-sided difference method yields errors in solution algorithm');
end

end %main function end