1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
function [CheckCO,minns,minSYS] = get_minimal_state_representation(SYS, derivs_flag)
% Derives and checks the minimal state representation
% Let x = A*x(-1) + B*u and y = C*x(-1) + D*u be a linear state space
% system, then this function computes the following representation
% xmin = minA*xmin(-1) + minB*u and and y=minC*xmin(-1) + minD*u
%
% -------------------------------------------------------------------------
% INPUTS
% SYS [structure]
% with the following necessary fields:
% A: [nspred by nspred] in DR order
% Transition matrix for all state variables
% B: [nspred by exo_nbr] in DR order
% Transition matrix mapping shocks today to states today
% C: [varobs_nbr by nspred] in DR order
% Measurement matrix linking control/observable variables to states
% D: [varobs_nbr by exo_nbr] in DR order
% Measurement matrix mapping shocks today to controls/observables today
% and optional fields:
% dA: [nspred by nspred by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of transition matrix A
% dB: [nspred by exo_nbr by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of transition matrix B
% dC: [varobs_nbr by nspred by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of measurement matrix C
% dD: [varobs_nbr by exo_nbr by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of measurement matrix D
% derivs_flag [scalar]
% (optional) indicator whether to output parameter derivatives
% -------------------------------------------------------------------------
% OUTPUTS
% CheckCO: [scalar]
% equals to 1 if minimal state representation is found
% minns: [scalar]
% length of minimal state vector
% SYS [structure]
% with the following fields:
% minA: [minns by minns] in DR-order
% transition matrix A for evolution of minimal state vector
% minB: [minns by exo_nbr] in DR-order
% transition matrix B for evolution of minimal state vector
% minC: [varobs_nbr by minns] in DR-order
% measurement matrix C for evolution of controls, depending on minimal state vector only
% minD: [varobs_nbr by minns] in DR-order
% measurement matrix D for evolution of controls, depending on minimal state vector only
% dminA: [minns by minns by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of transition matrix minA
% dminB: [minns by exo_nbr by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of transition matrix minB
% dminC: [varobs_nbr by minns by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of measurement matrix minC
% dminD: [varobs_nbr by u_nbr by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of measurement matrix minD
% -------------------------------------------------------------------------
% This function is called by
% * get_identification_jacobians.m (previously getJJ.m)
% -------------------------------------------------------------------------
% This function calls
% * check_minimality (embedded)
% * minrealold (embedded)
% =========================================================================
% Copyright (C) 2019-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% =========================================================================
if nargin == 1
derivs_flag = 0;
end
realsmall = 1e-7;
[nspred,exo_nbr] = size(SYS.B);
varobs_nbr = size(SYS.C,1);
% Check controllability and observability conditions for full state vector
CheckCO = check_minimality(SYS.A,SYS.B,SYS.C);
if CheckCO == 1 % If model is already minimal, we are finished
minns = nspred;
minSYS = SYS;
else
%Model is not minimal
try
minreal_flag = 1;
% In future we will use SLICOT TB01PD.f mex file [to do @wmutschl], currently use workaround
[mSYS,U] = minrealold(SYS,realsmall);
minns = size(mSYS.A,1);
CheckCO = check_minimality(mSYS.A,mSYS.B,mSYS.C);
if CheckCO
minSYS.A = mSYS.A;
minSYS.B = mSYS.B;
minSYS.C = mSYS.C;
minSYS.D = mSYS.D;
if derivs_flag
totparam_nbr = size(SYS.dA,3);
minSYS.dA = zeros(minns,minns,totparam_nbr);
minSYS.dB = zeros(minns,exo_nbr,totparam_nbr);
minSYS.dC = zeros(varobs_nbr,minns,totparam_nbr);
% Note that orthogonal matrix U is such that (U*dA*U',U*dB,dC*U') is a Kalman decomposition of (dA,dB,dC) %
for jp=1:totparam_nbr
dA_tmp = U*SYS.dA(:,:,jp)*U';
dB_tmp = U*SYS.dB(:,:,jp);
dC_tmp = SYS.dC(:,:,jp)*U';
minSYS.dA(:,:,jp) = dA_tmp(1:minns,1:minns);
minSYS.dB(:,:,jp) = dB_tmp(1:minns,:);
