File: identification_analysis.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (542 lines) | stat: -rw-r--r-- 34,048 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
function [ide_moments, ide_spectrum, ide_minimal, ide_hess, ide_reducedform, ide_dynamic, derivatives_info, info, options_ident] = identification_analysis(params, indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, init)
% [ide_moments, ide_spectrum, ide_minimal, ide_hess, ide_reducedform, ide_dynamic, derivatives_info, info, options_ident] = identification_analysis(params, indpmodel, indpstderr, indpcorr, options_ident, dataset_info, prior_exist, init)
% -------------------------------------------------------------------------
% This function wraps all identification analysis, i.e. it
% (1) wraps functions for the theoretical identification analysis based on moments (Iskrev, 2010),
% spectrum (Qu and Tkachenko, 2012), minimal system (Komunjer and Ng, 2011),  information matrix,
% reduced-form solution and dynamic model derivatives (Ratto and Iskrev, 2011).
% (2) computes the identification strength based on moments (Ratto and Iskrev, 2011)
% (3) checks which parameters are involved.
% If options_ident.order>1, then the identification analysis is based on
% Mutschler (2015), i.e. the pruned state space system and the corresponding
% moments, spectrum, reduced-form solution and dynamic model derivatives
% =========================================================================
% INPUTS
%    * params             [mc_sample_nbr by totparam_nbr]
%                         parameter values for identification checks
%    * indpmodel          [modparam_nbr by 1]
%                         index of model parameters for which identification is checked
%    * indpstderr         [stderrparam_nbr by 1]
%                         index of stderr parameters for which identification is checked
%    * indpcorr           [corrparam_nbr by 2]
%                         matrix of corr parmeters for which identification is checked
%    * options_ident      [structure]
%                         identification options
%    * dataset_info       [structure]
%                         various information about the dataset (descriptive statistics and missing observations) for Kalman Filter
%    * prior_exist        [integer]
%                         1: prior exists. Identification is checked for stderr, corr and model parameters as declared in estimated_params block
%                         0: prior does not exist. Identification is checked for all stderr and model parameters, but no corr parameters
%    * init               [integer]
%                         flag for initialization of persistent vars. This is needed if one may want to make more calls to identification in the same mod file
% -------------------------------------------------------------------------
% OUTPUTS
%    * ide_moments        [structure]
%                         identification results using theoretical moments (Iskrev, 2010; Mutschler, 2015)
%    * ide_spectrum       [structure]
%                         identification results using spectrum (Qu and Tkachenko, 2012; Mutschler, 2015)
%    * ide_minimal        [structure]
%                         identification results using theoretical mean and minimal system (Komunjer and Ng, 2011)
%    * ide_hess           [structure]
%                         identification results using asymptotic Hessian (Ratto and Iskrev, 2011)
%    * ide_reducedform    [structure]
%                         identification results using steady state and reduced form solution (Ratto and Iskrev, 2011)
%    * ide_dynamic        [structure]
%                         identification results using steady state and dynamic model derivatives (Ratto and Iskrev, 2011)
%    * derivatives_info   [structure]
%                         info about first-order perturbation derivatives, used in dsge_likelihood.m
%    * info               [integer]
%                         output from dynare_resolve
%    * options_ident      [structure]
%                         updated identification options
% -------------------------------------------------------------------------
% This function is called by
%   * dynare_identification.m
% -------------------------------------------------------------------------
% This function calls
%   * [M_.fname,'.dynamic']
%   * dseries
%   * dsge_likelihood.m
%   * dyn_vech
%   * ident_bruteforce
%   * identification_checks
%   * identification_checks_via_subsets
%   * isoctave
%   * get_identification_jacobians (previously getJJ)
%   * matlab_ver_less_than
%   * prior_bounds
%   * resol
%   * set_all_parameters
%   * simulated_moment_uncertainty
%   * stoch_simul
%   * vec
% =========================================================================
% Copyright (C) 2008-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
% =========================================================================

global oo_ M_ options_ bayestopt_ estim_params_
persistent ind_dMOMENTS ind_dREDUCEDFORM ind_dDYNAMIC
% persistent indices are necessary, because in a MC loop the numerical threshold
% used may provide vectors of different length, leading to crashes in MC loops

