File: stab_map_.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (706 lines) | stat: -rw-r--r-- 29,372 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
function x0 = stab_map_(OutputDirectoryName,opt_gsa)
%
% function x0 = stab_map_(OutputDirectoryName)
%
% Mapping of stability regions in the prior ranges applying
% Monte Carlo filtering techniques.
%
% INPUTS (from opt_gsa structure)
% Nsam = MC sample size
% fload = 0 to run new MC; 1 to load prevoiusly generated analysis
% alpha2 =  significance level for bivariate sensitivity analysis
% [abs(corrcoef) > alpha2]
% prepSA = 1: save transition matrices for mapping reduced form
%        = 0: no transition matrix saved (default)
% pprior = 1: sample from prior ranges (default): sample saved in
%            _prior.mat   file
%        = 0: sample from posterior ranges: sample saved in
%            _mc.mat file
% OUTPUT:
% x0: one parameter vector for which the model is stable.
%
% GRAPHS
% 1) Pdf's of marginal distributions under the stability (dotted
%     lines) and unstability (solid lines) regions
% 2) Cumulative distributions of:
%   - stable subset (dotted lines)
%   - unacceptable subset (solid lines)
% 3) Bivariate plots of significant correlation patterns
%  ( abs(corrcoef) > alpha2) under the stable and unacceptable subsets
%
% USES qmc_sequence, stab_map_1, stab_map_2
%
% Written by Marco Ratto
% Joint Research Centre, The European Commission,
% marco.ratto@ec.europa.eu

% Copyright (C) 2012-2016 European Commission
% Copyright (C) 2012-2018 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

%global bayestopt_ estim_params_ dr_ options_ ys_ fname_
global bayestopt_ estim_params_ options_ oo_ M_

% opt_gsa=options_.opt_gsa;

Nsam   = opt_gsa.Nsam;
fload  = opt_gsa.load_stab;
alpha2 = opt_gsa.alpha2_stab;
pvalue_ks = opt_gsa.pvalue_ks;
pvalue_corr = opt_gsa.pvalue_corr;
prepSA = (opt_gsa.redform | opt_gsa.identification);
pprior = opt_gsa.pprior;
neighborhood_width = opt_gsa.neighborhood_width;
ilptau = opt_gsa.ilptau;
nliv   = opt_gsa.morris_nliv;
ntra   = opt_gsa.morris_ntra;

dr_ = oo_.dr;
%if isfield(dr_,'ghx'),
ys_ = oo_.dr.ys;
nspred = M_.nspred; %size(dr_.ghx,2);
nboth = M_.nboth;
nfwrd = M_.nfwrd;
%end
fname_ = M_.fname;

np = estim_params_.np;
nshock = estim_params_.nvx;
nshock = nshock + estim_params_.nvn;
nshock = nshock + estim_params_.ncx;
nshock = nshock + estim_params_.ncn;
lpmat0=zeros(Nsam,0);
xparam1=[];

pshape = bayestopt_.pshape(nshock+1:end);
p1 = bayestopt_.p1(nshock+1:end);
p2 = bayestopt_.p2(nshock+1:end);
p3 = bayestopt_.p3(nshock+1:end);
p4 = bayestopt_.p4(nshock+1:end);

[~,~,~,lb,ub,~] = set_prior(estim_params_,M_,options_); %Prepare bounds
if ~isempty(bayestopt_) && any(bayestopt_.pshape > 0)
    % Set prior bounds
    bounds = prior_bounds(bayestopt_, options_.prior_trunc);
    bounds.lb = max(bounds.lb,lb);
    bounds.ub = min(bounds.ub,ub);
else  % estimated parameters but no declared priors
      % No priors are declared so Dynare will estimate the model by
      % maximum likelihood with inequality constraints for the parameters.
    bounds.lb = lb;
    bounds.ub = ub;
    if opt_gsa.prior_range==0
        warning('GSA:: When using ML, sampling from the prior is not possible. Setting prior_range=1')
        opt_gsa.prior_range=1;
    end
end

