1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
|
function [MEAN, dMEAN, REDUCEDFORM, dREDUCEDFORM, DYNAMIC, dDYNAMIC, MOMENTS, dMOMENTS, dSPECTRUM, dSPECTRUM_NO_MEAN, dMINIMAL, derivatives_info] = get_identification_jacobians(estim_params, M, oo, options, options_ident, indpmodel, indpstderr, indpcorr, indvobs)
% function [MEAN, dMEAN, REDUCEDFORM, dREDUCEDFORM, DYNAMIC, dDYNAMIC, MOMENTS, dMOMENTS, dSPECTRUM, dMINIMAL, derivatives_info] = get_identification_jacobians(estim_params, M, oo, options, options_ident, indpmodel, indpstderr, indpcorr, indvobs)
% previously getJJ.m in Dynare 4.5
% Sets up the Jacobians needed for identification analysis
% =========================================================================
% INPUTS
% estim_params: [structure] storing the estimation information
% M: [structure] storing the model information
% oo: [structure] storing the reduced-form solution results
% options: [structure] storing the options
% options_ident: [structure] storing the options for identification
% indpmodel: [modparam_nbr by 1] index of estimated parameters in M_.params;
% corresponds to model parameters (no stderr and no corr)
% in estimated_params block; if estimated_params block is
% not available, then all model parameters are selected
% indpstderr: [stderrparam_nbr by 1] index of estimated standard errors,
% i.e. for all exogenous variables where "stderr" is given
% in the estimated_params block; if estimated_params block
% is not available, then all stderr parameters are selected
% indpcorr: [corrparam_nbr by 2] matrix of estimated correlations,
% i.e. for all exogenous variables where "corr" is given
% in the estimated_params block; if estimated_params block
% is not available, then no corr parameters are selected
% indvobs: [obs_nbr by 1] index of observed (VAROBS) variables
% -------------------------------------------------------------------------
% OUTPUTS
%
% MEAN [endo_nbr by 1], in DR order. Expectation of all model variables
% * order==1: corresponds to steady state
% * order==2|3: corresponds to mean computed from pruned state space system (as in Andreasen, Fernandez-Villaverde, Rubio-Ramirez, 2018)
% dMEAN [endo_nbr by totparam_nbr], in DR Order, Jacobian (wrt all params) of MEAN
%
% REDUCEDFORM [rowredform_nbr by 1] in DR order. Steady state and reduced-form model solution matrices for all model variables
% * order==1: [Yss' vec(ghx)' vech(ghu*Sigma_e*ghu')']',
% where rowredform_nbr = endo_nbr*(1+nspred+(endo_nbr+1)/2)
% * order==2: [Yss' vec(ghx)' vech(ghu*Sigma_e*ghu')' vec(ghxx)' vec(ghxu)' vec(ghuu)' vec(ghs2)']',
% where rowredform_nbr = endo_nbr*(1+nspred+(endo_nbr+1)/2+nspred^2+nspred*exo_nr+exo_nbr^2+1)
% * order==3: [Yss' vec(ghx)' vech(ghu*Sigma_e*ghu')' vec(ghxx)' vec(ghxu)' vec(ghuu)' vec(ghs2)' vec(ghxxx)' vec(ghxxu)' vec(ghxuu)' vec(ghuuu)' vec(ghxss)' vec(ghuss)']',
% where rowredform_nbr = endo_nbr*(1+nspred+(endo_nbr+1)/2+nspred^2+nspred*exo_nr+exo_nbr^2+1+nspred^3+nspred^2*exo_nbr+nspred*exo_nbr^2+exo_nbr^3+nspred+exo_nbr)
% dREDUCEDFORM: [rowredform_nbr by totparam_nbr] in DR order, Jacobian (wrt all params) of REDUCEDFORM
% * order==1: corresponds to Iskrev (2010)'s J_2 matrix
% * order==2: corresponds to Mutschler (2015)'s J matrix
%
% DYNAMIC [rowdyn_nbr by 1] in declaration order. Steady state and dynamic model derivatives for all model variables
% * order==1: [ys' vec(g1)']', rowdyn_nbr=endo_nbr+length(g1)
% * order==2: [ys' vec(g1)' vec(g2)']', rowdyn_nbr=endo_nbr+length(g1)+length(g2)
% * order==3: [ys' vec(g1)' vec(g2)' vec(g3)']', rowdyn_nbr=endo_nbr+length(g1)+length(g2)+length(g3)
% dDYNAMIC [rowdyn_nbr by modparam_nbr] in declaration order. Jacobian (wrt model parameters) of DYNAMIC
% * order==1: corresponds to Ratto and Iskrev (2011)'s J_\Gamma matrix (or LRE)
%
% MOMENTS: [obs_nbr+obs_nbr*(obs_nbr+1)/2+nlags*obs_nbr^2 by 1] in DR order. First two theoretical moments for VAROBS variables, i.e.