%initialize output structures
ide_hess         = struct(); %Identification structure based on asymptotic/simulated information matrix
ide_reducedform  = struct(); %Identification structure based on steady state and reduced form solution
ide_dynamic      = struct(); %Identification structure based on steady state and dynamic model derivatives
ide_moments      = struct(); %Identification structure based on first two moments (Iskrev, 2010; Mutschler, 2015)
ide_spectrum     = struct(); %Identification structure based on Gram matrix of Jacobian of spectral density plus Gram matrix of Jacobian of steady state (Qu and Tkachenko, 2012; Mutschler, 2015)
ide_minimal      = struct(); %Identification structure based on mean and minimal system (Komunjer and Ng, 2011)
derivatives_info = struct(); %storage for first-order perturbation Jacobians used in dsge_likelihood.m

totparam_nbr    = length(params);     %number of all parameters to be checked
modparam_nbr    = length(indpmodel);  %number of model parameters to be checked
stderrparam_nbr = length(indpstderr); %number of stderr parameters to be checked
corrparam_nbr   = size(indpcorr,1);   %number of stderr parameters to be checked
indvobs         = bayestopt_.mf2;     %index of observable variables

if ~isempty(estim_params_)
    %estimated_params block is available, so we are able to use set_all_parameters.m
    M_ = set_all_parameters(params,estim_params_,M_);
end

%get options (see dynare_identification.m for description of options)
order               = options_ident.order;
nlags               = options_ident.ar;
advanced            = options_ident.advanced;
replic              = options_ident.replic;
periods             = options_ident.periods;
max_dim_cova_group  = options_ident.max_dim_cova_group;
normalize_jacobians = options_ident.normalize_jacobians;
checks_via_subsets  = options_ident.checks_via_subsets;
tol_deriv           = options_ident.tol_deriv;
tol_rank            = options_ident.tol_rank;
tol_sv              = options_ident.tol_sv;
no_identification_strength    = options_ident.no_identification_strength;
no_identification_reducedform = options_ident.no_identification_reducedform;
no_identification_moments     = options_ident.no_identification_moments;
no_identification_minimal     = options_ident.no_identification_minimal;
no_identification_spectrum    = options_ident.no_identification_spectrum;

%Compute linear approximation and fill dr structure
[oo_.dr,info,M_,options_,oo_] = resol(0,M_,options_,oo_);

if info(1) == 0 %no errors in solution
    % Compute parameter Jacobians for identification analysis
    [MEAN, dMEAN, REDUCEDFORM, dREDUCEDFORM, DYNAMIC, dDYNAMIC, MOMENTS, dMOMENTS, dSPECTRUM, dSPECTRUM_NO_MEAN, dMINIMAL, derivatives_info] = get_identification_jacobians(estim_params_, M_, oo_, options_, options_ident, indpmodel, indpstderr, indpcorr, indvobs);
    if isempty(dMINIMAL)
        % Komunjer and Ng is not computed if (1) minimality conditions are not fullfilled or (2) there are more shocks and measurement errors than observables, so we need to reset options
        no_identification_minimal = 1;
        options_ident.no_identification_minimal = 1;
    end

    if init
        %check stationarity
        if ~no_identification_moments
            ind_dMOMENTS = (find(max(abs(dMOMENTS'),[],1) > tol_deriv)); %index for non-zero rows
            if isempty(ind_dMOMENTS) && any(any(isnan(dMOMENTS)))
                error('There are NaN in the dMOMENTS matrix. Please check whether your model has units roots and you forgot to set diffuse_filter=1.' )
            end
            if any(any(isnan(MOMENTS)))
                error('There are NaN''s in the theoretical moments: make sure that for non-stationary models stationary transformations of non-stationary observables are used for checking identification. [TIP: use first differences].')
            end
        end
        if ~no_identification_spectrum
            ind_dSPECTRUM = (find(max(abs(dSPECTRUM'),[],1) > tol_deriv)); %index for non-zero rows
            if isempty(ind_dSPECTRUM) && any(any(isnan(dSPECTRUM)))
                warning_SPECTRUM = 'WARNING: There are NaN in the dSPECTRUM matrix. Please check whether your model has units roots and your forgot to set diffuse_filter=1.\n';
                warning_SPECTRUM = [warning_SPECTRUM '         Skip identification analysis based on spectrum.\n'];
                fprintf(warning_SPECTRUM);
                %reset options to neither display nor plot dSPECTRUM anymore
                no_identification_spectrum = 1;
                options_ident.no_identification_spectrum = 1;
            end
        end
        if ~no_identification_minimal
            ind_dMINIMAL = (find(max(abs(dMINIMAL'),[],1) > tol_deriv)); %index for non-zero rows
            if isempty(ind_dMINIMAL) && any(any(isnan(dMINIMAL)))
                warning_MINIMAL = 'WARNING: There are NaN in the dMINIMAL matrix. Please check whether your model has units roots and you forgot to set diffuse_filter=1.\n';
                warning_MINIMAL = [warning_MINIMAL '         Skip identification analysis based on minimal system.\n'];
                fprintf(warning_MINIMAL);
                %reset options to neither display nor plot dMINIMAL anymore
                no_identification_minimal = 1;
                options_ident.no_identification_minimal = 1;
            end
        end
        if no_identification_moments && no_identification_minimal && no_identification_spectrum
            %display error if all three criteria fail
            error('identification_analyis: Stationarity condition(s) failed and/or diffuse_filter option missing');
        end