if nargin==0
    OutputDirectoryName='';
end

options_mcf.pvalue_ks = pvalue_ks;
options_mcf.pvalue_corr = pvalue_corr;
options_mcf.alpha2 = alpha2;

name=cell(np,1);
name_tex=cell(np,1);
for jj=1:np
    if options_.TeX
        [param_name_temp, param_name_tex_temp]= get_the_name(nshock+jj,options_.TeX,M_,estim_params_,options_);
        name_tex{jj,1} = strrep(param_name_tex_temp,'$','');
        name{jj,1} = param_name_temp;
    else
        param_name_temp = get_the_name(nshock+jj,options_.TeX,M_,estim_params_,options_);
        name{jj,1} = param_name_temp;
    end
end
if options_.TeX
    options_mcf.param_names_tex = name_tex;
end
options_mcf.param_names = name;

options_mcf.fname_ = fname_;
options_mcf.OutputDirectoryName = OutputDirectoryName;
options_mcf.xparam1 = [];

opt=options_;
options_.periods=0;
options_.nomoments=1;
options_.irf=0;
options_.noprint=1;
if fload==0
    %   if prepSA
    %     T=zeros(size(dr_.ghx,1),size(dr_.ghx,2)+size(dr_.ghu,2),Nsam/2);
    %   end

    if isfield(dr_,'ghx')
        egg=zeros(length(dr_.eigval),Nsam);
    end
    yys=zeros(length(dr_.ys),Nsam);

    if opt_gsa.morris == 1
        [lpmat, OutFact] = Sampling_Function_2(nliv, np+nshock, ntra, ones(np+nshock, 1), zeros(np+nshock,1), []);
        lpmat = lpmat.*(nliv-1)/nliv+1/nliv/2;
        Nsam=size(lpmat,1);
        lpmat0 = lpmat(:,1:nshock);
        lpmat = lpmat(:,nshock+1:end);
        %     elseif opt_gsa.morris==3,
        %         lpmat = prep_ide(Nsam,np,5);
        %         Nsam=size(lpmat,1);
    else
        if np<52 && ilptau>0
            [lpmat] = qmc_sequence(np, int64(1), 0, Nsam)';
            if np>30 || ilptau==2 % scrambled lptau
                for j=1:np
                    lpmat(:,j)=lpmat(randperm(Nsam),j);
                end
            end
        else %ilptau==0
            [lpmat] = NaN(Nsam,np);
            for j=1:np
                lpmat(:,j) = randperm(Nsam)'./(Nsam+1); %latin hypercube
            end