% [E[varobs]' vech(E[varobs*varobs'])' vec(E[varobs*varobs(-1)'])' ... vec(E[varobs*varobs(-nlag)'])']
% dMOMENTS: [obs_nbr+obs_nbr*(obs_nbr+1)/2+nlags*obs_nbr^2 by totparam_nbr] in DR order. Jacobian (wrt all params) of MOMENTS
% * order==1: corresponds to Iskrev (2010)'s J matrix
% * order==2: corresponds to Mutschler (2015)'s \bar{M}_2 matrix, i.e. theoretical moments from the pruned state space system
%
% dSPECTRUM: [totparam_nbr by totparam_nbr] in DR order. Gram matrix of Jacobian (wrt all params) of mean and of spectral density for VAROBS variables, where
% spectral density at frequency w: f(w) = (2*pi)^(-1)*H(exp(-i*w))*E[Inov*Inov']*ctranspose(H(exp(-i*w)) with H being the Transfer function
% dSPECTRUM = dMEAN*dMEAN + int_{-\pi}^\pi transpose(df(w)/dp')*(df(w)/dp') dw
% * order==1: corresponds to Qu and Tkachenko (2012)'s G matrix, where Inov and H are computed from linear state space system
% * order==2: corresponds to Mutschler (2015)'s G_2 matrix, where Inov and H are computed from second-order pruned state space system
% * order==3: Inov and H are computed from third-order pruned state space system
%
% dSPECTRUM_NO_MEAN:[totparam_nbr by totparam_nbr] in DR order. Gram matrix of Jacobian (wrt all params) of spectral density for VAROBS variables, where
% spectral density at frequency w: f(w) = (2*pi)^(-1)*H(exp(-i*w))*E[Inov*Inov']*ctranspose(H(exp(-i*w)) with H being the Transfer function
% dSPECTRUM = int_{-\pi}^\pi transpose(df(w)/dp')*(df(w)/dp') dw
% * order==1: corresponds to Qu and Tkachenko (2012)'s G matrix, where Inov and H are computed from linear state space system
% * order==2: corresponds to Mutschler (2015)'s G_2 matrix, where Inov and H are computed from second-order pruned state space system
% * order==3: Inov and H are computed from third-order pruned state space system
%
% dMINIMAL: [obs_nbr+minx_nbr^2+minx_nbr*exo_nbr+obs_nbr*minx_nbr+obs_nbr*exo_nbr+exo_nbr*(exo_nbr+1)/2 by totparam_nbr+minx_nbr^2+exo_nbr^2]
% Jacobian (wrt all params, and similarity_transformation_matrices (T and U)) of observational equivalent minimal ABCD system,
% corresponds to Komunjer and Ng (2011)'s Deltabar matrix, where
% MINIMAL = [vec(E[varobs]' vec(minA)' vec(minB)' vec(minC)' vec(minD)' vech(Sigma_e)']'
% minA, minB, minC and minD is the minimal state space system computed in get_minimal_state_representation
% * order==1: E[varobs] is equal to steady state
% * order==2|3: E[varobs] is computed from the pruned state space system (second|third-order accurate), as noted in section 5 of Komunjer and Ng (2011)
%
% derivatives_info [structure] for use in dsge_likelihood to compute Hessian analytically. Only used at order==1.
% Contains dA, dB, and d(B*Sigma_e*B'), where A and B are Kalman filter transition matrice.