        % Check order conditions
        if ~no_identification_moments
            %check order condition of Iskrev (2010)
            while length(ind_dMOMENTS) < totparam_nbr && nlags < 10
                %Try to add lags to autocovariogram if order condition fails
                disp('The number of moments with non-zero derivative is smaller than the number of parameters')
                disp(['Try increasing ar = ', int2str(nlags+1)])
                nlags = nlags + 1;
                options_ident.no_identification_minimal  = 1; %do not recompute dMINIMAL
                options_ident.no_identification_spectrum = 1; %do not recompute dSPECTRUM
                options_ident.ar = nlags;     %store new lag number
                options_.ar      = nlags;     %store new lag number
                [~, ~, ~, ~, ~, ~, MOMENTS, dMOMENTS, ~, ~, ~, ~] = get_identification_jacobians(estim_params_, M_, oo_, options_, options_ident, indpmodel, indpstderr, indpcorr, indvobs);

                ind_dMOMENTS = (find(max(abs(dMOMENTS'),[],1) > tol_deriv)); %new index with non-zero rows
            end
            options_ident.no_identification_minimal  = no_identification_minimal;  % reset option to original setting
            options_ident.no_identification_spectrum = no_identification_spectrum; % reset option to original setting
            if length(ind_dMOMENTS) < totparam_nbr
                warning_MOMENTS = 'WARNING: Order condition for dMOMENTS failed: There are not enough moments and too many parameters.\n';
                warning_MOMENTS = [warning_MOMENTS '         The number of moments with non-zero derivative is smaller than the number of parameters up to 10 lags.\n'];
                warning_MOMENTS = [warning_MOMENTS '         Either reduce the list of parameters, or further increase ar, or increase number of observables.\n'];
                warning_MOMENTS = [warning_MOMENTS '         Skip identification analysis based on moments.\n'];
                warning_MOMENTS = [warning_MOMENTS '         Skip identification strenght analysis.\n'];
                fprintf(warning_MOMENTS);
                %reset options to neither display nor plot dMOMENTS anymore
                no_identification_moments = 1;
                options_ident.no_identification_moments = 1;
                no_identification_strength = 1;
                options_ident.no_identification_strength = 1;
            end
        end
        if ~no_identification_minimal
            if length(ind_dMINIMAL) < size(dMINIMAL,2)
                warning_MINIMAL = 'WARNING: Order condition for dMINIMAL failed: There are too many parameters or too few observable variables.\n';
                warning_MINIMAL = [warning_MINIMAL '         The number of minimal system elements with non-zero derivative is smaller than the number of parameters.\n'];
                warning_MINIMAL = [warning_MINIMAL '         Either reduce the list of parameters, or increase number of observables.\n'];
                warning_MINIMAL = [warning_MINIMAL '         Skip identification analysis based on minimal state space system.\n'];
                fprintf(warning_MINIMAL);
                %resest options to neither display nor plot dMINIMAL anymore
                no_identification_minimal = 1;
                options_ident.no_identification_minimal = 1;
            end
        end
        %Note that there is no order condition for dSPECTRUM, as the matrix is always of dimension totparam_nbr by totparam_nbr
        if no_identification_moments && no_identification_minimal && no_identification_spectrum
            %error if all three criteria fail
            error('identification_analyis: Order condition(s) failed');
        end
        if ~no_identification_reducedform
            ind_dREDUCEDFORM = (find(max(abs(dREDUCEDFORM'),[],1) > tol_deriv)); %index with non-zero rows
        end
        ind_dDYNAMIC = (find(max(abs(dDYNAMIC'),[],1) > tol_deriv)); %index with non-zero rows
    end