        end
    end
    %   try
    dummy=prior_draw_gsa(1); %initialize persistent variables
                             %   catch
                             %     if pprior,
                             %       if opt_gsa.prior_range==0;
                             %         error('Some unknown prior is specified or ML estimation,: use prior_range=1 option!!');
                             %       end
                             %     end
                             %
                             %   end
    if pprior
        for j=1:nshock
            if opt_gsa.morris~=1
                lpmat0(:,j) = randperm(Nsam)'./(Nsam+1); %latin hypercube
            end
            if opt_gsa.prior_range
                lpmat0(:,j)=lpmat0(:,j).*(bounds.ub(j)-bounds.lb(j))+bounds.lb(j);
            end
        end
        if opt_gsa.prior_range
            %       if opt_gsa.identification,
            %         deltx=min(0.001, 1/Nsam/2);
            %         for j=1:np,
            %           xdelt(:,:,j)=prior_draw_gsa(0,[lpmat0 lpmat]+deltx);
            %         end
            %       end
            for j=1:np
                lpmat(:,j)=lpmat(:,j).*(bounds.ub(j+nshock)-bounds.lb(j+nshock))+bounds.lb(j+nshock);
            end
        else
            xx=prior_draw_gsa(0,[lpmat0 lpmat]);
            %       if opt_gsa.identification,
            %         deltx=min(0.001, 1/Nsam/2);
            %         ldum=[lpmat0 lpmat];
            %         ldum = prior_draw_gsa(0,ldum+deltx);
            %         for j=1:nshock+np,
            %           xdelt(:,:,j)=xx;
            %           xdelt(:,j,j)=ldum(:,j);
            %         end
            %         clear ldum
            %       end
            lpmat0=xx(:,1:nshock);
            lpmat=xx(:,nshock+1:end);
            clear xx;
        end
    else
        %         for j=1:nshock,
        %             xparam1(j) = oo_.posterior_mode.shocks_std.(bayestopt_.name{j});
        %             sd(j) = oo_.posterior_std.shocks_std.(bayestopt_.name{j});
        %             lpmat0(:,j) = randperm(Nsam)'./(Nsam+1); %latin hypercube
        %             lb = max(bayestopt_.lb(j), xparam1(j)-2*sd(j));
        %             ub1=xparam1(j)+(xparam1(j) - lb); % define symmetric range around the mode!
        %             ub = min(bayestopt_.ub(j),ub1);
        %             if ub<ub1,
        %                 lb=xparam1(j)-(ub-xparam1(j)); % define symmetric range around the mode!
        %             end
        %             lpmat0(:,j) = lpmat0(:,j).*(ub-lb)+lb;
        %         end
        %         %
        %         for j=1:np,
        %             xparam1(j+nshock) = oo_.posterior_mode.parameters.(bayestopt_.name{j+nshock});
        %             sd(j+nshock) = oo_.posterior_std.parameters.(bayestopt_.name{j+nshock});
        %             lb = max(bayestopt_.lb(j+nshock),xparam1(j+nshock)-2*sd(j+nshock));
        %             ub1=xparam1(j+nshock)+(xparam1(j+nshock) - lb); % define symmetric range around the mode!
        %             ub = min(bayestopt_.ub(j+nshock),ub1);
        %             if ub<ub1,
        %                 lb=xparam1(j+nshock)-(ub-xparam1(j+nshock)); % define symmetric range around the mode!
        %             end
        %             %ub = min(bayestopt_.ub(j+nshock),xparam1(j+nshock)+2*sd(j+nshock));
        %             if np>30 & np<52
        %                 lpmat(:,j) = lpmat(randperm(Nsam),j).*(ub-lb)+lb;
        %             else
        %                 lpmat(:,j) = lpmat(:,j).*(ub-lb)+lb;
        %             end
        %         end
        %load([fname_,'_mode'])
        if neighborhood_width>0 && isempty(options_.mode_file)
            xparam1 = get_all_parameters(estim_params_,M_);
        else
            eval(['load ' options_.mode_file '.mat;']);
        end
        if neighborhood_width>0
            for j=1:nshock
                if opt_gsa.morris ~= 1
                    lpmat0(:,j) = randperm(Nsam)'./(Nsam+1); %latin hypercube
                end
                ub=min([bounds.ub(j) xparam1(j)*(1+neighborhood_width)]);
                lb=max([bounds.lb(j) xparam1(j)*(1-neighborhood_width)]);
                lpmat0(:,j)=lpmat0(:,j).*(ub-lb)+lb;
            end
            for j=1:np
                ub=xparam1(j+nshock)*(1+sign(xparam1(j+nshock))*neighborhood_width);
                lb=xparam1(j+nshock)*(1-sign(xparam1(j+nshock))*neighborhood_width);
                if bounds.ub(j+nshock)>=xparam1(j) && bounds.lb(j)<=xparam1(j+nshock)
                    ub=min([bounds.ub(j+nshock) ub]);
                    lb=max([bounds.lb(j+nshock) lb]);
                else
                    fprintf('\nstab_map_:: the calibrated value of param %s for neighborhood_width sampling is outside prior bounds.\nWe allow violation of bounds for this parameter, but if this was not done on purpose, please change calibration before running neighborhood_width sampling\n', bayestopt_.name{j+nshock})
                end
                lpmat(:,j)=lpmat(:,j).*(ub-lb)+lb;
            end
        else
            d = chol(inv(hh));
