1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
|
function [ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal] = identification_checks_via_subsets(ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal, totparam_nbr, modparam_nbr, options_ident)
%[ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal] = identification_checks_via_subsets(ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal, totparam_nbr, modparam_nbr, options_ident)
% -------------------------------------------------------------------------
% Finds problematic sets of paramters via checking the necessary rank condition
% of the Jacobians for all possible combinations of parameters. The rank is
% computed via an inbuild function based on the SVD, similar to matlab's
% rank. The idea is that once we have the Jacobian for all parameters, we
% can easily set up Jacobians containing all combinations of parameters by
% picking the relevant columns/elements of the full Jacobian. Then the rank
% of these smaller Jacobians indicates whether this paramter combination is
% identified or not. To speed up computations:
% (1) single parameters are removed from possible higher-order sets,
% (2) for parameters that are collinear, i.e. rank failure for 2 element sets,
% we replace the second parameter by the first one, and then compute
% higher-order combinations [uncommented]
% (3) all lower-order problematic sets are removed from higher-order sets
% by an inbuild function
% (4) we could replace nchoosek by a mex version, e.g. VChooseK
% (https://de.mathworks.com/matlabcentral/fileexchange/26190-vchoosek) as
% nchoosek could be the bottleneck in terms of speed (and memory for models
% with totparam_nbr > 150)
% =========================================================================
% INPUTS
% ide_reducedform: [structure] Containing results from identification
% analysis based on the reduced-form solution (Ratto
% and Iskrev, 2011). If ide_reducedform.no_identification_reducedform
% is 1 then the search for problematic parameter sets will be skipped
% ide_moments: [structure] Containing results from identification
% analysis based on moments (Iskrev, 2010). If
% ide_moments.no_identification_moments is 1 then the search for
% problematic parameter sets will be skipped
% ide_spectrum: [structure] Containing results from identification
% analysis based on the spectrum (Qu and Tkachenko, 2012).
% If ide_spectrum.no_identification_spectrum is 1 then the search for
% problematic parameter sets will be skipped
% ide_minimal: [structure] Containing results from identification
% analysis based on the minimal state space system
% (Komunjer and Ng, 2011). If ide_minimal.no_identification_minimal
% is 1 then the search for problematic parameter sets will be skipped
% totparam_nbr: [integer] number of estimated stderr, corr and model parameters
% numzerotolrank: [double] tolerance level for rank compuations
% -------------------------------------------------------------------------
% OUTPUTS
% ide_reducedform, ide_moments, ide_spectrum, ide_minimal are augmented by the
% following fields:
% * problpars: [1 by totparam_nbr] cell with the following structure for j=1:totparam_nbr
% problpars{j}: [nonidentified_j_set_parameters_nbr by j]
% matrix with j collinear parameters in each row
% * rank: [integer] rank of Jacobian
% -------------------------------------------------------------------------
% This function is called by
% * identification_analysis.m
% =========================================================================
% Copyright (C) 2019 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% =========================================================================
%% initialize output objects and get options
