File: get_Hessian.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (255 lines) | stat: -rw-r--r-- 8,823 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
function [Hess] = get_Hessian(T,R,Q,H,P,Y,DT,DYss,DOm,DH,DP,D2T,D2Yss,D2Om,D2H,D2P,start,mf,kalman_tol,riccati_tol)
% function [Hess] = get_Hessian(T,R,Q,H,P,Y,DT,DYss,DOm,DH,DP,D2T,D2Yss,D2Om,D2H,D2P,start,mf,kalman_tol,riccati_tol)
%
% computes the hessian matrix of the log-likelihood function of
% a state space model (notation as in kalman_filter.m in DYNARE
% Thanks to  Nikolai Iskrev
%
% NOTE: the derivative matrices (DT,DR ...) are 3-dim. arrays with last
% dimension equal to the number of structural parameters
% NOTE: the derivative matrices (D2T,D2Om ...) are 4-dim. arrays with last
% two dimensions equal to the number of structural parameters

% Copyright (C) 2011-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.


k = size(DT,3);                                 % number of structural parameters
smpl = size(Y,2);                               % Sample size.
pp   = size(Y,1);                               % Maximum number of observed variables.
mm   = size(T,2);                               % Number of state variables.
a    = zeros(mm,1);                             % State vector.
Om   = R*Q*transpose(R);                        % Variance of R times the vector of structural innovations.
t    = 0;                                       % Initialization of the time index.
oldK = 0;
notsteady   = 1;                                % Steady state flag.
F_singular  = 1;

Hess  = zeros(k,k);                             % Initialization of the Hessian
Da    = zeros(mm,k);                             % State vector.
Dv = zeros(length(mf),k);
D2a    = zeros(mm,k,k);                             % State vector.
D2v = zeros(length(mf),k,k);

C = zeros(length(mf),mm);
for ii=1:length(mf); C(ii,mf(ii))=1;end         % SELECTION MATRIX IN MEASUREMENT EQ. (FOR WHEN IT IS NOT CONSTANT)
dC = zeros(length(mf),mm,k);
d2C = zeros(length(mf),mm,k,k);

s   = zeros(pp,1);                      % CONSTANT TERM IN MEASUREMENT EQ. (FOR WHEN IT IS NOT CONSTANT)
ds  = zeros(pp,1,k);
d2s = zeros(pp,1,k,k);

%     for ii = 1:k
%         DOm = DR(:,:,ii)*Q*transpose(R) + R*DQ(:,:,ii)*transpose(R) + R*Q*transpose(DR(:,:,ii));
%     end

while notsteady & t<smpl
    t  = t+1;
    v  = Y(:,t)-a(mf);
    F  = P(mf,mf) + H;
    if rcond(F) < kalman_tol
        if ~all(abs(F(:))<kalman_tol)
            return
        else
            a = T*a;
            P = T*P*transpose(T)+Om;
        end
    else
        F_singular = 0;
        iF     = inv(F);
        K      = P(:,mf)*iF;

        [DK,DF,DP1] = computeDKalman(T,DT,DOm,P,DP,DH,mf,iF,K);
        [D2K,D2F,D2P1] = computeD2Kalman(T,DT,D2T,D2Om,P,DP,D2P,DH,mf,iF,K,DK);
        tmp = (a+K*v);

        for ii = 1:k
            Dv(:,ii)   = -Da(mf,ii) - DYss(mf,ii);
            %  dai = da(:,:,ii);
            dKi  = DK(:,:,ii);
            diFi = -iF*DF(:,:,ii)*iF;
            dtmpi = Da(:,ii)+dKi*v+K*Dv(:,ii);


            for jj = 1:ii
                dFj    = DF(:,:,jj);
                diFj   = -iF*DF(:,:,jj)*iF;
                dKj  = DK(:,:,jj);
                d2Kij  = D2K(:,:,jj,ii);
                d2Fij  = D2F(:,:,jj,ii);
                d2iFij = -diFi*dFj*iF -iF*d2Fij*iF -iF*dFj*diFi;
                dtmpj = Da(:,jj)+dKj*v+K*Dv(:,jj);

                d2vij  = -D2Yss(mf,jj,ii)  - D2a(mf,jj,ii);
                d2tmpij = D2a(:,jj,ii) + d2Kij*v + dKj*Dv(:,ii) + dKi*Dv(:,jj) + K*d2vij;
                D2a(:,jj,ii) = D2T(:,:,jj,ii)*tmp + DT(:,:,jj)*dtmpi + DT(:,:,ii)*dtmpj + T*d2tmpij;

