File: get_identification_jacobians.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (469 lines) | stat: -rw-r--r-- 30,115 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
function [MEAN, dMEAN, REDUCEDFORM, dREDUCEDFORM, DYNAMIC, dDYNAMIC, MOMENTS, dMOMENTS, dSPECTRUM, dSPECTRUM_NO_MEAN, dMINIMAL, derivatives_info] = get_identification_jacobians(estim_params, M, oo, options, options_ident, indpmodel, indpstderr, indpcorr, indvobs)
% function [MEAN, dMEAN, REDUCEDFORM, dREDUCEDFORM, DYNAMIC, dDYNAMIC, MOMENTS, dMOMENTS, dSPECTRUM, dMINIMAL, derivatives_info] = get_identification_jacobians(estim_params, M, oo, options, options_ident, indpmodel, indpstderr, indpcorr, indvobs)
% previously getJJ.m in Dynare 4.5
% Sets up the Jacobians needed for identification analysis
% =========================================================================
% INPUTS
%   estim_params:   [structure] storing the estimation information
%   M:              [structure] storing the model information
%   oo:             [structure] storing the reduced-form solution results
%   options:        [structure] storing the options
%   options_ident:  [structure] storing the options for identification
%   indpmodel:      [modparam_nbr by 1] index of estimated parameters in M_.params;
%                     corresponds to model parameters (no stderr and no corr)
%                     in estimated_params block; if estimated_params block is
%                     not available, then all model parameters are selected
%   indpstderr:     [stderrparam_nbr by 1] index of estimated standard errors,
%                     i.e. for all exogenous variables where "stderr" is given
%                     in the estimated_params block; if estimated_params block
%                     is not available, then all stderr parameters are selected
%   indpcorr:       [corrparam_nbr by 2] matrix of estimated correlations,
%                     i.e. for all exogenous variables where "corr" is given
%                     in the estimated_params block; if estimated_params block
%                     is not available, then no corr parameters are selected
%   indvobs:        [obs_nbr by 1] index of observed (VAROBS) variables
% -------------------------------------------------------------------------
% OUTPUTS
%
%  MEAN             [endo_nbr by 1], in DR order. Expectation of all model variables
%                   * order==1: corresponds to steady state
%                   * order==2|3: corresponds to mean computed from pruned state space system (as in Andreasen, Fernandez-Villaverde, Rubio-Ramirez, 2018)
%  dMEAN            [endo_nbr by totparam_nbr], in DR Order, Jacobian (wrt all params) of MEAN
%
%  REDUCEDFORM      [rowredform_nbr by 1] in DR order. Steady state and reduced-form model solution matrices for all model variables
%                   * order==1: [Yss' vec(ghx)' vech(ghu*Sigma_e*ghu')']',
%                     where rowredform_nbr = endo_nbr*(1+nspred+(endo_nbr+1)/2)
%                   * order==2: [Yss' vec(ghx)' vech(ghu*Sigma_e*ghu')' vec(ghxx)' vec(ghxu)' vec(ghuu)' vec(ghs2)']',
%                     where rowredform_nbr = endo_nbr*(1+nspred+(endo_nbr+1)/2+nspred^2+nspred*exo_nr+exo_nbr^2+1)
%                   * order==3: [Yss' vec(ghx)' vech(ghu*Sigma_e*ghu')' vec(ghxx)' vec(ghxu)' vec(ghuu)' vec(ghs2)' vec(ghxxx)' vec(ghxxu)' vec(ghxuu)' vec(ghuuu)' vec(ghxss)' vec(ghuss)']',
%                     where rowredform_nbr = endo_nbr*(1+nspred+(endo_nbr+1)/2+nspred^2+nspred*exo_nr+exo_nbr^2+1+nspred^3+nspred^2*exo_nbr+nspred*exo_nbr^2+exo_nbr^3+nspred+exo_nbr)
%  dREDUCEDFORM:    [rowredform_nbr by totparam_nbr] in DR order, Jacobian (wrt all params) of REDUCEDFORM
%                   * order==1: corresponds to Iskrev (2010)'s J_2 matrix
%                   * order==2: corresponds to Mutschler (2015)'s J matrix
%
%  DYNAMIC          [rowdyn_nbr by 1] in declaration order. Steady state and dynamic model derivatives for all model variables
%                   * order==1: [ys' vec(g1)']', rowdyn_nbr=endo_nbr+length(g1)
%                   * order==2: [ys' vec(g1)' vec(g2)']', rowdyn_nbr=endo_nbr+length(g1)+length(g2)
%                   * order==3: [ys' vec(g1)' vec(g2)' vec(g3)']', rowdyn_nbr=endo_nbr+length(g1)+length(g2)+length(g3)
