1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
function [condX, rankX, ind0, indno, ixno, Mco, Pco, jweak, jweak_pair] = identification_checks(X, test_flag, tol_rank, tol_sv, param_nbr)
% function [condX, rankX, ind0, indno, ixno, Mco, Pco, jweak, jweak_pair] = identification_checks(X, test_flag, tol_rank, tol_sv, param_nbr)
% -------------------------------------------------------------------------
% Checks rank criteria of identification tests and finds out parameter sets
% that are not identifiable via the nullspace, pairwise correlation
% coefficients and multicorrelation coefficients
% =========================================================================
% INPUTS
% * X [matrix] dependent on test_flag:
% test_flag = 0: Sample information matrix (Ahess)
% test_flag = 1: Jacobian of Moments (J), reduced-form (dTAU) or dynamic model (dLRE)
% test_flag = 2: Jacobian of minimal system (D)
% test_flag = 3: Gram matrix (hessian or correlation type matrix) of spectrum (G)
% -------------------------------------------------------------------------
% OUTPUTS
% * cond [double] condition number of X
% * rank [double] rank of X with tolerance tol_rank
% * ind0 [vector] binary indicator for non-zero columns of H
% * indno [matrix] index of non-identified params
% * ixno [integer] number of rows in indno
% * Mco [matrix] multicollinearity coefficients
% * Pco [matrix] pairwise correlations
% * jweak [matrix] gives 1 if the parameter has Mco=1 (with tolerance tol_rank)
% * jweak_pair [(vech) matrix] gives 1 if a couple parameters has Pco=1 (with tolerance tol_rank)
% -------------------------------------------------------------------------
% This function is called by
% * identification_analysis.m
% -------------------------------------------------------------------------
% This function calls
% * cosn
% * dyn_vech
% * vnorm
% =========================================================================
% Copyright (C) 2010-2019 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% =========================================================================
if issparse(X)
X = full(X);
end
if nargin < 3 || isempty(tol_rank) || strcmp(tol_rank,'robust')
tol_rank = max(size(X)) * eps(norm(X)); %tolerance level used for rank computations
end
if nargin < 4 || isempty(tol_sv)
tol_sv = 1.e-3; %tolerance level for zero singular value
end
if nargin < 5 || isempty(param_nbr)
param_nbr = size(X,2);
end
indno = zeros(1,param_nbr);
rankrequired = size(X,2);
if test_flag == 2
% Komunjer and Ng's D
Xpar = X(:,1:param_nbr);
Xrest = X(:,(param_nbr+1):end);
else
Xpar = X;
Xrest = [];
end
% find non-zero columns at machine precision
if size(Xpar,1) > 1
ind1 = find(vnorm(Xpar) >= eps);
else
ind1 = find(abs(Xpar) >= eps); % if only one parameter
end
if test_flag == 3
Xparnonzero = Xpar(ind1,ind1); % focus on non-zero rows and columns for Qu and Tkachenko's G
else
Xparnonzero = Xpar(:,ind1); % focus on non-zero columns
end
[eu, ee2, ee1] = svd( [Xparnonzero Xrest], 0 );
condX = cond([Xparnonzero Xrest]);
rankX = rank(X, tol_rank);
icheck = 0; %initialize flag which is equal to 0 if we already found all single parameters that are not identified
if param_nbr > 0 && (rankX<rankrequired)
% search for singular values associated to ONE individual parameter
% Compute an orthonormal basis for the null space using the columns of ee1 that correspond
% to singular values equal to zero and associated to an individual parameter