%
% -------------------------------------------------------------------------
% This function is called by
% * identification_analysis.m
% -------------------------------------------------------------------------
% This function calls
% * commutation
% * get_minimal_state_representation
% * duplication
% * dyn_vech
% * fjaco
% * get_perturbation_params_derivs (previously getH)
% * get_all_parameters
% * identification_numerical_objective (previously thet2tau)
% * pruned_state_space_system
% * vec
% =========================================================================
% Copyright (C) 2010-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% =========================================================================
%get fields from options_ident
no_identification_moments = options_ident.no_identification_moments;
no_identification_minimal = options_ident.no_identification_minimal;
no_identification_spectrum = options_ident.no_identification_spectrum;
order = options_ident.order;
nlags = options_ident.ar;
useautocorr = options_ident.useautocorr;
grid_nbr = options_ident.grid_nbr;
kronflag = options_ident.analytic_derivation_mode;
% get fields from M
endo_nbr = M.endo_nbr;
exo_nbr = M.exo_nbr;
fname = M.fname;
lead_lag_incidence = M.lead_lag_incidence;
nspred = M.nspred;
nstatic = M.nstatic;
params = M.params;
Sigma_e = M.Sigma_e;
stderr_e = sqrt(diag(Sigma_e));
% set all selected values: stderr and corr come first, then model parameters
xparam1 = get_all_parameters(estim_params, M); %try using estimated_params block
if isempty(xparam1)
%if there is no estimated_params block, consider all stderr and all model parameters, but no corr parameters
xparam1 = [stderr_e', params'];
end
%get numbers/lengths of vectors
modparam_nbr = length(indpmodel);
stderrparam_nbr = length(indpstderr);
corrparam_nbr = size(indpcorr,1);
totparam_nbr = stderrparam_nbr + corrparam_nbr + modparam_nbr;
obs_nbr = length(indvobs);
d2flag = 0; % do not compute second parameter derivatives
% Get Jacobians (wrt selected params) of steady state, dynamic model derivatives and perturbation solution matrices for all endogenous variables
oo.dr.derivs = get_perturbation_params_derivs(M, options, estim_params, oo, indpmodel, indpstderr, indpcorr, d2flag);
[I,~] = find(lead_lag_incidence'); %I is used to select nonzero columns of the Jacobian of endogenous variables in dynamic model files
yy0 = oo.dr.ys(I); %steady state of dynamic (endogenous and auxiliary variables) in lead_lag_incidence order
Yss = oo.dr.ys(oo.dr.order_var); % steady state in DR order
if order == 1
[~, g1 ] = feval([fname,'.dynamic'], yy0, oo.exo_steady_state', params, oo.dr.ys, 1);
%g1 is [endo_nbr by yy0ex0_nbr first derivative (wrt all dynamic variables) of dynamic model equations, i.e. df/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
DYNAMIC = [Yss;
vec(g1(oo.dr.order_var,:))]; %add steady state and put rows of g1 in DR order
dDYNAMIC = [oo.dr.derivs.dYss;
reshape(oo.dr.derivs.dg1(oo.dr.order_var,:,:),size(oo.dr.derivs.dg1,1)*size(oo.dr.derivs.dg1,2),size(oo.dr.derivs.dg1,3)) ]; %reshape dg1 in DR order and add steady state