%  dDYNAMIC         [rowdyn_nbr by modparam_nbr] in declaration order. Jacobian (wrt model parameters) of DYNAMIC
%                   * order==1: corresponds to Ratto and Iskrev (2011)'s J_\Gamma matrix (or LRE)
%
%  MOMENTS:         [obs_nbr+obs_nbr*(obs_nbr+1)/2+nlags*obs_nbr^2 by 1] in DR order. First two theoretical moments for VAROBS variables, i.e.
%                   [E[varobs]' vech(E[varobs*varobs'])' vec(E[varobs*varobs(-1)'])' ... vec(E[varobs*varobs(-nlag)'])']
%  dMOMENTS:        [obs_nbr+obs_nbr*(obs_nbr+1)/2+nlags*obs_nbr^2 by totparam_nbr] in DR order. Jacobian (wrt all params) of MOMENTS
%                   * order==1: corresponds to Iskrev (2010)'s J matrix
%                   * order==2: corresponds to Mutschler (2015)'s \bar{M}_2 matrix, i.e. theoretical moments from the pruned state space system
%
%  dSPECTRUM:       [totparam_nbr by totparam_nbr] in DR order. Gram matrix of Jacobian (wrt all params) of mean and of spectral density for VAROBS variables, where
%                   spectral density at frequency w: f(w) = (2*pi)^(-1)*H(exp(-i*w))*E[Inov*Inov']*ctranspose(H(exp(-i*w)) with H being the Transfer function
%                   dSPECTRUM = dMEAN*dMEAN + int_{-\pi}^\pi transpose(df(w)/dp')*(df(w)/dp') dw
%                   * order==1: corresponds to Qu and Tkachenko (2012)'s G matrix, where Inov and H are computed from linear state space system
%                   * order==2: corresponds to Mutschler (2015)'s G_2 matrix, where Inov and H are computed from second-order pruned state space system
%                   * order==3: Inov and H are computed from third-order pruned state space system
%
%  dSPECTRUM_NO_MEAN:[totparam_nbr by totparam_nbr] in DR order. Gram matrix of Jacobian (wrt all params) of spectral density for VAROBS variables, where
%                   spectral density at frequency w: f(w) = (2*pi)^(-1)*H(exp(-i*w))*E[Inov*Inov']*ctranspose(H(exp(-i*w)) with H being the Transfer function
%                   dSPECTRUM = int_{-\pi}^\pi transpose(df(w)/dp')*(df(w)/dp') dw
%                   * order==1: corresponds to Qu and Tkachenko (2012)'s G matrix, where Inov and H are computed from linear state space system
%                   * order==2: corresponds to Mutschler (2015)'s G_2 matrix, where Inov and H are computed from second-order pruned state space system
%                   * order==3: Inov and H are computed from third-order pruned state space system
%
%  dMINIMAL:        [obs_nbr+minx_nbr^2+minx_nbr*exo_nbr+obs_nbr*minx_nbr+obs_nbr*exo_nbr+exo_nbr*(exo_nbr+1)/2 by totparam_nbr+minx_nbr^2+exo_nbr^2]
%                   Jacobian (wrt all params, and similarity_transformation_matrices (T and U)) of observational equivalent minimal ABCD system,
%                   corresponds to Komunjer and Ng (2011)'s Deltabar matrix, where
%                   MINIMAL = [vec(E[varobs]' vec(minA)' vec(minB)' vec(minC)' vec(minD)' vech(Sigma_e)']'
%                   minA, minB, minC and minD is the minimal state space system computed in get_minimal_state_representation
%                   * order==1: E[varobs] is equal to steady state
%                   * order==2|3: E[varobs] is computed from the pruned state space system (second|third-order accurate), as noted in section 5 of Komunjer and Ng (2011)
%
%  derivatives_info [structure] for use in dsge_likelihood to compute Hessian analytically. Only used at order==1.
%                   Contains dA, dB, and d(B*Sigma_e*B'), where A and B are Kalman filter transition matrice.
%
% -------------------------------------------------------------------------
% This function is called by
%   * identification_analysis.m
% -------------------------------------------------------------------------
% This function calls
%   * commutation
%   * get_minimal_state_representation
%   * duplication
%   * dyn_vech
%   * fjaco
%   * get_perturbation_params_derivs (previously getH)
%   * get_all_parameters
%   * identification_numerical_objective (previously thet2tau)
%   * pruned_state_space_system
%   * vec
% =========================================================================
% Copyright (C) 2010-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
% =========================================================================