no_identification_dynamic = 0; %always compute dynamic
no_identification_reducedform = options_ident.no_identification_reducedform;
no_identification_moments = options_ident.no_identification_moments;
no_identification_spectrum = options_ident.no_identification_spectrum;
no_identification_minimal = options_ident.no_identification_minimal;
tol_rank = options_ident.tol_rank;
max_dim_subsets_groups = options_ident.max_dim_subsets_groups;
dynamic_problpars = cell(1,max_dim_subsets_groups);
reducedform_problpars = cell(1,max_dim_subsets_groups);
moments_problpars = cell(1,max_dim_subsets_groups);
spectrum_problpars = cell(1,max_dim_subsets_groups);
minimal_problpars = cell(1,max_dim_subsets_groups);
indtotparam = 1:totparam_nbr; %initialize index of parameters
%% Prepare Jacobians and check rank
% initialize linear rational expectations model
if ~no_identification_dynamic
dDYNAMIC = ide_dynamic.dDYNAMIC;
dDYNAMIC(ide_dynamic.ind_dDYNAMIC,:) = dDYNAMIC(ide_dynamic.ind_dDYNAMIC,:)./ide_dynamic.norm_dDYNAMIC; %normalize
if totparam_nbr > modparam_nbr
dDYNAMIC = [zeros(size(ide_dynamic.dDYNAMIC,1),totparam_nbr-modparam_nbr) dDYNAMIC]; %add derivatives wrt stderr and corr parameters
end
if strcmp(tol_rank,'robust')
rank_dDYNAMIC = rank(full(dDYNAMIC)); %compute rank with imposed tolerance level
else
rank_dDYNAMIC = rank(full(dDYNAMIC),tol_rank); %compute rank with imposed tolerance level
end
ide_dynamic.rank = rank_dDYNAMIC;
% check rank criteria for full Jacobian
if rank_dDYNAMIC == totparam_nbr
% all parameters are identifiable
no_identification_dynamic = 1; %skip in the following
indparam_dDYNAMIC = [];
else
% there is lack of identification
indparam_dDYNAMIC = indtotparam; %initialize for nchoosek
end
else
indparam_dDYNAMIC = []; %empty for nchoosek
end
% initialize for reduced form solution criteria
if ~no_identification_reducedform
dREDUCEDFORM = ide_reducedform.dREDUCEDFORM;
dREDUCEDFORM(ide_reducedform.ind_dREDUCEDFORM,:) = dREDUCEDFORM(ide_reducedform.ind_dREDUCEDFORM,:)./ide_reducedform.norm_dREDUCEDFORM; %normalize
if strcmp(tol_rank,'robust')
rank_dREDUCEDFORM = rank(full(dREDUCEDFORM)); %compute rank with imposed tolerance level
else
rank_dREDUCEDFORM = rank(full(dREDUCEDFORM),tol_rank); %compute rank with imposed tolerance level
end
ide_reducedform.rank = rank_dREDUCEDFORM;
% check rank criteria for full Jacobian
if rank_dREDUCEDFORM == totparam_nbr
% all parameters are identifiable
no_identification_reducedform = 1; %skip in the following
indparam_dREDUCEDFORM = [];
else
% there is lack of identification
indparam_dREDUCEDFORM = indtotparam; %initialize for nchoosek
end
else
indparam_dREDUCEDFORM = []; %empty for nchoosek
end
% initialize for moments criteria
if ~no_identification_moments
dMOMENTS = ide_moments.dMOMENTS;
dMOMENTS(ide_moments.ind_dMOMENTS,:) = dMOMENTS(ide_moments.ind_dMOMENTS,:)./ide_moments.norm_dMOMENTS; %normalize
if strcmp(tol_rank,'robust')
rank_dMOMENTS = rank(full(dMOMENTS)); %compute rank with imposed tolerance level
else
rank_dMOMENTS = rank(full(dMOMENTS),tol_rank); %compute rank with imposed tolerance level
end
ide_moments.rank = rank_dMOMENTS;
% check rank criteria for full Jacobian
if rank_dMOMENTS == totparam_nbr
% all parameters are identifiable
no_identification_moments = 1; %skip in the following
indparam_dMOMENTS = [];
else
% there is lack of identification
indparam_dMOMENTS = indtotparam; %initialize for nchoosek
end
else
indparam_dMOMENTS = []; %empty for nchoosek
end
% initialize for spectrum criteria
if ~no_identification_spectrum
dSPECTRUM = ide_spectrum.tilda_dSPECTRUM; %tilda dSPECTRUM is normalized dSPECTRUM matrix in identification_analysis.m
%alternative normalization
%dSPECTRUM = ide_spectrum.dSPECTRUM;