    DYNAMIC = DYNAMIC(ind_dDYNAMIC); %focus only on non-zero entries
    si_dDYNAMIC = (dDYNAMIC(ind_dDYNAMIC,:)); %focus only on non-zero rows
    if ~no_identification_reducedform
        REDUCEDFORM = REDUCEDFORM(ind_dREDUCEDFORM); %focus only on non-zero entries
        si_dREDUCEDFORM = (dREDUCEDFORM(ind_dREDUCEDFORM,:)); %focus only on non-zero rows
    end

    if ~no_identification_moments
        MOMENTS = MOMENTS(ind_dMOMENTS); %focus only on non-zero entries
        si_dMOMENTS   = (dMOMENTS(ind_dMOMENTS,:)); %focus only on non-zero derivatives
%% MOMENTS IDENTIFICATION STRENGTH ANALYSIS
        if ~no_identification_strength && init %only for initialization of persistent vars
            ide_strength_dMOMENTS        = NaN(1,totparam_nbr); %initialize
            ide_strength_dMOMENTS_prior  = NaN(1,totparam_nbr); %initialize
            ide_uncert_unnormaliz = NaN(1,totparam_nbr); %initialize
            if prior_exist
                offset_prior = 0;
                if ~isempty(estim_params_.var_exo) %stderr parameters come first
                    normaliz_prior_std = bayestopt_.p2(1:estim_params_.nvx)'; % normalize with prior standard deviation
                    offset_prior = offset_prior+estim_params_.nvx+estim_params_.nvn;
                else
                    normaliz_prior_std=[]; %initialize
                end
                if ~isempty(estim_params_.corrx) %corr parameters come second
                    normaliz_prior_std = [normaliz_prior_std bayestopt_.p2(offset_prior+1:offset_prior+estim_params_.ncx)']; % normalize with prior standard deviation
                    offset_prior = offset_prior+estim_params_.ncx+estim_params_.ncn;
                end
                if ~isempty(estim_params_.param_vals) %model parameters come third
                    normaliz_prior_std = [normaliz_prior_std bayestopt_.p2(offset_prior+1:offset_prior+estim_params_.np)']; % normalize with prior standard deviation
                end
            else
                normaliz_prior_std = NaN(1,totparam_nbr); %no prior information available, do not normalize
            end