                Hesst(ii,jj) = getHesst_ij(v,Dv(:,ii),Dv(:,jj),d2vij,iF,diFi,diFj,d2iFij,dFj,d2Fij);
            end
            Da(:,ii)   = DT(:,:,ii)*tmp + T*dtmpi;
        end
        %                     vecDPmf = reshape(DP(mf,mf,:),[],k);
        %                     iPmf = inv(P(mf,mf));
        if t>=start
            Hess = Hess + Hesst;
        end
        a      = T*(a+K*v);
        P      = T*(P-K*P(mf,:))*transpose(T)+Om;
        DP     = DP1;
        D2P     = D2P1;
    end
    notsteady = max(max(abs(K-oldK))) > riccati_tol;
    oldK = K;
end

if F_singular
    error('The variance of the forecast error remains singular until the end of the sample')
end


if t < smpl
    t0 = t+1;
    while t < smpl
        t = t+1;
        v = Y(:,t)-a(mf);
        tmp = (a+K*v);
        for ii = 1:k
            Dv(:,ii)   = -Da(mf,ii)-DYss(mf,ii);
            dKi  = DK(:,:,ii);
            diFi = -iF*DF(:,:,ii)*iF;
            dtmpi = Da(:,ii)+dKi*v+K*Dv(:,ii);

            for jj = 1:ii
                dFj    = DF(:,:,jj);
                diFj   = -iF*DF(:,:,jj)*iF;
                dKj  = DK(:,:,jj);
                d2Kij  = D2K(:,:,jj,ii);
                d2Fij  = D2F(:,:,jj,ii);
                d2iFij = -diFi*dFj*iF -iF*d2Fij*iF -iF*dFj*diFi;
                dtmpj = Da(:,jj)+dKj*v+K*Dv(:,jj);

                d2vij  = -D2Yss(mf,jj,ii)  - D2a(mf,jj,ii);
                d2tmpij = D2a(:,jj,ii) + d2Kij*v + dKj*Dv(:,ii) + dKi*Dv(:,jj) + K*d2vij;
                D2a(:,jj,ii) = D2T(:,:,jj,ii)*tmp + DT(:,:,jj)*dtmpi + DT(:,:,ii)*dtmpj + T*d2tmpij;

                Hesst(ii,jj) = getHesst_ij(v,Dv(:,ii),Dv(:,jj),d2vij,iF,diFi,diFj,d2iFij,dFj,d2Fij);
            end
            Da(:,ii)   = DT(:,:,ii)*tmp + T*dtmpi;
        end
        if t>=start
            Hess = Hess + Hesst;
        end
        a = T*(a+K*v);
    end
    %         Hess = Hess + .5*(smpl+t0-1)*(vecDPmf' * kron(iPmf,iPmf) * vecDPmf);
    %         for ii = 1:k;
    %             for jj = 1:ii
    %              H(ii,jj) = trace(iPmf*(.5*DP(mf,mf,ii)*iPmf*DP(mf,mf,jj) + Dv(:,ii)*Dv(:,jj)'));
    %             end
    %         end
end

Hess = Hess + tril(Hess,-1)';

Hess = -Hess/2;
% end of main function

function Hesst_ij = getHesst_ij(e,dei,dej,d2eij,iS,diSi,diSj,d2iSij,dSj,d2Sij);
% computes (i,j) term in the Hessian

Hesst_ij = trace(diSi*dSj + iS*d2Sij) + e'*d2iSij*e + 2*(dei'*diSj*e + dei'*iS*dej + e'*diSi*dej + e'*iS*d2eij);