%dSPECTRUM(ide_spectrum.ind_dSPECTRUM,:) = dSPECTRUM(ide_spectrum.ind_dSPECTRUM,:)./ide_spectrum.norm_dSPECTRUM; %normalize
if strcmp(tol_rank,'robust')
rank_dSPECTRUM = rank(full(dSPECTRUM)); %compute rank with imposed tolerance level
else
rank_dSPECTRUM = rank(full(dSPECTRUM),tol_rank); %compute rank with imposed tolerance level
end
ide_spectrum.rank = rank_dSPECTRUM;
% check rank criteria for full Jacobian
if rank_dSPECTRUM == totparam_nbr
% all parameters are identifiable
no_identification_spectrum = 1; %skip in the following
indparam_dSPECTRUM = [];
else
% lack of identification
indparam_dSPECTRUM = indtotparam; %initialize for nchoosek
end
else
indparam_dSPECTRUM = []; %empty for nchoosek
end
% initialize for minimal system criteria
if ~no_identification_minimal
dMINIMAL = ide_minimal.dMINIMAL;
dMINIMAL(ide_minimal.ind_dMINIMAL,:) = dMINIMAL(ide_minimal.ind_dMINIMAL,:)./ide_minimal.norm_dMINIMAL; %normalize
dMINIMAL_par = dMINIMAL(:,1:totparam_nbr); %part of dMINIMAL that is dependent on parameters
dMINIMAL_rest = dMINIMAL(:,(totparam_nbr+1):end); %part of dMINIMAL that is independent of parameters
if strcmp(tol_rank,'robust')
rank_dMINIMAL = rank(full(dMINIMAL)); %compute rank via SVD see function below
else
rank_dMINIMAL = rank(full(dMINIMAL),tol_rank); %compute rank via SVD see function below
end
ide_minimal.rank = rank_dMINIMAL;
dMINIMAL_fixed_rank_nbr = size(dMINIMAL_rest,2);
% check rank criteria for full Jacobian
if rank_dMINIMAL == totparam_nbr + dMINIMAL_fixed_rank_nbr
% all parameters are identifiable
no_identification_minimal = 1; %skip in the following
indparam_dMINIMAL = [];
else
% lack of identification
indparam_dMINIMAL = indtotparam; %initialize for nchoosek
end
else
indparam_dMINIMAL = []; %empty for nchoosek
end
%% Check single parameters
for j=1:totparam_nbr
if ~no_identification_dynamic
% Columns correspond to single parameters, i.e. full rank would be equal to 1
if strcmp(tol_rank,'robust')
if rank(full(dDYNAMIC(:,j))) == 0
dynamic_problpars{1} = [dynamic_problpars{1};j];
end
else
if rank(full(dDYNAMIC(:,j)),tol_rank) == 0
dynamic_problpars{1} = [dynamic_problpars{1};j];
end
end
end
if ~no_identification_reducedform
% Columns correspond to single parameters, i.e. full rank would be equal to 1
if strcmp(tol_rank,'robust')
if rank(full(dREDUCEDFORM(:,j))) == 0
reducedform_problpars{1} = [reducedform_problpars{1};j];
end
else
if rank(full(dREDUCEDFORM(:,j)),tol_rank) == 0
reducedform_problpars{1} = [reducedform_problpars{1};j];
end
end
end
if ~no_identification_moments
% Columns correspond to single parameters, i.e. full rank would be equal to 1
if strcmp(tol_rank,'robust')
if rank(full(dMOMENTS(:,j))) == 0
moments_problpars{1} = [moments_problpars{1};j];
end
else
if rank(full(dMOMENTS(:,j)),tol_rank) == 0
moments_problpars{1} = [moments_problpars{1};j];
end
end
end
if ~no_identification_spectrum
% Diagonal values correspond to single parameters, absolute value needs to be greater than tolerance level
if abs(dSPECTRUM(j,j)) < tol_rank
spectrum_problpars{1} = [spectrum_problpars{1};j];
end
end
if ~no_identification_minimal
% Columns of dMINIMAL_par correspond to single parameters, needs to be augmented with dMINIMAL_rest (part that is independent of parameters),
% full rank would be equal to 1+dMINIMAL_fixed_rank_nbr
if strcmp(tol_rank,'robust')
if rank(full([dMINIMAL_par(:,j) dMINIMAL_rest])) == dMINIMAL_fixed_rank_nbr
minimal_problpars{1} = [minimal_problpars{1};j];
end
else
if rank(full([dMINIMAL_par(:,j) dMINIMAL_rest]),tol_rank) == dMINIMAL_fixed_rank_nbr
minimal_problpars{1} = [minimal_problpars{1};j];
end
end
end
end
% Check whether lack of identification is only due to single parameters
if ~no_identification_dynamic
if size(dynamic_problpars{1},1) == (totparam_nbr - rank_dDYNAMIC)