            try
                %try to compute asymptotic Hessian for identification strength analysis based on moments
                if options_.order > 1
                    error('IDENTIFICATION STRENGTH: Analytic computation of Hessian is not available for ''order>1''. Identification strength is based on simulated moment uncertainty');
                end                
                % reset some options for faster computations
                options_.irf                     = 0;
                options_.noprint                 = 1;
                options_.SpectralDensity.trigger = 0;
                options_.periods                 = periods+100;
                if options_.kalman_algo > 2
                    options_.kalman_algo         = 1;
                end
                analytic_derivation              = options_.analytic_derivation;
                options_.analytic_derivation     = -2; %this sets asy_Hess=1 in dsge_likelihood.m                
                [info, oo_, options_, M_] = stoch_simul(M_, options_, oo_, options_.varobs);
                dataset_ = dseries(oo_.endo_simul(options_.varobs_id,100+1:end)',dates('1Q1'), options_.varobs); %get information on moments
                derivatives_info.no_DLIK = 1;
                bounds = prior_bounds(bayestopt_, options_.prior_trunc); %reset bounds as lb and ub must only be operational during mode-finding 
                %note that for order>1 we do not provide any information on DT,DYss,DOM in derivatives_info, such that dsge_likelihood creates an error. Therefore the computation will be based on simulated_moment_uncertainty for order>1.
                [fval, info, cost_flag, DLIK, AHess, ys, trend_coeff, M_, options_, bayestopt_, oo_] = dsge_likelihood(params', dataset_, dataset_info, options_, M_, estim_params_, bayestopt_, bounds, oo_, derivatives_info); %non-used output variables need to be set for octave for some reason
                    %note that for the order of parameters in AHess we have: stderr parameters come first, corr parameters second, model parameters third. the order within these blocks corresponds to the order specified in the estimated_params block
                options_.analytic_derivation = analytic_derivation; %reset option
                AHess = -AHess; %take negative of hessian
                if min(eig(AHess))<-tol_rank
                    error('identification_analysis: Analytic Hessian is not positive semi-definite!')
                end
                ide_hess.AHess = AHess; %store asymptotic Hessian
                %normalize asymptotic hessian
                deltaM = sqrt(diag(AHess));
                iflag = any((deltaM.*deltaM)==0); %check if all second-order derivatives wrt to a single parameter are nonzero
                tildaM = AHess./((deltaM)*(deltaM')); %this normalization is for numerical purposes
                if iflag || rank(AHess)>rank(tildaM)
                    [ide_hess.cond, ide_hess.rank, ide_hess.ind0, ide_hess.indno, ide_hess.ino, ide_hess.Mco, ide_hess.Pco] = identification_checks(AHess, 0, tol_rank, tol_sv, totparam_nbr);
                else %use normalized version if possible
                    [ide_hess.cond, ide_hess.rank, ide_hess.ind0, ide_hess.indno, ide_hess.ino, ide_hess.Mco, ide_hess.Pco] = identification_checks(tildaM, 0, tol_rank, tol_sv, totparam_nbr);
                end
                indok = find(max(ide_hess.indno,[],1)==0);
                ide_uncert_unnormaliz(indok) = sqrt(diag(inv(AHess(indok,indok))))';
                ind1 = find(ide_hess.ind0);
                cmm = si_dMOMENTS(:,ind1)*((AHess(ind1,ind1))\si_dMOMENTS(:,ind1)'); %covariance matrix of moments
                temp1 = ((AHess(ind1,ind1))\si_dREDUCEDFORM(:,ind1)');
                diag_chh = sum(si_dREDUCEDFORM(:,ind1)'.*temp1)';
                ind1 = ind1(ind1>stderrparam_nbr+corrparam_nbr);
                cdynamic = si_dDYNAMIC(:,ind1-stderrparam_nbr-corrparam_nbr)*((AHess(ind1,ind1))\si_dDYNAMIC(:,ind1-stderrparam_nbr-corrparam_nbr)');
                flag_score = 1; %this is used for the title in plot_identification.m
            catch
                %Asymptotic Hessian via simulation
                if options_.order > 1       
                    % reset some options for faster computations
                    options_.irf                     = 0;
                    options_.noprint                 = 1;
                    options_.SpectralDensity.trigger = 0;
                    options_.periods                 = periods+100;
                end                
                replic = max([replic, length(ind_dMOMENTS)*3]);
                cmm = simulated_moment_uncertainty(ind_dMOMENTS, periods, replic,options_,M_,oo_); %covariance matrix of moments
                sd = sqrt(diag(cmm));
                cc = cmm./(sd*sd');
                if isoctave || matlab_ver_less_than('8.3')
                    [VV,DD] = eig(cc);
                    %fix for older Matlab versions that do not support computing left eigenvalues, see http://mathworks.com/help/releases/R2012b/matlab/ref/eig.html
                    [WW,~] = eig(cc.');
                    WW = conj(WW);
                else
                    [VV,DD,WW] = eig(cc);
                end
                id = find(diag(DD)>tol_deriv);
                siTMP = si_dMOMENTS./repmat(sd,[1 totparam_nbr]);
                MIM = (siTMP'*VV(:,id))*(DD(id,id)\(WW(:,id)'*siTMP));
                clear siTMP;
                ide_hess.AHess = MIM; %store asymptotic hessian
                %normalize asymptotic hessian
                deltaM = sqrt(diag(MIM));
                iflag = any((deltaM.*deltaM)==0);
                tildaM = MIM./((deltaM)*(deltaM'));
                if iflag || rank(MIM)>rank(tildaM)
                    [ide_hess.cond, ide_hess.rank, ide_hess.ind0, ide_hess.indno, ide_hess.ino, ide_hess.Mco, ide_hess.Pco] = identification_checks(MIM, 0, tol_rank, tol_sv, totparam_nbr);
                else %use normalized version if possible
                    [ide_hess.cond, ide_hess.rank, ide_hess.ind0, ide_hess.indno, ide_hess.ino, ide_hess.Mco, ide_hess.Pco] = identification_checks(tildaM, 0, tol_rank, tol_sv, totparam_nbr);
                end
                indok = find(max(ide_hess.indno,[],1)==0);
                ind1 = find(ide_hess.ind0);
                temp1 = ((MIM(ind1,ind1))\si_dREDUCEDFORM(:,ind1)');
                diag_chh = sum(si_dREDUCEDFORM(:,ind1)'.*temp1)';
                ind1 = ind1(ind1>stderrparam_nbr+corrparam_nbr);
                cdynamic = si_dDYNAMIC(:,ind1-stderrparam_nbr-corrparam_nbr)*((MIM(ind1,ind1))\si_dDYNAMIC(:,ind1-stderrparam_nbr-corrparam_nbr)');
                if ~isempty(indok)
                    ide_uncert_unnormaliz(indok) = (sqrt(diag(inv(tildaM(indok,indok))))./deltaM(indok))'; %sqrt(diag(inv(MIM(indok,indok))))';
                end
                flag_score = 0; %this is used for the title in plot_identification.m
            end % end of computing sample information matrix for identification strength measure