            lp=randn(Nsam*2,nshock+np)*d+kron(ones(Nsam*2,1),xparam1');
            lnprior=zeros(1,Nsam*2);
            for j=1:Nsam*2
                lnprior(j) = any(lp(j,:)'<=bounds.lb | lp(j,:)'>=bounds.ub);
            end
            ireal=[1:2*Nsam];
            ireal=ireal(find(lnprior==0));
            lp=lp(ireal,:);
            Nsam=min(Nsam, length(ireal));
            lpmat0=lp(1:Nsam,1:nshock);
            lpmat=lp(1:Nsam,nshock+1:end);
            clear lp lnprior ireal;
        end
    end
    %
    h = dyn_waitbar(0,'Please wait...');
    istable=[1:Nsam];
    jstab=0;
    iunstable=[1:Nsam];
    iindeterm=zeros(1,Nsam);
    iwrong=zeros(1,Nsam);
    inorestriction=zeros(1,Nsam);
    irestriction=zeros(1,Nsam);
    infox=zeros(Nsam,1);
    for j=1:Nsam
        M_ = set_all_parameters([lpmat0(j,:) lpmat(j,:)]',estim_params_,M_);
        %try stoch_simul([]);
        try
            if ~ isempty(options_.endogenous_prior_restrictions.moment)
                [Tt,Rr,SteadyState,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_);
            else
                [Tt,Rr,SteadyState,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_,'restrict');
            end
            infox(j,1)=info(1);
            if infox(j,1)==0 && ~exist('T','var')
                dr_=oo_.dr;
                if prepSA
                    try
                        T=zeros(size(dr_.ghx,1),size(dr_.ghx,2)+size(dr_.ghu,2),Nsam);
                    catch
                        ME = lasterror();
                        if strcmp('MATLAB:nomem',ME.identifier)
                            prepSA=0;
                            disp('The model is too large for storing state space matrices ...')
                            disp('for mapping reduced form or for identification')
                        end
                        T=[];
                    end
                else
                    T=[];
                end
                egg=zeros(length(dr_.eigval),Nsam);
            end
            if infox(j,1)
                %                 disp('no solution'),
                if isfield(oo_.dr,'ghx')
                    oo_.dr=rmfield(oo_.dr,'ghx');
                end
                if (infox(j,1)<3 || infox(j,1)>5) && isfield(oo_.dr,'eigval')
                    oo_.dr=rmfield(oo_.dr,'eigval');
                end
            end
        catch ME
            if isfield(oo_.dr,'eigval')
                oo_.dr=rmfield(oo_.dr,'eigval');
            end
            if isfield(oo_.dr,'ghx')
                oo_.dr=rmfield(oo_.dr,'ghx');
            end
            disp('No solution could be found')
        end
        dr_ = oo_.dr;
        if isfield(dr_,'ghx')
            egg(:,j) = sort(dr_.eigval);
            if prepSA
                jstab=jstab+1;
                T(:,:,jstab) = [dr_.ghx dr_.ghu];
                %         [A,B] = ghx2transition(squeeze(T(:,:,jstab)), ...
                %           bayestopt_.restrict_var_list, ...
                %           bayestopt_.restrict_columns, ...
                %           bayestopt_.restrict_aux);
            end
            if ~exist('nspred','var')
                nspred = dr_.nspred; %size(dr_.ghx,2);
                nboth = dr_.nboth;
                nfwrd = dr_.nfwrd;
            end
            info=endogenous_prior_restrictions(Tt,Rr,M_,options_,oo_);
            infox(j,1)=info(1);
            if info(1)
                inorestriction(j)=j;
            else
                iunstable(j)=0;
                irestriction(j)=j;
            end
        else
            istable(j)=0;
            if isfield(dr_,'eigval')
                egg(:,j) = sort(dr_.eigval);
                if exist('nspred','var')
                    if any(isnan(egg(1:nspred,j)))
                        iwrong(j)=j;
                    else
                        if (nboth || nfwrd) && abs(egg(nspred+1,j))<=options_.qz_criterium
                            iindeterm(j)=j;
                        end
                    end
                end
            else
                if exist('egg','var')
                    egg(:,j)=ones(size(egg,1),1).*NaN;
                end
                iwrong(j)=j;
            end
        end
        ys_=real(dr_.ys);
        yys(:,j) = ys_;
        ys_=yys(:,1);
        dyn_waitbar(j/Nsam,h,['MC iteration ',int2str(j),'/',int2str(Nsam)])
    end
    dyn_waitbar_close(h);
    if prepSA && jstab
        T=T(:,:,1:jstab);
    else
        T=[];
    end
    istable=istable(find(istable));  % stable params ignoring restrictions
    irestriction=irestriction(find(irestriction));  % stable params & restrictions OK
    inorestriction=inorestriction(find(inorestriction));  % stable params violating restrictions
    iunstable=iunstable(find(iunstable));   % violation of BK & restrictions & solution could not be found (whatever goes wrong)
    iindeterm=iindeterm(find(iindeterm));  % indeterminacy
    iwrong=iwrong(find(iwrong));  % dynare could not find solution
    ixun=iunstable(find(~ismember(iunstable,[iindeterm,iwrong,inorestriction]))); % explosive roots