%get fields from options_ident
no_identification_moments   = options_ident.no_identification_moments;
no_identification_minimal   = options_ident.no_identification_minimal;
no_identification_spectrum  = options_ident.no_identification_spectrum;
order       = options_ident.order;
nlags       = options_ident.ar;
useautocorr = options_ident.useautocorr;
grid_nbr    = options_ident.grid_nbr;
kronflag    = options_ident.analytic_derivation_mode;

% get fields from M
endo_nbr           = M.endo_nbr;
exo_nbr            = M.exo_nbr;
fname              = M.fname;
lead_lag_incidence = M.lead_lag_incidence;
nspred             = M.nspred;
nstatic            = M.nstatic;
params             = M.params;
Sigma_e            = M.Sigma_e;
stderr_e           = sqrt(diag(Sigma_e));

% set all selected values: stderr and corr come first, then model parameters
xparam1 = get_all_parameters(estim_params, M); %try using estimated_params block
if isempty(xparam1)
    %if there is no estimated_params block, consider all stderr and all model parameters, but no corr parameters
    xparam1 = [stderr_e', params'];
end

%get numbers/lengths of vectors
modparam_nbr    = length(indpmodel);
stderrparam_nbr = length(indpstderr);
corrparam_nbr   = size(indpcorr,1);
totparam_nbr    = stderrparam_nbr + corrparam_nbr + modparam_nbr;
obs_nbr         = length(indvobs);
d2flag          = 0; % do not compute second parameter derivatives

% Get Jacobians (wrt selected params) of steady state, dynamic model derivatives and perturbation solution matrices for all endogenous variables
oo.dr.derivs = get_perturbation_params_derivs(M, options, estim_params, oo, indpmodel, indpstderr, indpcorr, d2flag);

[I,~] = find(lead_lag_incidence'); %I is used to select nonzero columns of the Jacobian of endogenous variables in dynamic model files
yy0 = oo.dr.ys(I);           %steady state of dynamic (endogenous and auxiliary variables) in lead_lag_incidence order
Yss = oo.dr.ys(oo.dr.order_var); % steady state in DR order
if order == 1
    [~, g1 ] = feval([fname,'.dynamic'], yy0, oo.exo_steady_state', params, oo.dr.ys, 1);
    %g1 is [endo_nbr by yy0ex0_nbr first derivative (wrt all dynamic variables) of dynamic model equations, i.e. df/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
    DYNAMIC = [Yss;
               vec(g1(oo.dr.order_var,:))]; %add steady state and put rows of g1 in DR order
    dDYNAMIC = [oo.dr.derivs.dYss;
                reshape(oo.dr.derivs.dg1(oo.dr.order_var,:,:),size(oo.dr.derivs.dg1,1)*size(oo.dr.derivs.dg1,2),size(oo.dr.derivs.dg1,3)) ]; %reshape dg1 in DR order and add steady state
    REDUCEDFORM = [Yss;
                   vec(oo.dr.ghx);
                   dyn_vech(oo.dr.ghu*Sigma_e*transpose(oo.dr.ghu))]; %in DR order
    dREDUCEDFORM = zeros(endo_nbr*nspred+endo_nbr*(endo_nbr+1)/2, totparam_nbr);
    for j=1:totparam_nbr
        dREDUCEDFORM(:,j) = [vec(oo.dr.derivs.dghx(:,:,j));
                            dyn_vech(oo.dr.derivs.dOm(:,:,j))];
    end
    dREDUCEDFORM = [ [zeros(endo_nbr, stderrparam_nbr+corrparam_nbr) oo.dr.derivs.dYss]; dREDUCEDFORM ]; % add steady state

