File: hessian.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (150 lines) | stat: -rw-r--r-- 4,471 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
function hessian_mat = hessian(func,x, gstep, varargin) % --*-- Unitary tests --*--

% Computes second order partial derivatives
%
% INPUTS
%    func        [string]   name of the function
%    x           [double]   vector, the Hessian of "func" is evaluated at x.
%    gstep       [double]   scalar, size of epsilon.
%    varargin    [void]     list of additional arguments for "func".
%
% OUTPUTS
%    hessian_mat [double]   Hessian matrix
%
% ALGORITHM
%    Uses Abramowitz and Stegun (1965) formulas 25.3.23
% \[
%     \frac{\partial^2 f_{0,0}}{\partial {x^2}} = \frac{1}{h^2}\left( f_{1,0} - 2f_{0,0} + f_{ - 1,0} \right)
% \]
% and 25.3.27 p. 884
%
% \[
%     \frac{\partial ^2f_{0,0}}{\partial x\partial y} = \frac{-1}{2h^2}\left(f_{1,0} + f_{-1,0} + f_{0,1} + f_{0,-1} - 2f_{0,0} - f_{1,1} - f_{-1,-1} \right)
% \]
%
% SPECIAL REQUIREMENTS
%    none
%

% Copyright (C) 2001-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

if ~isa(func, 'function_handle')
    func = str2func(func);
end

n   = size(x,1);
h1  = max(abs(x), sqrt(gstep(1))*ones(n, 1))*eps^(1/6)*gstep(2);
h_1 = h1;
xh1 = x+h1;
h1  = xh1-x;
xh1 = x-h_1;
h_1 = x-xh1;
xh1 = x;
f0  = feval(func, x, varargin{:});
f1  = zeros(size(f0, 1), n);
f_1 = f1;

for i=1:n
    %do step up
    xh1(i)   = x(i)+h1(i);
    f1(:,i)  = feval(func, xh1, varargin{:});
    %do step down
    xh1(i)   = x(i)-h_1(i);
    f_1(:,i) = feval(func, xh1, varargin{:});
    %reset parameter
    xh1(i)   = x(i);
end

xh_1 = xh1;
temp = f1+f_1-f0*ones(1, n); %term f_(1,0)+f_(-1,0)-f_(0,0) used later

hessian_mat = zeros(size(f0,1), n*n);

for i=1:n
    if i > 1
        %fill symmetric part of Hessian based on previously computed results
        k = [i:n:n*(i-1)];
        hessian_mat(:,(i-1)*n+1:(i-1)*n+i-1) = hessian_mat(:,k);
    end
    hessian_mat(:,(i-1)*n+i) = (f1(:,i)+f_1(:,i)-2*f0)./(h1(i)*h_1(i)); %formula 25.3.23
    for j=i+1:n
        %step in up direction
        xh1(i) = x(i)+h1(i);
        xh1(j) = x(j)+h_1(j);
        %step in down direction
        xh_1(i) = x(i)-h1(i);
        xh_1(j) = x(j)-h_1(j);
        hessian_mat(:,(i-1)*n+j) =-(-feval(func, xh1, varargin{:})-feval(func, xh_1, varargin{:})+temp(:,i)+temp(:,j))./(2*h1(i)*h_1(j)); %formula 25.3.27
                                                                                                                                          %reset grid points
        xh1(i)  = x(i);
        xh1(j)  = x(j);
        xh_1(i) = x(i);
        xh_1(j) = x(j);
    end
end


%@test:1
%$ % Create a function.
%$ fid = fopen('exfun.m','w+');
%$ fprintf(fid,'function [f,g,H] = exfun(xvar)\\n');
%$ fprintf(fid,'x = xvar(1);\\n');
%$ fprintf(fid,'y = xvar(2);\\n');
%$ fprintf(fid,'f = x^2* log(y);\\n');
%$ fprintf(fid,'if nargout>1\\n');
%$ fprintf(fid,'    g = zeros(2,1);\\n');
%$ fprintf(fid,'    g(1) = 2*x*log(y);\\n');
%$ fprintf(fid,'    g(2) = x*x/y;\\n');
%$ fprintf(fid,'end\\n');
%$ fprintf(fid,'if nargout>2\\n');
%$ fprintf(fid,'    H = zeros(2,2);\\n');
%$ fprintf(fid,'    H(1,1) = 2*log(y);\\n');
%$ fprintf(fid,'    H(1,2) = 2*x/y;\\n');
%$ fprintf(fid,'    H(2,1) = H(1,2);\\n');
%$ fprintf(fid,'    H(2,2) = -x*x/(y*y);\\n');
%$ fprintf(fid,'    H = H(:);\\n');
%$ fprintf(fid,'end\\n');
%$ fclose(fid);
%$
%$ rehash;
%$
%$ t = zeros(5,1);
%$
%$ % Evaluate the Hessian at (1,e)
%$ try
%$    H = hessian('exfun',[1; exp(1)],[1e-2; 1]);
%$    t(1) = 1;
%$ catch
%$    t(1) = 0;
%$ end
%$
%$ % Compute the true Hessian matrix
%$ [f, g, Htrue] = exfun([1 exp(1)]);
%$
%$ % Delete exfun routine from disk.
%$ delete('exfun.m');
%$
%$ % Compare the values in H and Htrue
%$ if t(1)
%$    t(2) = dassert(abs(H(1)-Htrue(1))<1e-6,true);
%$    t(3) = dassert(abs(H(2)-Htrue(2))<1e-6,true);
%$    t(4) = dassert(abs(H(3)-Htrue(3))<1e-6,true);
%$    t(5) = dassert(abs(H(4)-Htrue(4))<1e-6,true);
%$ end
%$ T = all(t);
%@eof:1