    %     % map stable samples
    %     istable=[1:Nsam];
    %     for j=1:Nsam,
    %         if any(isnan(egg(1:nspred,j)))
    %             istable(j)=0;
    %         else
    %             if abs(egg(nspred,j))>=options_.qz_criterium; %(1-(options_.qz_criterium-1)); %1-1.e-5;
    %                 istable(j)=0;
    %                 %elseif (dr_.nboth | dr_.nfwrd) & abs(egg(nspred+1,j))<=options_.qz_criterium; %1+1.e-5;
    %             elseif (nboth | nfwrd) & abs(egg(nspred+1,j))<=options_.qz_criterium; %1+1.e-5;
    %                 istable(j)=0;
    %             end
    %         end
    %     end
    %     istable=istable(find(istable));  % stable params
    %
    %     % map unstable samples
    %     iunstable=[1:Nsam];
    %     for j=1:Nsam,
    %         %if abs(egg(dr_.npred+1,j))>1+1.e-5 & abs(egg(dr_.npred,j))<1-1.e-5;
    %         %if (dr_.nboth | dr_.nfwrd),
    %         if ~any(isnan(egg(1:5,j)))
    %             if (nboth | nfwrd),
    %                 if abs(egg(nspred+1,j))>options_.qz_criterium & abs(egg(nspred,j))<options_.qz_criterium; %(1-(options_.qz_criterium-1));
    %                     iunstable(j)=0;
    %                 end
    %             else
    %                 if abs(egg(nspred,j))<options_.qz_criterium; %(1-(options_.qz_criterium-1));
    %                     iunstable(j)=0;
    %                 end
    %             end
    %         end
    %     end
    %     iunstable=iunstable(find(iunstable));   % unstable params
    bkpprior.pshape=bayestopt_.pshape;
    bkpprior.p1=bayestopt_.p1;
    bkpprior.p2=bayestopt_.p2;
    bkpprior.p3=bayestopt_.p3;
    bkpprior.p4=bayestopt_.p4;
    if pprior
        if ~prepSA
            save([OutputDirectoryName filesep fname_ '_prior.mat'], ...
                 'bkpprior','lpmat','lpmat0','irestriction','iunstable','istable','iindeterm','iwrong','ixun', ...
                 'egg','yys','nspred','nboth','nfwrd','infox')
        else
            save([OutputDirectoryName filesep fname_ '_prior.mat'], ...
                 'bkpprior','lpmat','lpmat0','irestriction','iunstable','istable','iindeterm','iwrong','ixun', ...
                 'egg','yys','T','nspred','nboth','nfwrd','infox')
        end