            ide_strength_dMOMENTS(indok) = (1./(ide_uncert_unnormaliz(indok)'./abs(params(indok)')));              %this is s_i in Ratto and Iskrev (2011, p.13)
            ide_strength_dMOMENTS_prior(indok) = (1./(ide_uncert_unnormaliz(indok)'./normaliz_prior_std(indok)')); %this is s_i^{prior} in Ratto and Iskrev (2011, p.14)
            sensitivity_zero_pos = find(isinf(deltaM));
            deltaM_prior = deltaM.*abs(normaliz_prior_std'); %this is \Delta_i^{prior} in Ratto and Iskrev (2011, p.14)
            deltaM = deltaM.*abs(params');                   %this is \Delta_i in Ratto and Iskrev (2011, p.14)
            quant = si_dMOMENTS./repmat(sqrt(diag(cmm)),1,totparam_nbr);
            if size(quant,1)==1
                si_dMOMENTSnorm = abs(quant).*normaliz_prior_std;
            else
                si_dMOMENTSnorm = vnorm(quant).*normaliz_prior_std;
            end
            iy = find(diag_chh);
            ind_dREDUCEDFORM = ind_dREDUCEDFORM(iy);
            si_dREDUCEDFORM = si_dREDUCEDFORM(iy,:);
            if ~isempty(iy)
                quant = si_dREDUCEDFORM./repmat(sqrt(diag_chh(iy)),1,totparam_nbr);
                if size(quant,1)==1
                    si_dREDUCEDFORMnorm = abs(quant).*normaliz_prior_std;
                else
                    si_dREDUCEDFORMnorm = vnorm(quant).*normaliz_prior_std;
                end
            else
                si_dREDUCEDFORMnorm = [];
            end
            diag_cdynamic = diag(cdynamic);
            iy = find(diag_cdynamic);
            ind_dDYNAMIC = ind_dDYNAMIC(iy);
            si_dDYNAMIC = si_dDYNAMIC(iy,:);
            if ~isempty(iy)
                quant = si_dDYNAMIC./repmat(sqrt(diag_cdynamic(iy)),1,modparam_nbr);
                if size(quant,1)==1
                    si_dDYNAMICnorm = abs(quant).*normaliz_prior_std(stderrparam_nbr+corrparam_nbr+1:end);
                else
                    si_dDYNAMICnorm = vnorm(quant).*normaliz_prior_std(stderrparam_nbr+corrparam_nbr+1:end);
                end
            else
                si_dDYNAMICnorm=[];
            end
            %store results of identification strength
            ide_hess.ide_strength_dMOMENTS        = ide_strength_dMOMENTS;
            ide_hess.ide_strength_dMOMENTS_prior  = ide_strength_dMOMENTS_prior;
            ide_hess.deltaM                       = deltaM;
            ide_hess.deltaM_prior                 = deltaM_prior;
            ide_hess.sensitivity_zero_pos         = sensitivity_zero_pos;
            ide_hess.identified_parameter_indices = indok;
            ide_hess.flag_score                   = flag_score;            
            
            ide_dynamic.si_dDYNAMICnorm           = si_dDYNAMICnorm;
            ide_moments.si_dMOMENTSnorm           = si_dMOMENTSnorm;            
            ide_reducedform.si_dREDUCEDFORMnorm   = si_dREDUCEDFORMnorm;            
        end %end of identification strength analysis
    end
    