% end of getHesst_ij

function [DK,DF,DP1] = computeDKalman(T,DT,DOm,P,DP,DH,mf,iF,K)

k      = size(DT,3);
tmp    = P-K*P(mf,:);

for ii = 1:k
    DF(:,:,ii)  = DP(mf,mf,ii) + DH(:,:,ii);
    DiF(:,:,ii) = -iF*DF(:,:,ii)*iF;
    DK(:,:,ii)  = DP(:,mf,ii)*iF + P(:,mf)*DiF(:,:,ii);
    Dtmp        = DP(:,:,ii) - DK(:,:,ii)*P(mf,:) - K*DP(mf,:,ii);
    DP1(:,:,ii) = DT(:,:,ii)*tmp*T' + T*Dtmp*T' + T*tmp*DT(:,:,ii)' + DOm(:,:,ii);
end

% end of computeDKalman

function [d2K,d2S,d2P1] = computeD2Kalman(A,dA,d2A,d2Om,P0,dP0,d2P0,DH,mf,iF,K0,dK0)
% computes the second derivatives of the Kalman matrices
% note: A=T in main func.

k      = size(dA,3);
tmp    = P0-K0*P0(mf,:);
[ns,no] = size(K0);

% CPC = C*P0*C'; CPC = .5*(CPC+CPC');iF = inv(CPC);
% APC = A*P0*C';
% APA = A*P0*A';


d2K  = zeros(ns,no,k,k);
d2S  = zeros(no,no,k,k);
d2P1 = zeros(ns,ns,k,k);

for ii = 1:k
    dAi = dA(:,:,ii);
    dFi = dP0(mf,mf,ii);
    d2Omi = d2Om(:,:,ii);
    diFi = -iF*dFi*iF;
    dKi = dK0(:,:,ii);
    for jj = 1:k
        dAj = dA(:,:,jj);
        dFj = dP0(mf,mf,jj);
        d2Omj = d2Om(:,:,jj);
        dFj = dP0(mf,mf,jj);
        diFj = -iF*dFj*iF;
        dKj = dK0(:,:,jj);

        d2Aij = d2A(:,:,jj,ii);
        d2Pij = d2P0(:,:,jj,ii);
        d2Omij = d2Om(:,:,jj,ii);

        % second order

        d2Fij = d2Pij(mf,mf) ;

        %     d2APC = d2Aij*P0*C' + A*d2Pij*C' + A*P0*d2Cij' + dAi*dPj*C' + dAj*dPi*C' + A*dPj*dCi' + A*dPi*dCj' + dAi*P0*dCj' + dAj*P0*dCi';
        d2APC = d2Pij(:,mf);

        d2iF = -diFi*dFj*iF -iF*d2Fij*iF -iF*dFj*diFi;

        d2Kij= d2Pij(:,mf)*iF + P0(:,mf)*d2iF + dP0(:,mf,jj)*diFi + dP0(:,mf,ii)*diFj;

        d2KCP = d2Kij*P0(mf,:) + K0*d2Pij(mf,:) + dKi*dP0(mf,:,jj) + dKj*dP0(mf,:,ii) ;

        dtmpi        = dP0(:,:,ii) - dK0(:,:,ii)*P0(mf,:) - K0*dP0(mf,:,ii);
        dtmpj        = dP0(:,:,jj) - dK0(:,:,jj)*P0(mf,:) - K0*dP0(mf,:,jj);
        d2tmp = d2Pij - d2KCP;

        d2AtmpA = d2Aij*tmp*A' + A*d2tmp*A' + A*tmp*d2Aij' + dAi*dtmpj*A' + dAj*dtmpi*A' + A*dtmpj*dAi' + A*dtmpi*dAj' + dAi*tmp*dAj' + dAj*tmp*dAi';

        d2K(:,:,ii,jj)  = d2Kij; %#ok<NASGU>
        d2P1(:,:,ii,jj) = d2AtmpA  + d2Omij;  %#ok<*NASGU>
        d2S(:,:,ii,jj)  = d2Fij;
        %     d2iS(:,:,ii,jj) = d2iF;
    end
end

% end of computeD2Kalman