REDUCEDFORM = [Yss;
vec(oo.dr.ghx);
dyn_vech(oo.dr.ghu*Sigma_e*transpose(oo.dr.ghu))]; %in DR order
dREDUCEDFORM = zeros(endo_nbr*nspred+endo_nbr*(endo_nbr+1)/2, totparam_nbr);
for j=1:totparam_nbr
dREDUCEDFORM(:,j) = [vec(oo.dr.derivs.dghx(:,:,j));
dyn_vech(oo.dr.derivs.dOm(:,:,j))];
end
dREDUCEDFORM = [ [zeros(endo_nbr, stderrparam_nbr+corrparam_nbr) oo.dr.derivs.dYss]; dREDUCEDFORM ]; % add steady state
elseif order == 2
[~, g1, g2 ] = feval([fname,'.dynamic'], yy0, oo.exo_steady_state', params, oo.dr.ys, 1);
%g1 is [endo_nbr by yy0ex0_nbr first derivative (wrt all dynamic variables) of dynamic model equations, i.e. df/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
%g2 is [endo_nbr by yy0ex0_nbr^2] second derivative (wrt all dynamic variables) of dynamic model equations, i.e. d(df/dyy0ex0)/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
DYNAMIC = [Yss;
vec(g1(oo.dr.order_var,:));
vec(g2(oo.dr.order_var,:))]; %add steady state and put rows of g1 and g2 in DR order
dDYNAMIC = [oo.dr.derivs.dYss;
reshape(oo.dr.derivs.dg1(oo.dr.order_var,:,:),size(oo.dr.derivs.dg1,1)*size(oo.dr.derivs.dg1,2),size(oo.dr.derivs.dg1,3)); %reshape dg1 in DR order
reshape(oo.dr.derivs.dg2(oo.dr.order_var,:),size(oo.dr.derivs.dg1,1)*size(oo.dr.derivs.dg1,2)^2,size(oo.dr.derivs.dg1,3))]; %reshape dg2 in DR order
REDUCEDFORM = [Yss;
vec(oo.dr.ghx);
dyn_vech(oo.dr.ghu*Sigma_e*transpose(oo.dr.ghu));
vec(oo.dr.ghxx);
vec(oo.dr.ghxu);
vec(oo.dr.ghuu);
vec(oo.dr.ghs2)]; %in DR order
dREDUCEDFORM = zeros(endo_nbr*nspred+endo_nbr*(endo_nbr+1)/2+endo_nbr*nspred^2+endo_nbr*nspred*exo_nbr+endo_nbr*exo_nbr^2+endo_nbr, totparam_nbr);
for j=1:totparam_nbr
dREDUCEDFORM(:,j) = [vec(oo.dr.derivs.dghx(:,:,j));
dyn_vech(oo.dr.derivs.dOm(:,:,j));
vec(oo.dr.derivs.dghxx(:,:,j));
vec(oo.dr.derivs.dghxu(:,:,j));
vec(oo.dr.derivs.dghuu(:,:,j));
vec(oo.dr.derivs.dghs2(:,j))];
end
dREDUCEDFORM = [ [zeros(endo_nbr, stderrparam_nbr+corrparam_nbr) oo.dr.derivs.dYss]; dREDUCEDFORM ]; % add steady state
elseif order == 3
[~, g1, g2, g3 ] = feval([fname,'.dynamic'], yy0, oo.exo_steady_state', params, oo.dr.ys, 1);
%g1 is [endo_nbr by yy0ex0_nbr first derivative (wrt all dynamic variables) of dynamic model equations, i.e. df/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
%g2 is [endo_nbr by yy0ex0_nbr^2] second derivative (wrt all dynamic variables) of dynamic model equations, i.e. d(df/dyy0ex0)/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
DYNAMIC = [Yss;
vec(g1(oo.dr.order_var,:));
vec(g2(oo.dr.order_var,:));
vec(g3(oo.dr.order_var,:))]; %add steady state and put rows of g1 and g2 in DR order
dDYNAMIC = [oo.dr.derivs.dYss;
reshape(oo.dr.derivs.dg1(oo.dr.order_var,:,:),size(oo.dr.derivs.dg1,1)*size(oo.dr.derivs.dg1,2),size(oo.dr.derivs.dg1,3)); %reshape dg1 in DR order
reshape(oo.dr.derivs.dg2(oo.dr.order_var,:),size(oo.dr.derivs.dg1,1)*size(oo.dr.derivs.dg1,2)^2,size(oo.dr.derivs.dg1,3));
reshape(oo.dr.derivs.dg2(oo.dr.order_var,:),size(oo.dr.derivs.dg1,1)*size(oo.dr.derivs.dg1,2)^2,size(oo.dr.derivs.dg1,3))]; %reshape dg3 in DR order
REDUCEDFORM = [Yss;