elseif order == 2
    [~, g1, g2 ] = feval([fname,'.dynamic'], yy0, oo.exo_steady_state', params, oo.dr.ys, 1);
    %g1 is [endo_nbr by yy0ex0_nbr first derivative (wrt all dynamic variables) of dynamic model equations, i.e. df/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
    %g2 is [endo_nbr by yy0ex0_nbr^2] second derivative (wrt all dynamic variables) of dynamic model equations, i.e. d(df/dyy0ex0)/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
    DYNAMIC = [Yss;
               vec(g1(oo.dr.order_var,:));
               vec(g2(oo.dr.order_var,:))]; %add steady state and put rows of g1 and g2 in DR order
    dDYNAMIC = [oo.dr.derivs.dYss;
                reshape(oo.dr.derivs.dg1(oo.dr.order_var,:,:),size(oo.dr.derivs.dg1,1)*size(oo.dr.derivs.dg1,2),size(oo.dr.derivs.dg1,3));  %reshape dg1 in DR order
                reshape(oo.dr.derivs.dg2(oo.dr.order_var,:),size(oo.dr.derivs.dg1,1)*size(oo.dr.derivs.dg1,2)^2,size(oo.dr.derivs.dg1,3))]; %reshape dg2 in DR order
    REDUCEDFORM = [Yss;
                   vec(oo.dr.ghx);
                   dyn_vech(oo.dr.ghu*Sigma_e*transpose(oo.dr.ghu));
                   vec(oo.dr.ghxx);
                   vec(oo.dr.ghxu);
                   vec(oo.dr.ghuu);
                   vec(oo.dr.ghs2)]; %in DR order
    dREDUCEDFORM = zeros(endo_nbr*nspred+endo_nbr*(endo_nbr+1)/2+endo_nbr*nspred^2+endo_nbr*nspred*exo_nbr+endo_nbr*exo_nbr^2+endo_nbr, totparam_nbr);
    for j=1:totparam_nbr
        dREDUCEDFORM(:,j) = [vec(oo.dr.derivs.dghx(:,:,j));
                            dyn_vech(oo.dr.derivs.dOm(:,:,j));
                            vec(oo.dr.derivs.dghxx(:,:,j));
                            vec(oo.dr.derivs.dghxu(:,:,j));
                            vec(oo.dr.derivs.dghuu(:,:,j));
                            vec(oo.dr.derivs.dghs2(:,j))];
    end
    dREDUCEDFORM = [ [zeros(endo_nbr, stderrparam_nbr+corrparam_nbr) oo.dr.derivs.dYss]; dREDUCEDFORM ]; % add steady state
elseif order == 3
    [~, g1, g2, g3 ] = feval([fname,'.dynamic'], yy0, oo.exo_steady_state', params, oo.dr.ys, 1);
    %g1 is [endo_nbr by yy0ex0_nbr first derivative (wrt all dynamic variables) of dynamic model equations, i.e. df/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
    %g2 is [endo_nbr by yy0ex0_nbr^2] second derivative (wrt all dynamic variables) of dynamic model equations, i.e. d(df/dyy0ex0)/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
    DYNAMIC = [Yss;
               vec(g1(oo.dr.order_var,:));
               vec(g2(oo.dr.order_var,:));
               vec(g3(oo.dr.order_var,:))]; %add steady state and put rows of g1 and g2 in DR order
    dDYNAMIC = [oo.dr.derivs.dYss;
                reshape(oo.dr.derivs.dg1(oo.dr.order_var,:,:),size(oo.dr.derivs.dg1,1)*size(oo.dr.derivs.dg1,2),size(oo.dr.derivs.dg1,3));  %reshape dg1 in DR order
                reshape(oo.dr.derivs.dg2(oo.dr.order_var,:),size(oo.dr.derivs.dg1,1)*size(oo.dr.derivs.dg1,2)^2,size(oo.dr.derivs.dg1,3));
                reshape(oo.dr.derivs.dg2(oo.dr.order_var,:),size(oo.dr.derivs.dg1,1)*size(oo.dr.derivs.dg1,2)^2,size(oo.dr.derivs.dg1,3))]; %reshape dg3 in DR order
    REDUCEDFORM = [Yss;
                   vec(oo.dr.ghx);
                   dyn_vech(oo.dr.ghu*Sigma_e*transpose(oo.dr.ghu));
                   vec(oo.dr.ghxx); vec(oo.dr.ghxu); vec(oo.dr.ghuu); vec(oo.dr.ghs2);
                   vec(oo.dr.ghxxx); vec(oo.dr.ghxxu); vec(oo.dr.ghxuu); vec(oo.dr.ghuuu); vec(oo.dr.ghxss); vec(oo.dr.ghuss)]; %in DR order
    dREDUCEDFORM = zeros(size(REDUCEDFORM,1)-endo_nbr, totparam_nbr);
    for j=1:totparam_nbr
        dREDUCEDFORM(:,j) = [vec(oo.dr.derivs.dghx(:,:,j));
                             dyn_vech(oo.dr.derivs.dOm(:,:,j));
                             vec(oo.dr.derivs.dghxx(:,:,j)); vec(oo.dr.derivs.dghxu(:,:,j)); vec(oo.dr.derivs.dghuu(:,:,j)); vec(oo.dr.derivs.dghs2(:,j))
                             vec(oo.dr.derivs.dghxxx(:,:,j)); vec(oo.dr.derivs.dghxxu(:,:,j)); vec(oo.dr.derivs.dghxuu(:,:,j)); vec(oo.dr.derivs.dghuuu(:,:,j)); vec(oo.dr.derivs.dghxss(:,:,j)); vec(oo.dr.derivs.dghuss(:,:,j))];
    end
    dREDUCEDFORM = [ [zeros(endo_nbr, stderrparam_nbr+corrparam_nbr) oo.dr.derivs.dYss]; dREDUCEDFORM ]; % add steady state
end