    else
        if ~prepSA
            save([OutputDirectoryName filesep fname_ '_mc.mat'], ...
                 'lpmat','lpmat0','irestriction','iunstable','istable','iindeterm','iwrong','ixun', ...
                 'egg','yys','nspred','nboth','nfwrd','infox')
        else
            save([OutputDirectoryName filesep fname_ '_mc.mat'], ...
                 'lpmat','lpmat0','irestriction','iunstable','istable','iindeterm','iwrong','ixun', ...
                 'egg','yys','T','nspred','nboth','nfwrd','infox')
        end
    end
else
    if pprior
        filetoload=[OutputDirectoryName filesep fname_ '_prior.mat'];
    else
        filetoload=[OutputDirectoryName filesep fname_ '_mc.mat'];
    end
    load(filetoload,'lpmat','lpmat0','irestriction','iunstable','istable','iindeterm','iwrong','ixun','egg','yys','nspred','nboth','nfwrd','infox')
    Nsam = size(lpmat,1);
    if pprior==0 && ~isempty(options_.mode_file)
        eval(['load ' options_.mode_file '.mat;']);
    end


    if prepSA && isempty(strmatch('T',who('-file', filetoload),'exact'))
        h = dyn_waitbar(0,'Please wait...');
        options_.periods=0;
        options_.nomoments=1;
        options_.irf=0;
        options_.noprint=1;
        [~, oo_, options_] = stoch_simul(M_, options_, oo_, []);
        %T=zeros(size(dr_.ghx,1),size(dr_.ghx,2)+size(dr_.ghu,2),length(istable));
        ntrans=length(istable);
        yys=NaN(length(ys_),ntrans);
        for j=1:ntrans
            M_.params(estim_params_.param_vals(:,1)) = lpmat(istable(j),:)';
            %stoch_simul([]);
            [Tt,Rr,SteadyState,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_,'restrict');
            % This syntax is not compatible with the current version of dynare_resolve [stepan].
            %[Tt,Rr,SteadyState,info] = dynare_resolve(bayestopt_.restrict_var_list,...
            %    bayestopt_.restrict_columns,...
            %    bayestopt_.restrict_aux);
            if ~exist('T','var')
                T=zeros(size(dr_.ghx,1),size(dr_.ghx,2)+size(dr_.ghu,2),ntrans);
            end
            dr_ = oo_.dr;
            T(:,:,j) = [dr_.ghx dr_.ghu];
            if ~exist('nspred','var')
                nspred = dr_.nspred; %size(dr_.ghx,2);
                nboth = dr_.nboth;
                nfwrd = dr_.nfwrd;
            end
            ys_=real(dr_.ys);
            yys(:,j) = ys_;
            ys_=yys(:,1);
            dyn_waitbar(j/ntrans,h,['MC iteration ',int2str(j),'/',int2str(ntrans)])
        end
        dyn_waitbar_close(h);
        save(filetoload,'T','-append')
    elseif prepSA
        load(filetoload,'T')
    end
end

if pprior
    aunstname='prior_unstable'; aunsttitle='Prior StabMap: explosiveness of solution';
    aindname='prior_indeterm'; aindtitle='Prior StabMap: Indeterminacy';
    awrongname='prior_wrong'; awrongtitle='Prior StabMap: inability to find solution';
    acalibname='prior_calib'; acalibtitle='Prior StabMap: IRF/moment restrictions';
    asname='prior_stable'; atitle='Prior StabMap: Parameter driving non-existence of unique stable solution (Unacceptable)';
else
    aunstname='mc_unstable'; aunsttitle='MC (around posterior mode) StabMap: explosiveness of solution';
    aindname='mc_indeterm';  aindtitle='MC (around posterior mode) StabMap: Indeterminacy';
    awrongname='mc_wrong'; awrongtitle='MC (around posterior mode) StabMap: inability to find solution';
    acalibname='mc_calib'; acalibtitle='MC (around posterior mode) StabMap: IRF/moment restrictions';
    asname='mc_stable'; atitle='MC (around posterior mode) StabMap: Parameter driving non-existence of unique stable solution (Unacceptable)';
end
delete([OutputDirectoryName,filesep,fname_,'_',asname,'.*']);
delete([OutputDirectoryName,filesep,fname_,'_',acalibname,'.*']);
delete([OutputDirectoryName,filesep,fname_,'_',aindname,'.*']);
delete([OutputDirectoryName,filesep,fname_,'_',aunstname,'.*']);
delete([OutputDirectoryName,filesep,fname_,'_',awrongname,'.*']);

