File: get_minimal_state_representation.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (288 lines) | stat: -rw-r--r-- 11,439 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
function [CheckCO,minns,minSYS] = get_minimal_state_representation(SYS, derivs_flag)
% Derives and checks the minimal state representation
% Let x = A*x(-1) + B*u  and  y = C*x(-1) + D*u be a linear state space
% system, then this function computes the following representation
%     xmin = minA*xmin(-1) + minB*u  and  and  y=minC*xmin(-1) + minD*u
%
% -------------------------------------------------------------------------
% INPUTS
% SYS           [structure]
%     with the following necessary fields:
%     A:        [nspred by nspred] in DR order
%                 Transition matrix for all state variables
%     B:        [nspred by exo_nbr] in DR order
%                 Transition matrix mapping shocks today to states today
%     C:        [varobs_nbr by nspred] in DR order
%                 Measurement matrix linking control/observable variables to states
%     D:        [varobs_nbr by exo_nbr] in DR order
%                 Measurement matrix mapping shocks today to controls/observables today
%     and optional fields:
%     dA:       [nspred by nspred by totparam_nbr] in DR order
%                 Jacobian (wrt to all parameters) of transition matrix A
%     dB:       [nspred by exo_nbr by totparam_nbr] in DR order
%                 Jacobian (wrt to all parameters) of transition matrix B
%     dC:       [varobs_nbr by nspred by totparam_nbr] in DR order
%                 Jacobian (wrt to all parameters) of measurement matrix C
%     dD:       [varobs_nbr by exo_nbr by totparam_nbr] in DR order
%                 Jacobian (wrt to all parameters) of measurement matrix D
% derivs_flag   [scalar]
%                 (optional) indicator whether to output parameter derivatives
% -------------------------------------------------------------------------
% OUTPUTS
%   CheckCO:    [scalar]
%                 equals to 1 if minimal state representation is found
%   minns:      [scalar]
%                 length of minimal state vector
%   SYS         [structure]
%               with the following fields:
%     minA:     [minns by minns] in DR-order
%                 transition matrix A for evolution of minimal state vector
%     minB:     [minns by exo_nbr] in DR-order
%                 transition matrix B for evolution of minimal state vector
%     minC:     [varobs_nbr by minns] in DR-order
%                 measurement matrix C for evolution of controls, depending on minimal state vector only
%     minD:     [varobs_nbr by minns] in DR-order
%                 measurement matrix D for evolution of controls, depending on minimal state vector only
%     dminA:    [minns by minns by totparam_nbr] in DR order
%                 Jacobian (wrt to all parameters) of transition matrix minA
%     dminB:    [minns by exo_nbr by totparam_nbr] in DR order
%                 Jacobian (wrt to all parameters) of transition matrix minB
%     dminC:    [varobs_nbr by minns by totparam_nbr] in DR order
%                 Jacobian (wrt to all parameters) of measurement matrix minC
%     dminD:    [varobs_nbr by u_nbr by totparam_nbr] in DR order
%                 Jacobian (wrt to all parameters) of measurement matrix minD
% -------------------------------------------------------------------------
% This function is called by
%   * get_identification_jacobians.m (previously getJJ.m)
% -------------------------------------------------------------------------
% This function calls
%   * check_minimality (embedded)
%   * minrealold (embedded)
% =========================================================================
% Copyright (C) 2019-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
% =========================================================================
if nargin == 1
    derivs_flag = 0;
end
realsmall = 1e-7;
[nspred,exo_nbr] = size(SYS.B);
varobs_nbr = size(SYS.C,1);