% Get (pruned) state space representation:
pruned = pruned_state_space_system(M, options, oo.dr, indvobs, nlags, useautocorr, 1);
MEAN  = pruned.E_y;
dMEAN = pruned.dE_y;
%storage for Jacobians used in dsge_likelihood.m for analytical Gradient and Hession of likelihood (only at order=1)
derivatives_info = struct();
if order == 1
    dT = zeros(endo_nbr,endo_nbr,totparam_nbr);
    dT(:,(nstatic+1):(nstatic+nspred),:) = oo.dr.derivs.dghx;
    derivatives_info.DT   = dT;
    derivatives_info.DOm  = oo.dr.derivs.dOm;
    derivatives_info.DYss = oo.dr.derivs.dYss;
end

%% Compute dMOMENTS
if ~no_identification_moments
    E_yy  = pruned.Var_y;  dE_yy  = pruned.dVar_y;
    if useautocorr        
        E_yyi = pruned.Corr_yi; dE_yyi = pruned.dCorr_yi;
    else        
        E_yyi = pruned.Var_yi;  dE_yyi = pruned.dVar_yi;
    end
    MOMENTS = [MEAN; dyn_vech(E_yy)];
    for i=1:nlags
        MOMENTS = [MOMENTS; vec(E_yyi(:,:,i))];
    end
    
    if kronflag == -1
        %numerical derivative of autocovariogram
        dMOMENTS = fjaco(str2func('identification_numerical_objective'), xparam1, 1, estim_params, M, oo, options, indpmodel, indpstderr, indpcorr, indvobs, useautocorr, nlags, grid_nbr); %[outputflag=1]
        dMOMENTS = [dMEAN; dMOMENTS]; %add Jacobian of steady state of VAROBS variables
    else
        dMOMENTS = zeros(obs_nbr + obs_nbr*(obs_nbr+1)/2 + nlags*obs_nbr^2 , totparam_nbr);
        dMOMENTS(1:obs_nbr,:) = dMEAN; %add Jacobian of first moments of VAROBS variables
        for jp = 1:totparam_nbr
            dMOMENTS(obs_nbr+1 : obs_nbr+obs_nbr*(obs_nbr+1)/2 , jp) = dyn_vech(dE_yy(:,:,jp));
            for i = 1:nlags
                dMOMENTS(obs_nbr + obs_nbr*(obs_nbr+1)/2 + (i-1)*obs_nbr^2 + 1 : obs_nbr + obs_nbr*(obs_nbr+1)/2 + i*obs_nbr^2, jp) = vec(dE_yyi(:,:,i,jp));
            end
        end
    end
else
    MOMENTS = [];
    dMOMENTS = [];
end