if length(iunstable)>0 || length(iwrong)>0
    fprintf(['%4.1f%% of the prior support gives unique saddle-path solution.\n'],length(istable)/Nsam*100)
    fprintf(['%4.1f%% of the prior support gives explosive dynamics.\n'],(length(ixun) )/Nsam*100)
    if ~isempty(iindeterm)
        fprintf(['%4.1f%% of the prior support gives indeterminacy.\n'],length(iindeterm)/Nsam*100)
    end
    inorestriction = istable(find(~ismember(istable,irestriction))); % violation of prior restrictions
    if ~isempty(iwrong) || ~isempty(inorestriction)
        skipline()
        if any(infox==49)
            fprintf(['%4.1f%% of the prior support violates prior restrictions.\n'],(length(inorestriction) )/Nsam*100)
        end
        if ~isempty(iwrong)
            skipline()
            disp(['For ',num2str(length(iwrong)/Nsam*100,'%4.1f'),'% of the prior support dynare could not find a solution.'])
            skipline()
        end
        if any(infox==1)
            disp(['    For ',num2str(length(find(infox==1))/Nsam*100,'%4.1f'),'% The model doesn''t determine the current variables uniquely.'])
        end
        if any(infox==2)
            disp(['    For ',num2str(length(find(infox==2))/Nsam*100,'%4.1f'),'% MJDGGES returned an error code.'])
        end
        if any(infox==6)
            disp(['    For ',num2str(length(find(infox==6))/Nsam*100,'%4.1f'),'% The jacobian evaluated at the deterministic steady state is complex.'])
        end
        if any(infox==19)
            disp(['    For ',num2str(length(find(infox==19))/Nsam*100,'%4.1f'),'% The steadystate routine has thrown an exception (inconsistent deep parameters).'])
        end
        if any(infox==20)
            disp(['    For ',num2str(length(find(infox==20))/Nsam*100,'%4.1f'),'% Cannot find the steady state.'])
        end
        if any(infox==21)
            disp(['    For ',num2str(length(find(infox==21))/Nsam*100,'%4.1f'),'% The steady state is complex.'])
        end
        if any(infox==22)
            disp(['    For ',num2str(length(find(infox==22))/Nsam*100,'%4.1f'),'% The steady has NaNs.'])
        end
        if any(infox==23)
            disp(['    For ',num2str(length(find(infox==23))/Nsam*100,'%4.1f'),'% M_.params has been updated in the steadystate routine and has complex valued scalars.'])
        end
        if any(infox==24)
            disp(['    For ',num2str(length(find(infox==24))/Nsam*100,'%4.1f'),'% M_.params has been updated in the steadystate routine and has some NaNs.'])
        end
        if any(infox==30)
            disp(['    For ',num2str(length(find(infox==30))/Nsam*100,'%4.1f'),'% Ergodic variance can''t be computed.'])
        end

    end
    skipline()
    if length(iunstable)<Nsam || length(istable)>1
        itot = [1:Nsam];
        isolve = itot(find(~ismember(itot,iwrong))); % dynare could find a solution
                                                     % Blanchard Kahn
        if neighborhood_width
            options_mcf.xparam1 = xparam1(nshock+1:end);
        end
        itmp = itot(find(~ismember(itot,istable)));
        options_mcf.amcf_name = asname;
        options_mcf.amcf_title = atitle;
        options_mcf.beha_title = 'unique Stable Saddle-Path';
        options_mcf.nobeha_title = 'NO unique Stable Saddle-Path';
        options_mcf.title = 'unique solution';
        mcf_analysis(lpmat, istable, itmp, options_mcf, options_);