% Check controllability and observability conditions for full state vector
CheckCO = check_minimality(SYS.A,SYS.B,SYS.C);
if CheckCO == 1 % If model is already minimal, we are finished
    minns = nspred;
    minSYS = SYS;
else
    %Model is not minimal    
    try
        minreal_flag = 1;
        % In future we will use SLICOT TB01PD.f mex file [to do @wmutschl], currently use workaround
        [mSYS,U] = minrealold(SYS,realsmall);
        minns = size(mSYS.A,1);
        CheckCO = check_minimality(mSYS.A,mSYS.B,mSYS.C);
        if CheckCO
            minSYS.A = mSYS.A;
            minSYS.B = mSYS.B;
            minSYS.C = mSYS.C;
            minSYS.D = mSYS.D;
            if derivs_flag
                totparam_nbr = size(SYS.dA,3);
                minSYS.dA = zeros(minns,minns,totparam_nbr);
                minSYS.dB = zeros(minns,exo_nbr,totparam_nbr);
                minSYS.dC = zeros(varobs_nbr,minns,totparam_nbr);
                % Note that orthogonal matrix U is such that (U*dA*U',U*dB,dC*U') is a Kalman decomposition of (dA,dB,dC)                    % 
                for jp=1:totparam_nbr
                    dA_tmp = U*SYS.dA(:,:,jp)*U';
                    dB_tmp = U*SYS.dB(:,:,jp);
                    dC_tmp = SYS.dC(:,:,jp)*U';
                    minSYS.dA(:,:,jp) = dA_tmp(1:minns,1:minns);
                    minSYS.dB(:,:,jp) = dB_tmp(1:minns,:);
                    minSYS.dC(:,:,jp) = dC_tmp(:,1:minns);
                end
                minSYS.dD = SYS.dD;
            end
        end
    catch
        minreal_flag = 0; % if something went wrong use below procedure
    end

    if minreal_flag == 0
        fprintf('Use naive brute-force approach to find minimal state space system.\n These computations may be inaccurate/wrong as ''minreal'' is not available, please raise an issue on GitLab or the forum\n')
        % create indices for unnecessary states
        exogstateindex = find(abs(sum(SYS.A,1))>realsmall);
        minns = length(exogstateindex);
        % remove unnecessary states from solution matrices
        A_2 = SYS.A(exogstateindex,exogstateindex);
        B_2 = SYS.B(exogstateindex,:);
        C_2 = SYS.C(:,exogstateindex);
        D   = SYS.D;
        ind_A2 = exogstateindex;
        % minimal representation
        minSYS.A = A_2;
        minSYS.B = B_2;
        minSYS.C = C_2;
        minSYS.D = D;

        % Check controllability and observability conditions
        CheckCO = check_minimality(minSYS.A,minSYS.B,minSYS.C);

        if CheckCO ~=1
            % do brute-force search
            j=1;
            while (CheckCO==0 && j<minns)
                combis = nchoosek(1:minns,j);
                i=1;
                while i <= size(combis,1)
                    ind_A2 = exogstateindex;
                    ind_A2(combis(j,:)) = [];
                    % remove unnecessary states from solution matrices
                    A_2 = SYS.A(ind_A2,ind_A2);
                    B_2 = SYS.B(ind_A2,:);
                    C_2 = SYS.C(:,ind_A2);
                    D = SYS.D;
                    % minimal representation
                    minSYS.A = A_2;
                    minSYS.B = B_2;
                    minSYS.C = C_2;
                    minSYS.D = D;
                    % Check controllability and observability conditions
                    CheckCO = check_minimality(minSYS.A,minSYS.B,minSYS.C);
                    if CheckCO == 1
                        minns = length(ind_A2);
                        break;
                    end
                    i=i+1;
                end
                j=j+1;
            end
        end
        if derivs_flag
            minSYS.dA = SYS.dA(ind_A2,ind_A2,:);
            minSYS.dB = SYS.dB(ind_A2,:,:);
            minSYS.dC = SYS.dC(:,ind_A2,:);
            minSYS.dD = SYS.dD;
        end
    end
end