%% Compute dSPECTRUM
%Note that our state space system for computing the spectrum is the following:
% zhat = A*zhat(-1) + B*xi, where zhat = z - E(z)
% yhat = C*zhat(-1) + D*xi, where yhat = y - E(y)
if ~no_identification_spectrum
    %Some info on the spectral density: Dynare's state space system is given for states (z_{t} = A*z_{t-1} + B*u_{t}) and observables (y_{t} = C*z_{t-1} + D*u_{t})
        %The spectral density for y_{t} can be computed using different methods, which are numerically equivalent
        %See the following code example for the different ways;
%             freqs = 2*pi*(-(grid_nbr/2):1:(grid_nbr/2))'/grid_nbr; %divides the interval [-pi;pi] into ngrid+1 points
%             tpos  = exp( sqrt(-1)*freqs); %positive Fourier frequencies
%             tneg  = exp(-sqrt(-1)*freqs); %negative Fourier frequencies
%             IA = eye(size(A,1));
%             IE = eye(exo_nbr);
%             mathp_col1 = NaN(length(freqs),obs_nbr^2); mathp_col2 = mathp_col1; mathp_col3 = mathp_col1; mathp_col4 = mathp_col1;
%             for ig = 1:length(freqs)
%                 %method 1: as in UnivariateSpectralDensity.m
%                 f_omega  =(1/(2*pi))*( [(IA-A*tneg(ig))\B;IE]*Sigma_e*[B'/(IA-A'*tpos(ig)) IE]); % state variables
%                 g_omega1 = [C*tneg(ig) D]*f_omega*[C'*tpos(ig); D']; % selected variables
%                 %method 2: as in UnivariateSpectralDensity.m but simplified algebraically
%                 g_omega2 = (1/(2*pi))*(  C*((tpos(ig)*IA-A)\(B*Sigma_e*B'))*((tneg(ig)*IA-A')\(C'))  +  D*Sigma_e*B'*((tneg(ig)*IA-A')\(C'))  +   C* ((tpos(ig)*IA-A)\(B*Sigma_e*D'))  +  D*Sigma_e*D'  );
%                 %method 3: use transfer function note that ' is the complex conjugate transpose operator i.e. transpose(ffneg')==ffpos
%                 Transferfct = D+C*((tpos(ig)*IA-A)\B);
%                 g_omega3 = (1/(2*pi))*(Transferfct*Sigma_e*Transferfct');
%                 %method 4: kronecker products
%                 g_omega4 = (1/(2*pi))*( kron( D+C*((tneg(ig)^(-1)*IA-A)\B) , D+C*((tneg(ig)*IA-A)\B) )*Sigma_e(:));
%                 % store as matrix row
%                 mathp_col1(ig,:) = (g_omega1(:))'; mathp_col2(ig,:) = (g_omega2(:))'; mathp_col3(ig,:) = (g_omega3(:))'; mathp_col4(ig,:) = g_omega4;
%             end
%         disp([norm(mathp_col1 - mathp_col2); norm(mathp_col1 - mathp_col3); norm(mathp_col1 - mathp_col4); norm(mathp_col2 - mathp_col3); norm(mathp_col2 - mathp_col4); norm(mathp_col3 - mathp_col4);])
        %In the following we focus on method 3
    %Symmetry:
    %  Note that for the compuation of the G matrix we focus only on positive Fourier frequencies due to symmetry of the real part of the spectral density and, hence, the G matrix (which is real by construction).
    %  E.g. if grid_nbr=4, then we subdivide the intervall [-pi;pi] into [-3.1416;-1.5708;0;1.5708;3.1416], but focus only on [0;1.5708;3.1416] for the computation of the G matrix, 
    %  keeping in mind that the frequencies [1.5708;3.1416] need to be added twice, whereas the 0 frequency is only added once.    
    freqs = (0 : pi/(grid_nbr/2):pi); % we focus only on positive frequencies
    tpos  = exp( sqrt(-1)*freqs); %positive Fourier frequencies
    tneg  = exp(-sqrt(-1)*freqs); %negative Fourier frequencies
    IA = eye(size(pruned.A,1));
    if kronflag == -1
        %numerical derivative of spectral density
        dOmega_tmp = fjaco(str2func('identification_numerical_objective'), xparam1, 2, estim_params, M, oo, options, indpmodel, indpstderr, indpcorr, indvobs, useautocorr, nlags, grid_nbr); %[outputflag=2]
        kk = 0;
        for ig = 1:length(freqs)
            kk = kk+1;
            dOmega = dOmega_tmp(1 + (kk-1)*obs_nbr^2 : kk*obs_nbr^2,:);
            if ig == 1 % add zero frequency once
                dSPECTRUM_NO_MEAN = dOmega'*dOmega;
            else % due to symmetry to negative frequencies we can add positive frequencies twice
                dSPECTRUM_NO_MEAN = dSPECTRUM_NO_MEAN + 2*(dOmega'*dOmega);
            end
        end
    elseif kronflag == 1
        %use Kronecker products
        dA = reshape(pruned.dA,size(pruned.dA,1)*size(pruned.dA,2),size(pruned.dA,3));
        dB = reshape(pruned.dB,size(pruned.dB,1)*size(pruned.dB,2),size(pruned.dB,3));
        dC = reshape(pruned.dC,size(pruned.dC,1)*size(pruned.dC,2),size(pruned.dC,3));
        dD = reshape(pruned.dD,size(pruned.dD,1)*size(pruned.dD,2),size(pruned.dD,3));
        dVarinov = reshape(pruned.dVarinov,size(pruned.dVarinov,1)*size(pruned.dVarinov,2),size(pruned.dVarinov,3));
        K_obs_exo = commutation(obs_nbr,size(pruned.Varinov,1));
        for ig=1:length(freqs)
            z = tneg(ig);
            zIminusA =  (z*IA - pruned.A);
            zIminusAinv = zIminusA\IA;
            Transferfct = pruned.D + pruned.C*zIminusAinv*pruned.B; % Transfer function
            dzIminusA = -dA;
            dzIminusAinv = kron(-(transpose(zIminusA)\IA),zIminusAinv)*dzIminusA; %this takes long
            dTransferfct = dD + DerivABCD(pruned.C,dC,zIminusAinv,dzIminusAinv,pruned.B,dB); %this takes long
            dTransferfct_conjt = K_obs_exo*conj(dTransferfct);
            dOmega = (1/(2*pi))*DerivABCD(Transferfct,dTransferfct,pruned.Varinov,dVarinov,Transferfct',dTransferfct_conjt); %also long
            if ig == 1 % add zero frequency once
                dSPECTRUM_NO_MEAN = dOmega'*dOmega;
            else  % due to symmetry to negative frequencies we can add positive frequencies twice
                dSPECTRUM_NO_MEAN = dSPECTRUM_NO_MEAN + 2*(dOmega'*dOmega);
            end
        end
    elseif (kronflag==0) || (kronflag==-2)
        for ig = 1:length(freqs)
            IzminusA =  tpos(ig)*IA - pruned.A;
            invIzminusA = IzminusA\eye(size(pruned.A,1));
            Transferfct = pruned.D + pruned.C*invIzminusA*pruned.B;
            dOmega = zeros(obs_nbr^2,totparam_nbr);
            for j = 1:totparam_nbr
                if j <= stderrparam_nbr+corrparam_nbr %stderr and corr parameters: only dSig is nonzero
                    dOmega_tmp = Transferfct*pruned.dVarinov(:,:,j)*Transferfct';
                else %model parameters
                    dinvIzminusA = -invIzminusA*(-pruned.dA(:,:,j))*invIzminusA;
                    dTransferfct = pruned.dD(:,:,j) + pruned.dC(:,:,j)*invIzminusA*pruned.B + pruned.C*dinvIzminusA*pruned.B + pruned.C*invIzminusA*pruned.dB(:,:,j);
                    dOmega_tmp = dTransferfct*pruned.Varinov*Transferfct' + Transferfct*pruned.dVarinov(:,:,j)*Transferfct' + Transferfct*pruned.Varinov*dTransferfct';
                end
                dOmega(:,j) = (1/(2*pi))*dOmega_tmp(:);
            end
            if ig == 1 % add zero frequency once
                dSPECTRUM_NO_MEAN = dOmega'*dOmega;
            else % due to symmetry to negative frequencies we can add positive frequencies twice
                dSPECTRUM_NO_MEAN = dSPECTRUM_NO_MEAN + 2*(dOmega'*dOmega);
            end
        end
    end
    % Normalize Matrix and add steady state Jacobian, note that G is real and symmetric by construction
    dSPECTRUM_NO_MEAN = real(2*pi*dSPECTRUM_NO_MEAN./(2*length(freqs)-1));
    dSPECTRUM         = dSPECTRUM_NO_MEAN + dMEAN'*dMEAN;
else
    dSPECTRUM_NO_MEAN = [];
    dSPECTRUM = [];
end

