File: gauss_hermite_weights_and_nodes.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (124 lines) | stat: -rw-r--r-- 3,744 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
function [nodes,weights] = gauss_hermite_weights_and_nodes(n)
% Computes the weights and nodes for an Hermite Gaussian quadrature rule.

%@info:
%! @deftypefn {Function File} {@var{nodes}, @var{weights} =} gauss_hermite_weights_and_nodes (@var{n})
%! @anchor{gauss_hermite_weights_and_nodes}
%! @sp 1
%! Computes the weights and nodes for an Hermite Gaussian quadrature rule. designed to approximate integrals
%! on the infinite interval (-\infty,\infty) of an unweighted smooth function.
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item n
%! Positive integer scalar, number of nodes (order of approximation).
%! @end table
%! @sp 1
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item nodes
%! n*1 vector of doubles, the nodes (roots of an order n Hermite polynomial)
%! @item weights
%! n*1 vector of doubles, the associated weights.
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @sp 2
%! @strong{This function calls:}
%! @sp 2
%! @end deftypefn
%@eod:

% Copyright (C) 2011-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

% Original author: stephane DOT adjemian AT univ DASH lemans DOT fr

b = sqrt([1:n-1]/2);
JacobiMatrix = diag(b,1)+diag(b,-1);
[JacobiEigenVectors,JacobiEigenValues] = eig(JacobiMatrix);
[nodes,idx] = sort(diag(JacobiEigenValues));
JacobiEigenVector = JacobiEigenVectors(1,:);
JacobiEigenVector = transpose(JacobiEigenVector(idx));
weights = JacobiEigenVector.^2;
nodes = sqrt(2)*nodes;

%@test:1
%$ n = 5;
%$ [nodes,weights] = gauss_hermite_weights_and_nodes(n);
%$
%$ sum_of_weights = sum(weights);
%$
%$ % Expected nodes (taken from Judd (1998, table 7.4).
%$ enodes = [-2.020182870; -0.9585724646; 0; 0.9585724646;   2.020182870];
%$
%$ % Check the results.
%$ t(1) = dassert(1.0,sum_of_weights,1e-12);
%$ t(2) = dassert(enodes,nodes/sqrt(2),1e-8);
%$ T = all(t);
%@eof:1

%@test:2
%$ n = 9;
%$ [nodes,weights] = gauss_hermite_weights_and_nodes(n);
%$
%$ sum_of_weights = sum(weights);
%$ expectation = sum(weights.*nodes);
%$ variance = sum(weights.*(nodes.^2));
%$
%$ % Check the results.
%$ t(1) = dassert(1.0,sum_of_weights,1e-12);
%$ t(2) = dassert(1.0,variance,1e-12);
%$ t(3) = dassert(0.0,expectation,1e-12);
%$ T = all(t);
%@eof:2

%@test:3
%$ n = 9;
%$ [nodes,weights] = gauss_hermite_weights_and_nodes(n);
%$
%$ NODES = cartesian_product_of_sets(nodes,nodes);
%$ WEIGHTS = cartesian_product_of_sets(weights,weights);
%$ WEIGHTS = prod(WEIGHTS,2);
%$
%$ sum_of_weights = sum(WEIGHTS);
%$ expectation = transpose(WEIGHTS)*NODES;
%$ variance = transpose(WEIGHTS)*NODES.^2;
%$
%$ % Check the results.
%$ t(1) = dassert(1.0,sum_of_weights,1e-12);
%$ t(2) = dassert(ones(1,2),variance,1e-12);
%$ t(3) = dassert(zeros(1,2),expectation,1e-12);
%$ T = all(t);
%@eof:3

%@test:4
%$ n = 9; sigma = .1;
%$ [nodes,weights] = gauss_hermite_weights_and_nodes(n);
%$
%$ sum_of_weights = sum(weights);
%$ expectation = sum(weights.*nodes*.1);
%$ variance = sum(weights.*((nodes*.1).^2));
%$
%$ % Check the results.
%$ t(1) = dassert(1.0,sum_of_weights,1e-12);
%$ t(2) = dassert(.01,variance,1e-12);
%$ t(3) = dassert(0.0,expectation,1e-12);
%$ T = all(t);
%@eof:4