vec(oo.dr.ghx);
dyn_vech(oo.dr.ghu*Sigma_e*transpose(oo.dr.ghu));
vec(oo.dr.ghxx); vec(oo.dr.ghxu); vec(oo.dr.ghuu); vec(oo.dr.ghs2);
vec(oo.dr.ghxxx); vec(oo.dr.ghxxu); vec(oo.dr.ghxuu); vec(oo.dr.ghuuu); vec(oo.dr.ghxss); vec(oo.dr.ghuss)]; %in DR order
dREDUCEDFORM = zeros(size(REDUCEDFORM,1)-endo_nbr, totparam_nbr);
for j=1:totparam_nbr
dREDUCEDFORM(:,j) = [vec(oo.dr.derivs.dghx(:,:,j));
dyn_vech(oo.dr.derivs.dOm(:,:,j));
vec(oo.dr.derivs.dghxx(:,:,j)); vec(oo.dr.derivs.dghxu(:,:,j)); vec(oo.dr.derivs.dghuu(:,:,j)); vec(oo.dr.derivs.dghs2(:,j))
vec(oo.dr.derivs.dghxxx(:,:,j)); vec(oo.dr.derivs.dghxxu(:,:,j)); vec(oo.dr.derivs.dghxuu(:,:,j)); vec(oo.dr.derivs.dghuuu(:,:,j)); vec(oo.dr.derivs.dghxss(:,:,j)); vec(oo.dr.derivs.dghuss(:,:,j))];
end
dREDUCEDFORM = [ [zeros(endo_nbr, stderrparam_nbr+corrparam_nbr) oo.dr.derivs.dYss]; dREDUCEDFORM ]; % add steady state
end
% Get (pruned) state space representation:
pruned = pruned_state_space_system(M, options, oo.dr, indvobs, nlags, useautocorr, 1);
MEAN = pruned.E_y;
dMEAN = pruned.dE_y;
%storage for Jacobians used in dsge_likelihood.m for analytical Gradient and Hession of likelihood (only at order=1)
derivatives_info = struct();
if order == 1
dT = zeros(endo_nbr,endo_nbr,totparam_nbr);
dT(:,(nstatic+1):(nstatic+nspred),:) = oo.dr.derivs.dghx;
derivatives_info.DT = dT;
derivatives_info.DOm = oo.dr.derivs.dOm;
derivatives_info.DYss = oo.dr.derivs.dYss;
end
%% Compute dMOMENTS
if ~no_identification_moments
E_yy = pruned.Var_y; dE_yy = pruned.dVar_y;
if useautocorr
E_yyi = pruned.Corr_yi; dE_yyi = pruned.dCorr_yi;
else
E_yyi = pruned.Var_yi; dE_yyi = pruned.dVar_yi;
end
MOMENTS = [MEAN; dyn_vech(E_yy)];
for i=1:nlags
MOMENTS = [MOMENTS; vec(E_yyi(:,:,i))];
end
if kronflag == -1
%numerical derivative of autocovariogram
dMOMENTS = fjaco(str2func('identification_numerical_objective'), xparam1, 1, estim_params, M, oo, options, indpmodel, indpstderr, indpcorr, indvobs, useautocorr, nlags, grid_nbr); %[outputflag=1]
dMOMENTS = [dMEAN; dMOMENTS]; %add Jacobian of steady state of VAROBS variables
else
dMOMENTS = zeros(obs_nbr + obs_nbr*(obs_nbr+1)/2 + nlags*obs_nbr^2 , totparam_nbr);
dMOMENTS(1:obs_nbr,:) = dMEAN; %add Jacobian of first moments of VAROBS variables
for jp = 1:totparam_nbr
dMOMENTS(obs_nbr+1 : obs_nbr+obs_nbr*(obs_nbr+1)/2 , jp) = dyn_vech(dE_yy(:,:,jp));
for i = 1:nlags
dMOMENTS(obs_nbr + obs_nbr*(obs_nbr+1)/2 + (i-1)*obs_nbr^2 + 1 : obs_nbr + obs_nbr*(obs_nbr+1)/2 + i*obs_nbr^2, jp) = vec(dE_yyi(:,:,i,jp));
end
end
end
else
MOMENTS = [];
dMOMENTS = [];
end
%% Compute dSPECTRUM
%Note that our state space system for computing the spectrum is the following:
% zhat = A*zhat(-1) + B*xi, where zhat = z - E(z)
% yhat = C*zhat(-1) + D*xi, where yhat = y - E(y)
if ~no_identification_spectrum
%Some info on the spectral density: Dynare's state space system is given for states (z_{t} = A*z_{t-1} + B*u_{t}) and observables (y_{t} = C*z_{t-1} + D*u_{t})
%The spectral density for y_{t} can be computed using different methods, which are numerically equivalent
%See the following code example for the different ways;