%% Compute dMINIMAL
if ~no_identification_minimal
    if obs_nbr < exo_nbr
        % Check whether criteria can be used
        warning_KomunjerNg = 'WARNING: Komunjer and Ng (2011) failed:\n';
        warning_KomunjerNg = [warning_KomunjerNg '       There are more shocks and measurement errors than observables, this is not implemented (yet).\n'];
        warning_KomunjerNg = [warning_KomunjerNg '       Skip identification analysis based on minimal state space system.\n'];
        fprintf(warning_KomunjerNg);        
        dMINIMAL = [];        
    else
        % Derive and check minimal state vector of first-order
        SYS.A  = oo.dr.ghx(pruned.indx,:);
        SYS.dA = oo.dr.derivs.dghx(pruned.indx,:,:);
        SYS.B  = oo.dr.ghu(pruned.indx,:);
        SYS.dB = oo.dr.derivs.dghu(pruned.indx,:,:);
        SYS.C  = oo.dr.ghx(pruned.indy,:);
        SYS.dC = oo.dr.derivs.dghx(pruned.indy,:,:);
        SYS.D  = oo.dr.ghu(pruned.indy,:);
        SYS.dD = oo.dr.derivs.dghu(pruned.indy,:,:);
        [CheckCO,minnx,SYS] = get_minimal_state_representation(SYS,1);
        