%% Normalization of Jacobians 
% For Dynamic, ReducedForm, Moment and Minimal Jacobian: rescale each row by its largest element in absolute value
% For Spectrum: transform into correlation-type matrices (as above with AHess)
    if normalize_jacobians
        norm_dDYNAMIC = max(abs(si_dDYNAMIC),[],2);
        norm_dDYNAMIC = norm_dDYNAMIC(:,ones(size(dDYNAMIC,2),1));
    else
        norm_dDYNAMIC = 1;
    end
    % store into structure (not everything is used later on)
    ide_dynamic.ind_dDYNAMIC  = ind_dDYNAMIC;
    ide_dynamic.norm_dDYNAMIC = norm_dDYNAMIC;
    ide_dynamic.si_dDYNAMIC   = si_dDYNAMIC;
    ide_dynamic.dDYNAMIC      = dDYNAMIC;
    ide_dynamic.DYNAMIC       = DYNAMIC;

    if ~no_identification_reducedform
        if normalize_jacobians
            norm_dREDUCEDFORM = max(abs(si_dREDUCEDFORM),[],2);
            norm_dREDUCEDFORM = norm_dREDUCEDFORM(:,ones(totparam_nbr,1));
        else
            norm_dREDUCEDFORM = 1;
        end
        % store into structure (not everything is used later on)
        ide_reducedform.ind_dREDUCEDFORM  = ind_dREDUCEDFORM;
        ide_reducedform.norm_dREDUCEDFORM = norm_dREDUCEDFORM;
        ide_reducedform.si_dREDUCEDFORM   = si_dREDUCEDFORM;
        ide_reducedform.dREDUCEDFORM      = dREDUCEDFORM;
        ide_reducedform.REDUCEDFORM       = REDUCEDFORM;
    end

    if ~no_identification_moments
        if normalize_jacobians
            norm_dMOMENTS = max(abs(si_dMOMENTS),[],2);
            norm_dMOMENTS = norm_dMOMENTS(:,ones(totparam_nbr,1));
        else
            norm_dMOMENTS = 1;
        end
        % store into structure (not everything is used later on)
        ide_moments.ind_dMOMENTS  = ind_dMOMENTS;
        ide_moments.norm_dMOMENTS = norm_dMOMENTS;
        ide_moments.si_dMOMENTS   = si_dMOMENTS;
        ide_moments.dMOMENTS      = dMOMENTS;
        ide_moments.MOMENTS       = MOMENTS;

        if advanced
            % here we do not normalize (i.e. we set norm_dMOMENTS=1) as the OLS in ident_bruteforce is very sensitive to norm_dMOMENTS
            [ide_moments.pars, ide_moments.cosndMOMENTS] = ident_bruteforce(dMOMENTS(ind_dMOMENTS,:), max_dim_cova_group, options_.TeX, options_ident.name_tex, options_ident.tittxt, options_ident.tol_deriv);
        end

        %here we focus on the unnormalized S and V, which is then used in plot_identification.m and for prior_mc > 1
        [~, S, V] = svd(dMOMENTS(ind_dMOMENTS,:),0);
        S = diag(S);
        S = [S;zeros(size(dMOMENTS,2)-length(ind_dMOMENTS),1)];
        if totparam_nbr > 8
            ide_moments.S = S([1:4, end-3:end]);
            ide_moments.V = V(:,[1:4, end-3:end]);
        else
            ide_moments.S = S;
            ide_moments.V = V;
        end
    end

    if ~no_identification_minimal
        if normalize_jacobians
            ind_dMINIMAL = (find(max(abs(dMINIMAL'),[],1) > tol_deriv)); %index for non-zero rows
            norm_dMINIMAL = max(abs(dMINIMAL(ind_dMINIMAL,:)),[],2);
            norm_dMINIMAL = norm_dMINIMAL(:,ones(size(dMINIMAL,2),1));
        else
            norm_dMINIMAL = 1;
        end
        % store into structure (not everything is used later on)
        ide_minimal.ind_dMINIMAL  = ind_dMINIMAL;
        ide_minimal.norm_dMINIMAL = norm_dMINIMAL;
        ide_minimal.dMINIMAL      = dMINIMAL;
    end