ee0 = [rankX+1:size([Xparnonzero Xrest],2)]; %look into last columns with singular values of problematic parameter sets (except single parameters)
ind11 = ones(length(ind1),1); %initialize
for j=1:length(ee0)
% check if nullspace is spanned by only one parameter
if length(find(abs(ee1(:,ee0(j))) > tol_sv))==1 %note that tol_sv is not the same tolerance used for rank computations
icheck=1; %indicate that additional single parameters are found
if test_flag == 2
temp = (abs(ee1(:,ee0(j))) <= tol_sv);
ind11 = ind11.*temp(1:(end-size(Xrest,2))); % find non-zero columns
else
ind11 = ind11.*(abs(ee1(:,ee0(j))) <= tol_sv); % find non-zero columns
end
end
end
ind1 = ind1(find(ind11)); % find non-zero columns
end
if icheck
%if we found additional single parameters we need to recheck if we found all parameters
if test_flag == 3
Xparnonzero = Xpar(ind1,ind1); % focus on non-zero rows and columns for Qu and Tkachenko's G
else
Xparnonzero = Xpar(:,ind1); % focus on non-zero columns
end
[eu, ee2, ee1] = svd( [Xparnonzero Xrest], 0 );
condX = cond([Xparnonzero Xrest]);
rankX = rank(X,tol_rank);
end
ind0 = zeros(1,param_nbr); %initialize
ind0(ind1) = 1;
% find near linear dependence problems via multicorrelation coefficients
if test_flag == 0 || test_flag == 3 % G is a Gram matrix and hence should be a correlation-like matrix
if test_flag == 3 % For Qu and Tkachenko's G matrix we need to keep track of all parameters
Mco = NaN(param_nbr,1);
end
Pco=NaN(param_nbr,param_nbr); % pairwise correlation coefficient
deltaX = sqrt(diag(X(ind1,ind1)));
tildaX = X(ind1,ind1)./((deltaX)*(deltaX'));
Mco(ind1,1)=(1-1./diag(inv(tildaX))); % multicorrelation coefficent
Pco(ind1,ind1)=inv(X(ind1,ind1));
sd=sqrt(diag(Pco));
Pco = abs(Pco./((sd)*(sd')));
else
Mco = NaN(param_nbr,1);
for ii = 1:size(Xparnonzero,2)
Mco(ind1(ii),:) = cosn([Xparnonzero(:,ii) , Xparnonzero(:,find([1:1:size(Xparnonzero,2)]~=ii)), Xrest]);
end
end
%% find out which parameters are involved
ixno = 0; %initialize number of rows
if param_nbr>0 && (rankX<rankrequired || min(1-Mco)<tol_rank)
if length(ind1)<param_nbr
% single parameters with zero columns
ixno = ixno + 1;
indno(ixno,:) = (~ismember([1:param_nbr],ind1));
end
ee0 = [rankX+1:size([Xparnonzero Xrest],2)]; %look into last columns with singular values of problematic parameter sets (except single parameters)
for j=1:length(ee0)
% linearely dependent parameters
ixno = ixno + 1;
if test_flag == 2
temp = (abs(ee1(:,ee0(j))) > tol_sv)';
indno(ixno,ind1) = temp(1:(end-size(Xrest,2)));
else
indno(ixno,ind1) = (abs(ee1(:,ee0(j))) > tol_sv)';
end
end
end
%% here there is no exact linear dependence, but there are several near-dependencies, mostly due to strong pairwise colliniearities
jweak = zeros(1,param_nbr);
jweak_pair = zeros(param_nbr,param_nbr);
if test_flag ~= 0 || test_flag ~= 0
% these tests only apply to Jacobians, not to Gram matrices, i.e. Hessian-type or 'covariance' matrices
Pco = NaN(param_nbr,param_nbr);
for ii = 1:size(Xparnonzero,2)
Pco(ind1(ii),ind1(ii)) = 1;
for jj = ii+1:size(Xparnonzero,2)
Pco(ind1(ii),ind1(jj)) = cosn([Xparnonzero(:,ii),Xparnonzero(:,jj),Xrest]);
Pco(ind1(jj),ind1(ii)) = Pco(ind1(ii),ind1(jj));
end
end
for j=1:param_nbr
if Mco(j)>(1-tol_rank)
jweak(j)=1;
[~, jpair] = find(Pco(j,j+1:end)>(1-tol_rank));
for jx=1:length(jpair)
jweak_pair(j, jpair(jx)+j)=1;
jweak_pair(jpair(jx)+j, j)=1;
end
end
end
end
jweak_pair=dyn_vech(jweak_pair)'; % focus only on unique combinations
|