% freqs = 2*pi*(-(grid_nbr/2):1:(grid_nbr/2))'/grid_nbr; %divides the interval [-pi;pi] into ngrid+1 points
% tpos = exp( sqrt(-1)*freqs); %positive Fourier frequencies
% tneg = exp(-sqrt(-1)*freqs); %negative Fourier frequencies
% IA = eye(size(A,1));
% IE = eye(exo_nbr);
% mathp_col1 = NaN(length(freqs),obs_nbr^2); mathp_col2 = mathp_col1; mathp_col3 = mathp_col1; mathp_col4 = mathp_col1;
% for ig = 1:length(freqs)
% %method 1: as in UnivariateSpectralDensity.m
% f_omega =(1/(2*pi))*( [(IA-A*tneg(ig))\B;IE]*Sigma_e*[B'/(IA-A'*tpos(ig)) IE]); % state variables
% g_omega1 = [C*tneg(ig) D]*f_omega*[C'*tpos(ig); D']; % selected variables
% %method 2: as in UnivariateSpectralDensity.m but simplified algebraically
% g_omega2 = (1/(2*pi))*( C*((tpos(ig)*IA-A)\(B*Sigma_e*B'))*((tneg(ig)*IA-A')\(C')) + D*Sigma_e*B'*((tneg(ig)*IA-A')\(C')) + C* ((tpos(ig)*IA-A)\(B*Sigma_e*D')) + D*Sigma_e*D' );
% %method 3: use transfer function note that ' is the complex conjugate transpose operator i.e. transpose(ffneg')==ffpos
% Transferfct = D+C*((tpos(ig)*IA-A)\B);
% g_omega3 = (1/(2*pi))*(Transferfct*Sigma_e*Transferfct');
% %method 4: kronecker products
% g_omega4 = (1/(2*pi))*( kron( D+C*((tneg(ig)^(-1)*IA-A)\B) , D+C*((tneg(ig)*IA-A)\B) )*Sigma_e(:));
% % store as matrix row
% mathp_col1(ig,:) = (g_omega1(:))'; mathp_col2(ig,:) = (g_omega2(:))'; mathp_col3(ig,:) = (g_omega3(:))'; mathp_col4(ig,:) = g_omega4;
% end
% disp([norm(mathp_col1 - mathp_col2); norm(mathp_col1 - mathp_col3); norm(mathp_col1 - mathp_col4); norm(mathp_col2 - mathp_col3); norm(mathp_col2 - mathp_col4); norm(mathp_col3 - mathp_col4);])
%In the following we focus on method 3
%Symmetry:
% Note that for the compuation of the G matrix we focus only on positive Fourier frequencies due to symmetry of the real part of the spectral density and, hence, the G matrix (which is real by construction).
% E.g. if grid_nbr=4, then we subdivide the intervall [-pi;pi] into [-3.1416;-1.5708;0;1.5708;3.1416], but focus only on [0;1.5708;3.1416] for the computation of the G matrix,
% keeping in mind that the frequencies [1.5708;3.1416] need to be added twice, whereas the 0 frequency is only added once.
freqs = (0 : pi/(grid_nbr/2):pi); % we focus only on positive frequencies
tpos = exp( sqrt(-1)*freqs); %positive Fourier frequencies
tneg = exp(-sqrt(-1)*freqs); %negative Fourier frequencies
IA = eye(size(pruned.A,1));
if kronflag == -1
%numerical derivative of spectral density
dOmega_tmp = fjaco(str2func('identification_numerical_objective'), xparam1, 2, estim_params, M, oo, options, indpmodel, indpstderr, indpcorr, indvobs, useautocorr, nlags, grid_nbr); %[outputflag=2]
kk = 0;
for ig = 1:length(freqs)
kk = kk+1;
dOmega = dOmega_tmp(1 + (kk-1)*obs_nbr^2 : kk*obs_nbr^2,:);
if ig == 1 % add zero frequency once
dSPECTRUM_NO_MEAN = dOmega'*dOmega;
else % due to symmetry to negative frequencies we can add positive frequencies twice
dSPECTRUM_NO_MEAN = dSPECTRUM_NO_MEAN + 2*(dOmega'*dOmega);
end
end
elseif kronflag == 1
%use Kronecker products
dA = reshape(pruned.dA,size(pruned.dA,1)*size(pruned.dA,2),size(pruned.dA,3));
