1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
function hessian_mat = hessian(func,x, gstep, varargin) % --*-- Unitary tests --*--
% Computes second order partial derivatives
%
% INPUTS
% func [string] name of the function
% x [double] vector, the Hessian of "func" is evaluated at x.
% gstep [double] scalar, size of epsilon.
% varargin [void] list of additional arguments for "func".
%
% OUTPUTS
% hessian_mat [double] Hessian matrix
%
% ALGORITHM
% Uses Abramowitz and Stegun (1965) formulas 25.3.23
% \[
% \frac{\partial^2 f_{0,0}}{\partial {x^2}} = \frac{1}{h^2}\left( f_{1,0} - 2f_{0,0} + f_{ - 1,0} \right)
% \]
% and 25.3.27 p. 884
%
% \[
% \frac{\partial ^2f_{0,0}}{\partial x\partial y} = \frac{-1}{2h^2}\left(f_{1,0} + f_{-1,0} + f_{0,1} + f_{0,-1} - 2f_{0,0} - f_{1,1} - f_{-1,-1} \right)
% \]
%
% SPECIAL REQUIREMENTS
% none
%
% Copyright (C) 2001-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
if ~isa(func, 'function_handle')
func = str2func(func);
end
n = size(x,1);
h1 = max(abs(x), sqrt(gstep(1))*ones(n, 1))*eps^(1/6)*gstep(2);
h_1 = h1;
xh1 = x+h1;
h1 = xh1-x;
xh1 = x-h_1;
h_1 = x-xh1;
xh1 = x;
f0 = feval(func, x, varargin{:});
f1 = zeros(size(f0, 1), n);
f_1 = f1;
for i=1:n
%do step up
xh1(i) = x(i)+h1(i);
f1(:,i) = feval(func, xh1, varargin{:});
%do step down
xh1(i) = x(i)-h_1(i);
f_1(:,i) = feval(func, xh1, varargin{:});
%reset parameter
xh1(i) = x(i);
end
xh_1 = xh1;
temp = f1+f_1-f0*ones(1, n); %term f_(1,0)+f_(-1,0)-f_(0,0) used later
hessian_mat = zeros(size(f0,1), n*n);
for i=1:n
if i > 1
%fill symmetric part of Hessian based on previously computed results
k = [i:n:n*(i-1)];
hessian_mat(:,(i-1)*n+1:(i-1)*n+i-1) = hessian_mat(:,k);
end
hessian_mat(:,(i-1)*n+i) = (f1(:,i)+f_1(:,i)-2*f0)./(h1(i)*h_1(i)); %formula 25.3.23
for j=i+1:n
%step in up direction
xh1(i) = x(i)+h1(i);
xh1(j) = x(j)+h_1(j);
%step in down direction
xh_1(i) = x(i)-h1(i);
xh_1(j) = x(j)-h_1(j);
hessian_mat(:,(i-1)*n+j) =-(-feval(func, xh1, varargin{:})-feval(func, xh_1, varargin{:})+temp(:,i)+temp(:,j))./(2*h1(i)*h_1(j)); %formula 25.3.27
%reset grid points
xh1(i) = x(i);
xh1(j) = x(j);
xh_1(i) = x(i);
xh_1(j) = x(j);
end
end
%@test:1
%$ % Create a function.
%$ fid = fopen('exfun.m','w+');
%$ fprintf(fid,'function [f,g,H] = exfun(xvar)\\n');
%$ fprintf(fid,'x = xvar(1);\\n');
%$ fprintf(fid,'y = xvar(2);\\n');
%$ fprintf(fid,'f = x^2* log(y);\\n');
%$ fprintf(fid,'if nargout>1\\n');
%$ fprintf(fid,' g = zeros(2,1);\\n');
%$ fprintf(fid,' g(1) = 2*x*log(y);\\n');
%$ fprintf(fid,' g(2) = x*x/y;\\n');
%$ fprintf(fid,'end\\n');
%$ fprintf(fid,'if nargout>2\\n');
%$ fprintf(fid,' H = zeros(2,2);\\n');
%$ fprintf(fid,' H(1,1) = 2*log(y);\\n');
%$ fprintf(fid,' H(1,2) = 2*x/y;\\n');
%$ fprintf(fid,' H(2,1) = H(1,2);\\n');
%$ fprintf(fid,' H(2,2) = -x*x/(y*y);\\n');
%$ fprintf(fid,' H = H(:);\\n');
%$ fprintf(fid,'end\\n');
%$ fclose(fid);
%$
%$ rehash;
%$
%$ t = zeros(5,1);
%$
%$ % Evaluate the Hessian at (1,e)
%$ try
%$ H = hessian('exfun',[1; exp(1)],[1e-2; 1]);
%$ t(1) = 1;
%$ catch
%$ t(1) = 0;
%$ end
%$
%$ % Compute the true Hessian matrix
%$ [f, g, Htrue] = exfun([1 exp(1)]);
%$
%$ % Delete exfun routine from disk.
%$ delete('exfun.m');
%$
%$ % Compare the values in H and Htrue
%$ if t(1)
%$ t(2) = dassert(abs(H(1)-Htrue(1))<1e-6,true);
%$ t(3) = dassert(abs(H(2)-Htrue(2))<1e-6,true);
%$ t(4) = dassert(abs(H(3)-Htrue(3))<1e-6,true);
%$ t(5) = dassert(abs(H(4)-Htrue(4))<1e-6,true);
%$ end
%$ T = all(t);
%@eof:1
|