        if CheckCO == 0
            warning_KomunjerNg = 'WARNING: Komunjer and Ng (2011) failed:\n';
            warning_KomunjerNg = [warning_KomunjerNg '         Conditions for minimality are not fullfilled:\n'];
            warning_KomunjerNg = [warning_KomunjerNg '         Skip identification analysis based on minimal state space system.\n'];
            fprintf(warning_KomunjerNg); %use sprintf to have line breaks            
            dMINIMAL = [];
        else
            minA = SYS.A; dminA = SYS.dA;
            minB = SYS.B; dminB = SYS.dB;
            minC = SYS.C; dminC = SYS.dC;
            minD = SYS.D; dminD = SYS.dD;
            %reshape into Magnus-Neudecker Jacobians, i.e. dvec(X)/dp
            dminA = reshape(dminA,size(dminA,1)*size(dminA,2),size(dminA,3));
            dminB = reshape(dminB,size(dminB,1)*size(dminB,2),size(dminB,3));
            dminC = reshape(dminC,size(dminC,1)*size(dminC,2),size(dminC,3));
            dminD = reshape(dminD,size(dminD,1)*size(dminD,2),size(dminD,3));
            dvechSig = reshape(oo.dr.derivs.dSigma_e,exo_nbr*exo_nbr,totparam_nbr);
            indvechSig= find(tril(ones(exo_nbr,exo_nbr)));
            dvechSig = dvechSig(indvechSig,:);
            Inx = eye(minnx);
            Inu = eye(exo_nbr);
            [~,Enu] = duplication(exo_nbr);
            KomunjerNg_DL = [dminA; dminB; dminC; dminD; dvechSig];
            KomunjerNg_DT = [kron(transpose(minA),Inx) - kron(Inx,minA);
                             kron(transpose(minB),Inx);
                             -1*kron(Inx,minC);
                             zeros(obs_nbr*exo_nbr,minnx^2);
                             zeros(exo_nbr*(exo_nbr+1)/2,minnx^2)];
            KomunjerNg_DU = [zeros(minnx^2,exo_nbr^2);
                             kron(Inu,minB);
                             zeros(obs_nbr*minnx,exo_nbr^2);
                             kron(Inu,minD);
                             -2*Enu*kron(Sigma_e,Inu)];
            dMINIMAL = full([KomunjerNg_DL KomunjerNg_DT KomunjerNg_DU]);
            %add Jacobian of steady state (here we also allow for higher-order perturbation, i.e. only the mean provides additional restrictions
            dMINIMAL =  [dMEAN zeros(obs_nbr,minnx^2+exo_nbr^2); dMINIMAL];
        end
    end
else
    dMINIMAL = [];
end


function [dX] = DerivABCD(X1,dX1,X2,dX2,X3,dX3,X4,dX4)
% function [dX] = DerivABCD(X1,dX1,X2,dX2,X3,dX3,X4,dX4)
% -------------------------------------------------------------------------
% Derivative of X(p)=X1(p)*X2(p)*X3(p)*X4(p) w.r.t to p
% See Magnus and Neudecker (1999), p. 175
% -------------------------------------------------------------------------
% Inputs: Matrices X1,X2,X3,X4, and the corresponding derivatives w.r.t p.
% Output: Derivative of product of X1*X2*X3*X4 w.r.t. p
% =========================================================================
nparam = size(dX1,2);
%   If one or more matrices are left out, they are set to zero
if nargin == 4
    X3=speye(size(X2,2)); dX3=spalloc(numel(X3),nparam,0);
    X4=speye(size(X3,2)); dX4=spalloc(numel(X4),nparam,0);
elseif nargin == 6
    X4=speye(size(X3,2)); dX4=spalloc(numel(X4),nparam,0);
end

dX = kron(transpose(X4)*transpose(X3)*transpose(X2),speye(size(X1,1)))*dX1...
   + kron(transpose(X4)*transpose(X3),X1)*dX2...
   + kron(transpose(X4),X1*X2)*dX3...
   + kron(speye(size(X4,2)),X1*X2*X3)*dX4;
end %DerivABCD end

end%main function end