    if ~no_identification_spectrum
        if normalize_jacobians
            ind_dSPECTRUM = (find(max(abs(dSPECTRUM'),[],1) > tol_deriv)); %index for non-zero rows
            tilda_dSPECTRUM = zeros(size(dSPECTRUM));
            delta_dSPECTRUM = sqrt(diag(dSPECTRUM(ind_dSPECTRUM,ind_dSPECTRUM)));
            tilda_dSPECTRUM(ind_dSPECTRUM,ind_dSPECTRUM) = dSPECTRUM(ind_dSPECTRUM,ind_dSPECTRUM)./((delta_dSPECTRUM)*(delta_dSPECTRUM'));
            norm_dSPECTRUM = max(abs(dSPECTRUM(ind_dSPECTRUM,:)),[],2);
            norm_dSPECTRUM = norm_dSPECTRUM(:,ones(size(dSPECTRUM,2),1));
        else
            tilda_dSPECTRUM = dSPECTRUM;
            norm_dSPECTRUM = 1;
        end
        % store into structure (not everything is used later on)
        ide_spectrum.ind_dSPECTRUM   = ind_dSPECTRUM;
        ide_spectrum.norm_dSPECTRUM  = norm_dSPECTRUM;
        ide_spectrum.tilda_dSPECTRUM = tilda_dSPECTRUM;
        ide_spectrum.dSPECTRUM       = dSPECTRUM;
        ide_spectrum.dSPECTRUM_NO_MEAN = dSPECTRUM_NO_MEAN;
    end
    
%% Perform identification checks, i.e. find out which parameters are involved
    if checks_via_subsets
        % identification_checks_via_subsets is only for debugging
        [ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal] = ...
            identification_checks_via_subsets(ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal, totparam_nbr, modparam_nbr, options_ident);
    else
        [ide_dynamic.cond, ide_dynamic.rank, ide_dynamic.ind0, ide_dynamic.indno, ide_dynamic.ino, ide_dynamic.Mco, ide_dynamic.Pco, ide_dynamic.jweak, ide_dynamic.jweak_pair] = ...
            identification_checks(dDYNAMIC(ind_dDYNAMIC,:)./norm_dDYNAMIC, 1, tol_rank, tol_sv, modparam_nbr);
        if ~no_identification_reducedform
            [ide_reducedform.cond, ide_reducedform.rank, ide_reducedform.ind0, ide_reducedform.indno, ide_reducedform.ino, ide_reducedform.Mco, ide_reducedform.Pco, ide_reducedform.jweak, ide_reducedform.jweak_pair] = ...
                identification_checks(dREDUCEDFORM(ind_dREDUCEDFORM,:)./norm_dREDUCEDFORM, 1, tol_rank, tol_sv, totparam_nbr);
        end
        if ~no_identification_moments
            [ide_moments.cond, ide_moments.rank, ide_moments.ind0, ide_moments.indno, ide_moments.ino, ide_moments.Mco, ide_moments.Pco, ide_moments.jweak, ide_moments.jweak_pair] = ...
                identification_checks(dMOMENTS(ind_dMOMENTS,:)./norm_dMOMENTS, 1, tol_rank, tol_sv, totparam_nbr);
        end
        if ~no_identification_minimal
            [ide_minimal.cond, ide_minimal.rank, ide_minimal.ind0, ide_minimal.indno, ide_minimal.ino, ide_minimal.Mco, ide_minimal.Pco, ide_minimal.jweak, ide_minimal.jweak_pair] = ...
                identification_checks(dMINIMAL(ind_dMINIMAL,:)./norm_dMINIMAL, 2, tol_rank, tol_sv, totparam_nbr);
        end
        if ~no_identification_spectrum
            [ide_spectrum.cond, ide_spectrum.rank, ide_spectrum.ind0, ide_spectrum.indno, ide_spectrum.ino, ide_spectrum.Mco, ide_spectrum.Pco, ide_spectrum.jweak, ide_spectrum.jweak_pair] = ...
                identification_checks(tilda_dSPECTRUM, 3, tol_rank, tol_sv, totparam_nbr);
        end
    end
end