        if ~isempty(iindeterm)
            itmp = isolve(find(~ismember(isolve,iindeterm)));
            options_mcf.amcf_name = aindname;
            options_mcf.amcf_title = aindtitle;
            options_mcf.beha_title = 'NO indeterminacy';
            options_mcf.nobeha_title = 'indeterminacy';
            options_mcf.title = 'indeterminacy';
            mcf_analysis(lpmat, itmp, iindeterm, options_mcf, options_);
        end

        if ~isempty(ixun)
            itmp = isolve(find(~ismember(isolve,ixun)));
            options_mcf.amcf_name = aunstname;
            options_mcf.amcf_title = aunsttitle;
            options_mcf.beha_title = 'NO explosive solution';
            options_mcf.nobeha_title = 'explosive solution';
            options_mcf.title = 'instability';
            mcf_analysis(lpmat, itmp, ixun, options_mcf, options_);
        end

        inorestriction = istable(find(~ismember(istable,irestriction))); % violation of prior restrictions
        iwrong = iwrong(find(~ismember(iwrong,inorestriction))); % what went wrong beyond prior restrictions
        if ~isempty(iwrong)
            itmp = itot(find(~ismember(itot,iwrong)));
            options_mcf.amcf_name = awrongname;
            options_mcf.amcf_title = awrongtitle;
            options_mcf.beha_title = 'NO inability to find a solution';
            options_mcf.nobeha_title = 'inability to find a solution';
            options_mcf.title = 'inability to find a solution';
            mcf_analysis(lpmat, itmp, iwrong, options_mcf, options_);
        end

        if ~isempty(irestriction)
            if neighborhood_width
                options_mcf.xparam1 = xparam1;
            end
            np=size(bayestopt_.name,1);
            name=cell(np,1);
            name_tex=cell(np,1);
            for jj=1:np
                if options_.TeX
                    [param_name_temp, param_name_tex_temp]= get_the_name(jj,options_.TeX,M_,estim_params_,options_);
                    name_tex{jj,1} = strrep(param_name_tex_temp,'$','');
                    name{jj,1} = param_name_temp;
                else
                    param_name_temp = get_the_name(jj,options_.TeX,M_,estim_params_,options_);
                    name{jj,1} = param_name_temp;
                end
            end
            if options_.TeX
                options_mcf.param_names_tex = name_tex;
            end
            options_mcf.param_names = name;
            options_mcf.amcf_name = acalibname;
            options_mcf.amcf_title = acalibtitle;
            options_mcf.beha_title = 'prior IRF/moment calibration';
            options_mcf.nobeha_title = 'NO prior IRF/moment calibration';
            options_mcf.title = 'prior restrictions';
            mcf_analysis([lpmat0 lpmat], irestriction, inorestriction, options_mcf, options_);
            iok = irestriction(1);
            x0 = [lpmat0(iok,:)'; lpmat(iok,:)'];
        else
            iok = istable(1);
            x0=0.5.*(bounds.ub(1:nshock)-bounds.lb(1:nshock))+bounds.lb(1:nshock);
            x0 = [x0; lpmat(iok,:)'];
        end

        M_ = set_all_parameters(x0,estim_params_,M_);
        [oo_.dr,info,M_,options_,oo_] = resol(0,M_,options_,oo_);
        %     stoch_simul([]);
    else
        disp('All parameter values in the specified ranges are not acceptable!')
        x0=[];
    end
else
    disp('All parameter values in the specified ranges give unique saddle-path solution,')
    disp('and match prior IRF/moment restriction(s) if any!')
    x0=0.5.*(bounds.ub(1:nshock)-bounds.lb(1:nshock))+bounds.lb(1:nshock);
    x0 = [x0; lpmat(istable(1),:)'];

end

xparam1=x0;
save prior_ok.mat xparam1;

options_.periods=opt.periods;
if isfield(opt,'nomoments')
    options_.nomoments=opt.nomoments;
end
options_.irf=opt.irf;
options_.noprint=opt.noprint;