function CheckCO = check_minimality(a,b,c)
%% This function computes the controllability and the observability matrices of the ABCD system and checks if the system is minimal
%
% Inputs: Solution matrices A,B,C of ABCD representation of a DSGE model
% Outputs: CheckCO: equals 1, if both rank conditions for observability and controllability are fullfilled
n = size(a,1);
CC = b; % Initialize controllability matrix
OO = c; % Initialize observability matrix
if n >= 2
    for indn = 1:1:n-1
        CC = [CC, (a^indn)*b]; % Set up controllability matrix
        OO = [OO; c*(a^indn)]; % Set up observability matrix
    end
end
CheckC = (rank(full(CC))==n);   % Check rank of controllability matrix
CheckO = (rank(full(OO))==n);   % Check rank of observability matrix
CheckCO = CheckC&CheckO;        % equals 1 if minimal state
end % check_minimality end

function [mSYS,U] = minrealold(SYS,tol)
    % This is a temporary replacement for minreal, will be replaced by a mex file from SLICOT TB01PD.f soon
    a = SYS.A;
    b = SYS.B;
    c = SYS.C;
    [ns,nu] = size(b);
    [am,bm,cm,U,k] = ControllabilityStaircaseRosenbrock(a,b,c,tol);
    kk = sum(k);
    nu = ns - kk;
    nn = nu;
    am = am(nu+1:ns,nu+1:ns);
    bm = bm(nu+1:ns,:);
    cm = cm(:,nu+1:ns);
    ns = ns - nu;
    if ns
        [am,bm,cm,t,k] = ObservabilityStaircaseRosenbrock(am,bm,cm,tol);
        kk = sum(k);
        nu = ns - kk;
        nn = nn + nu;
        am = am(nu+1:ns,nu+1:ns);
        bm = bm(nu+1:ns,:);
        cm = cm(:,nu+1:ns);
    end
    mSYS.A = am;
    mSYS.B = bm;
    mSYS.C = cm;
    mSYS.D = SYS.D;
end


function [abar,bbar,cbar,t,k] = ObservabilityStaircaseRosenbrock(a,b,c,tol)
    %Observability staircase form
    [aa,bb,cc,t,k] = ControllabilityStaircaseRosenbrock(a',c',b',tol);
    abar = aa'; bbar = cc'; cbar = bb';
end

function [abar,bbar,cbar,t,k] = ControllabilityStaircaseRosenbrock(a, b, c, tol)
    % Controllability staircase algorithm of Rosenbrock, 1968
    [ra,ca] = size(a);
    [rb,cb] = size(b);
    ptjn1 = eye(ra);
    ajn1 = a;
    bjn1 = b;
    rojn1 = cb;
    deltajn1 = 0;
    sigmajn1 = ra;
    k = zeros(1,ra);
    if nargin == 3
        tol = ra*norm(a,1)*eps;
    end
    for jj = 1 : ra
        [uj,sj,vj] = svd(bjn1);
        [rsj,csj] = size(sj);
        %p = flip(eye(rsj),2);
        p = eye(rsj);
        p = p(:,end:-1:1);
        p = permute(p,[2 1 3:ndims(eye(rsj))]);
        uj = uj*p;
        bb = uj'*bjn1;
        roj = rank(bb,tol);
        [rbb,cbb] = size(bb);
        sigmaj = rbb - roj;
        sigmajn1 = sigmaj;
        k(jj) = roj;
        if roj == 0, break, end
        if sigmaj == 0, break, end
        abxy = uj' * ajn1 * uj;
        aj   = abxy(1:sigmaj,1:sigmaj);
        bj   = abxy(1:sigmaj,sigmaj+1:sigmaj+roj);
        ajn1 = aj;
        bjn1 = bj;
        [ruj,cuj] = size(uj);
        ptj = ptjn1 * ...
              [uj zeros(ruj,deltajn1); ...
               zeros(deltajn1,cuj) eye(deltajn1)];
        ptjn1 = ptj;
        deltaj = deltajn1 + roj;
        deltajn1 = deltaj;
    end
    t = ptjn1';
    abar = t * a * t';
    bbar = t * b;
    cbar = c * t';
end

end % Main function end