dB = reshape(pruned.dB,size(pruned.dB,1)*size(pruned.dB,2),size(pruned.dB,3));
dC = reshape(pruned.dC,size(pruned.dC,1)*size(pruned.dC,2),size(pruned.dC,3));
dD = reshape(pruned.dD,size(pruned.dD,1)*size(pruned.dD,2),size(pruned.dD,3));
dVarinov = reshape(pruned.dVarinov,size(pruned.dVarinov,1)*size(pruned.dVarinov,2),size(pruned.dVarinov,3));
K_obs_exo = commutation(obs_nbr,size(pruned.Varinov,1));
for ig=1:length(freqs)
z = tneg(ig);
zIminusA = (z*IA - pruned.A);
zIminusAinv = zIminusA\IA;
Transferfct = pruned.D + pruned.C*zIminusAinv*pruned.B; % Transfer function
dzIminusA = -dA;
dzIminusAinv = kron(-(transpose(zIminusA)\IA),zIminusAinv)*dzIminusA; %this takes long
dTransferfct = dD + DerivABCD(pruned.C,dC,zIminusAinv,dzIminusAinv,pruned.B,dB); %this takes long
dTransferfct_conjt = K_obs_exo*conj(dTransferfct);
dOmega = (1/(2*pi))*DerivABCD(Transferfct,dTransferfct,pruned.Varinov,dVarinov,Transferfct',dTransferfct_conjt); %also long
if ig == 1 % add zero frequency once
dSPECTRUM_NO_MEAN = dOmega'*dOmega;
else % due to symmetry to negative frequencies we can add positive frequencies twice
dSPECTRUM_NO_MEAN = dSPECTRUM_NO_MEAN + 2*(dOmega'*dOmega);
end
end
elseif (kronflag==0) || (kronflag==-2)
for ig = 1:length(freqs)
IzminusA = tpos(ig)*IA - pruned.A;
invIzminusA = IzminusA\eye(size(pruned.A,1));
Transferfct = pruned.D + pruned.C*invIzminusA*pruned.B;
dOmega = zeros(obs_nbr^2,totparam_nbr);
for j = 1:totparam_nbr
if j <= stderrparam_nbr+corrparam_nbr %stderr and corr parameters: only dSig is nonzero
dOmega_tmp = Transferfct*pruned.dVarinov(:,:,j)*Transferfct';
else %model parameters
dinvIzminusA = -invIzminusA*(-pruned.dA(:,:,j))*invIzminusA;
dTransferfct = pruned.dD(:,:,j) + pruned.dC(:,:,j)*invIzminusA*pruned.B + pruned.C*dinvIzminusA*pruned.B + pruned.C*invIzminusA*pruned.dB(:,:,j);
dOmega_tmp = dTransferfct*pruned.Varinov*Transferfct' + Transferfct*pruned.dVarinov(:,:,j)*Transferfct' + Transferfct*pruned.Varinov*dTransferfct';
end
dOmega(:,j) = (1/(2*pi))*dOmega_tmp(:);
end
if ig == 1 % add zero frequency once
dSPECTRUM_NO_MEAN = dOmega'*dOmega;
else % due to symmetry to negative frequencies we can add positive frequencies twice
dSPECTRUM_NO_MEAN = dSPECTRUM_NO_MEAN + 2*(dOmega'*dOmega);
end
end
end
% Normalize Matrix and add steady state Jacobian, note that G is real and symmetric by construction
dSPECTRUM_NO_MEAN = real(2*pi*dSPECTRUM_NO_MEAN./(2*length(freqs)-1));
dSPECTRUM = dSPECTRUM_NO_MEAN + dMEAN'*dMEAN;
else
dSPECTRUM_NO_MEAN = [];
dSPECTRUM = [];
end
%% Compute dMINIMAL
if ~no_identification_minimal
if obs_nbr < exo_nbr
% Check whether criteria can be used
warning_KomunjerNg = 'WARNING: Komunjer and Ng (2011) failed:\n';
warning_KomunjerNg = [warning_KomunjerNg ' There are more shocks and measurement errors than observables, this is not implemented (yet).\n'];
warning_KomunjerNg = [warning_KomunjerNg ' Skip identification analysis based on minimal state space system.\n'];
fprintf(warning_KomunjerNg);
dMINIMAL = [];
else
% Derive and check minimal state vector of first-order
SYS.A = oo.dr.ghx(pruned.indx,:);
SYS.dA = oo.dr.derivs.dghx(pruned.indx,:,:);