minSYS.dC(:,:,jp) = dC_tmp(:,1:minns);
end
minSYS.dD = SYS.dD;
end
end
catch
minreal_flag = 0; % if something went wrong use below procedure
end
if minreal_flag == 0
fprintf('Use naive brute-force approach to find minimal state space system.\n These computations may be inaccurate/wrong as ''minreal'' is not available, please raise an issue on GitLab or the forum\n')
% create indices for unnecessary states
exogstateindex = find(abs(sum(SYS.A,1))>realsmall);
minns = length(exogstateindex);
% remove unnecessary states from solution matrices
A_2 = SYS.A(exogstateindex,exogstateindex);
B_2 = SYS.B(exogstateindex,:);
C_2 = SYS.C(:,exogstateindex);
D = SYS.D;
ind_A2 = exogstateindex;
% minimal representation
minSYS.A = A_2;
minSYS.B = B_2;
minSYS.C = C_2;
minSYS.D = D;
% Check controllability and observability conditions
CheckCO = check_minimality(minSYS.A,minSYS.B,minSYS.C);
if CheckCO ~=1
% do brute-force search
j=1;
while (CheckCO==0 && j<minns)
combis = nchoosek(1:minns,j);
i=1;
while i <= size(combis,1)
ind_A2 = exogstateindex;
ind_A2(combis(j,:)) = [];
% remove unnecessary states from solution matrices
A_2 = SYS.A(ind_A2,ind_A2);
B_2 = SYS.B(ind_A2,:);
C_2 = SYS.C(:,ind_A2);
D = SYS.D;
% minimal representation
minSYS.A = A_2;
minSYS.B = B_2;
minSYS.C = C_2;
minSYS.D = D;
% Check controllability and observability conditions
CheckCO = check_minimality(minSYS.A,minSYS.B,minSYS.C);
if CheckCO == 1
minns = length(ind_A2);
break;
end
i=i+1;
end
j=j+1;
end
end
if derivs_flag
minSYS.dA = SYS.dA(ind_A2,ind_A2,:);
minSYS.dB = SYS.dB(ind_A2,:,:);
minSYS.dC = SYS.dC(:,ind_A2,:);
minSYS.dD = SYS.dD;
end
end
end
function CheckCO = check_minimality(a,b,c)
%% This function computes the controllability and the observability matrices of the ABCD system and checks if the system is minimal
%
% Inputs: Solution matrices A,B,C of ABCD representation of a DSGE model
% Outputs: CheckCO: equals 1, if both rank conditions for observability and controllability are fullfilled
n = size(a,1);
CC = b; % Initialize controllability matrix
OO = c; % Initialize observability matrix
if n >= 2
for indn = 1:1:n-1
CC = [CC, (a^indn)*b]; % Set up controllability matrix
OO = [OO; c*(a^indn)]; % Set up observability matrix
end
end
CheckC = (rank(full(CC))==n); % Check rank of controllability matrix
CheckO = (rank(full(OO))==n); % Check rank of observability matrix
CheckCO = CheckC&CheckO; % equals 1 if minimal state
end % check_minimality end
function [mSYS,U] = minrealold(SYS,tol)
% This is a temporary replacement for minreal, will be replaced by a mex file from SLICOT TB01PD.f soon
a = SYS.A;
b = SYS.B;
c = SYS.C;
[ns,nu] = size(b);
[am,bm,cm,U,k] = ControllabilityStaircaseRosenbrock(a,b,c,tol);
kk = sum(k);
nu = ns - kk;
nn = nu;
am = am(nu+1:ns,nu+1:ns);
bm = bm(nu+1:ns,:);
cm = cm(:,nu+1:ns);
ns = ns - nu;
if ns
[am,bm,cm,t,k] = ObservabilityStaircaseRosenbrock(am,bm,cm,tol);
kk = sum(k);
nu = ns - kk;
nn = nn + nu;
am = am(nu+1:ns,nu+1:ns);
bm = bm(nu+1:ns,:);
cm = cm(:,nu+1:ns);
end
mSYS.A = am;
mSYS.B = bm;
mSYS.C = cm;
mSYS.D = SYS.D;
end
function [abar,bbar,cbar,t,k] = ObservabilityStaircaseRosenbrock(a,b,c,tol)
%Observability staircase form
[aa,bb,cc,t,k] = ControllabilityStaircaseRosenbrock(a',c',b',tol);
abar = aa'; bbar = cc'; cbar = bb';
end
function [abar,bbar,cbar,t,k] = ControllabilityStaircaseRosenbrock(a, b, c, tol)
% Controllability staircase algorithm of Rosenbrock, 1968
[ra,ca] = size(a);
[rb,cb] = size(b);
ptjn1 = eye(ra);
ajn1 = a;
bjn1 = b;
rojn1 = cb;
deltajn1 = 0;
sigmajn1 = ra;
k = zeros(1,ra);
if nargin == 3
tol = ra*norm(a,1)*eps;
end
for jj = 1 : ra
[uj,sj,vj] = svd(bjn1);
[rsj,csj] = size(sj);
%p = flip(eye(rsj),2);
p = eye(rsj);
p = p(:,end:-1:1);
p = permute(p,[2 1 3:ndims(eye(rsj))]);
uj = uj*p;
bb = uj'*bjn1;
roj = rank(bb,tol);
[rbb,cbb] = size(bb);
sigmaj = rbb - roj;
sigmajn1 = sigmaj;
k(jj) = roj;
if roj == 0, break, end
if sigmaj == 0, break, end
abxy = uj' * ajn1 * uj;
aj = abxy(1:sigmaj,1:sigmaj);
bj = abxy(1:sigmaj,sigmaj+1:sigmaj+roj);
ajn1 = aj;
bjn1 = bj;
[ruj,cuj] = size(uj);
ptj = ptjn1 * ...
[uj zeros(ruj,deltajn1); ...
zeros(deltajn1,cuj) eye(deltajn1)];
ptjn1 = ptj;
deltaj = deltajn1 + roj;
deltajn1 = deltaj;
end
t = ptjn1';
abar = t * a * t';
bbar = t * b;
cbar = c * t';
end
end % Main function end
|