SYS.B = oo.dr.ghu(pruned.indx,:);
SYS.dB = oo.dr.derivs.dghu(pruned.indx,:,:);
SYS.C = oo.dr.ghx(pruned.indy,:);
SYS.dC = oo.dr.derivs.dghx(pruned.indy,:,:);
SYS.D = oo.dr.ghu(pruned.indy,:);
SYS.dD = oo.dr.derivs.dghu(pruned.indy,:,:);
[CheckCO,minnx,SYS] = get_minimal_state_representation(SYS,1);
if CheckCO == 0
warning_KomunjerNg = 'WARNING: Komunjer and Ng (2011) failed:\n';
warning_KomunjerNg = [warning_KomunjerNg ' Conditions for minimality are not fullfilled:\n'];
warning_KomunjerNg = [warning_KomunjerNg ' Skip identification analysis based on minimal state space system.\n'];
fprintf(warning_KomunjerNg); %use sprintf to have line breaks
dMINIMAL = [];
else
minA = SYS.A; dminA = SYS.dA;
minB = SYS.B; dminB = SYS.dB;
minC = SYS.C; dminC = SYS.dC;
minD = SYS.D; dminD = SYS.dD;
%reshape into Magnus-Neudecker Jacobians, i.e. dvec(X)/dp
dminA = reshape(dminA,size(dminA,1)*size(dminA,2),size(dminA,3));
dminB = reshape(dminB,size(dminB,1)*size(dminB,2),size(dminB,3));
dminC = reshape(dminC,size(dminC,1)*size(dminC,2),size(dminC,3));
dminD = reshape(dminD,size(dminD,1)*size(dminD,2),size(dminD,3));
dvechSig = reshape(oo.dr.derivs.dSigma_e,exo_nbr*exo_nbr,totparam_nbr);
indvechSig= find(tril(ones(exo_nbr,exo_nbr)));
dvechSig = dvechSig(indvechSig,:);
Inx = eye(minnx);
Inu = eye(exo_nbr);
[~,Enu] = duplication(exo_nbr);
KomunjerNg_DL = [dminA; dminB; dminC; dminD; dvechSig];
KomunjerNg_DT = [kron(transpose(minA),Inx) - kron(Inx,minA);
kron(transpose(minB),Inx);
-1*kron(Inx,minC);
zeros(obs_nbr*exo_nbr,minnx^2);
zeros(exo_nbr*(exo_nbr+1)/2,minnx^2)];
KomunjerNg_DU = [zeros(minnx^2,exo_nbr^2);
kron(Inu,minB);
zeros(obs_nbr*minnx,exo_nbr^2);
kron(Inu,minD);
-2*Enu*kron(Sigma_e,Inu)];
dMINIMAL = full([KomunjerNg_DL KomunjerNg_DT KomunjerNg_DU]);
%add Jacobian of steady state (here we also allow for higher-order perturbation, i.e. only the mean provides additional restrictions
dMINIMAL = [dMEAN zeros(obs_nbr,minnx^2+exo_nbr^2); dMINIMAL];
end
end
else
dMINIMAL = [];
end
function [dX] = DerivABCD(X1,dX1,X2,dX2,X3,dX3,X4,dX4)
% function [dX] = DerivABCD(X1,dX1,X2,dX2,X3,dX3,X4,dX4)
% -------------------------------------------------------------------------
% Derivative of X(p)=X1(p)*X2(p)*X3(p)*X4(p) w.r.t to p
% See Magnus and Neudecker (1999), p. 175
% -------------------------------------------------------------------------
% Inputs: Matrices X1,X2,X3,X4, and the corresponding derivatives w.r.t p.
% Output: Derivative of product of X1*X2*X3*X4 w.r.t. p
% =========================================================================
nparam = size(dX1,2);
% If one or more matrices are left out, they are set to zero
if nargin == 4
X3=speye(size(X2,2)); dX3=spalloc(numel(X3),nparam,0);
X4=speye(size(X3,2)); dX4=spalloc(numel(X4),nparam,0);
elseif nargin == 6
X4=speye(size(X3,2)); dX4=spalloc(numel(X4),nparam,0);
end
dX = kron(transpose(X4)*transpose(X3)*transpose(X2),speye(size(X1,1)))*dX1...
+ kron(transpose(X4)*transpose(X3),X1)*dX2...
+ kron(transpose(X4),X1*X2)*dX3...
+ kron(speye(size(X4,2)),X1*X2*X3)*dX4;
end %DerivABCD end
end%main function end
|