%found all nonidentified parameter sets
no_identification_dynamic = 1; %skip in the following
else
%still parameter sets that are nonidentified
indparam_dDYNAMIC(dynamic_problpars{1}) = []; %remove single unidentified parameters from higher-order sets of indparam
end
end
if ~no_identification_reducedform
if size(reducedform_problpars{1},1) == (totparam_nbr - rank_dREDUCEDFORM)
%found all nonidentified parameter sets
no_identification_reducedform = 1; %skip in the following
else
%still parameter sets that are nonidentified
indparam_dREDUCEDFORM(reducedform_problpars{1}) = []; %remove single unidentified parameters from higher-order sets of indparam
end
end
if ~no_identification_moments
if size(moments_problpars{1},1) == (totparam_nbr - rank_dMOMENTS)
%found all nonidentified parameter sets
no_identification_moments = 1; %skip in the following
else
%still parameter sets that are nonidentified
indparam_dMOMENTS(moments_problpars{1}) = []; %remove single unidentified parameters from higher-order sets of indparam
end
end
if ~no_identification_spectrum
if size(spectrum_problpars{1},1) == (totparam_nbr - rank_dSPECTRUM)
%found all nonidentified parameter sets
no_identification_spectrum = 1; %skip in the following
else
%still parameter sets that are nonidentified
indparam_dSPECTRUM(spectrum_problpars{1}) = []; %remove single unidentified parameters from higher-order sets of indparam
end
end
if ~no_identification_minimal
if size(minimal_problpars{1},1) == (totparam_nbr + dMINIMAL_fixed_rank_nbr - rank_dMINIMAL)
%found all nonidentified parameter sets
no_identification_minimal = 1; %skip in the following
else
%still parameter sets that are nonidentified
indparam_dMINIMAL(minimal_problpars{1}) = []; %remove single unidentified parameters from higher-order sets of indparam
end
end
%% check higher order (j>1) parameter sets
%get common parameter indices from which to sample higher-order sets using nchoosek (we do not want to run nchoosek three times), most of the times indparamdMOMENTS, indparamdSPECTRUM, and indparamdMINIMAL are equal anyways
indtotparam = unique([indparam_dDYNAMIC indparam_dREDUCEDFORM indparam_dMOMENTS indparam_dSPECTRUM indparam_dMINIMAL]);
for j=2:min(length(indtotparam),max_dim_subsets_groups) % Check j-element subsets
h = dyn_waitbar(0,['Brute force collinearity for ' int2str(j) ' parameters.']);
%Step1: get all possible unique subsets of j elements
if ~no_identification_dynamic || ~no_identification_reducedform || ~no_identification_moments || ~no_identification_spectrum || ~no_identification_minimal
indexj=nchoosek(int16(indtotparam),j); % int16 speeds up nchoosek
% One could also use a mex version of nchoosek to speed this up, e.g.VChooseK from https://de.mathworks.com/matlabcentral/fileexchange/26190-vchoosek
end
%Step 2: remove already problematic sets and initialize rank vector
if ~no_identification_dynamic
indexj_dDYNAMIC = RemoveProblematicParameterSets(indexj,dynamic_problpars);
rankj_dDYNAMIC = zeros(size(indexj_dDYNAMIC,1),1);
else
indexj_dDYNAMIC = [];
end
if ~no_identification_reducedform
indexj_dREDUCEDFORM = RemoveProblematicParameterSets(indexj,reducedform_problpars);
rankj_dREDUCEDFORM = zeros(size(indexj_dREDUCEDFORM,1),1);
else
indexj_dREDUCEDFORM = [];
end
if ~no_identification_moments
indexj_dMOMENTS = RemoveProblematicParameterSets(indexj,moments_problpars);
rankj_dMOMENTS = zeros(size(indexj_dMOMENTS,1),1);
else
indexj_dMOMENTS = [];
end
if ~no_identification_spectrum
indexj_dSPECTRUM = RemoveProblematicParameterSets(indexj,spectrum_problpars);
rankj_dSPECTRUM = zeros(size(indexj_dSPECTRUM,1),1);
else
indexj_dSPECTRUM = [];
end
if ~no_identification_minimal
indexj_dMINIMAL = RemoveProblematicParameterSets(indexj,minimal_problpars);
rankj_dMINIMAL = zeros(size(indexj_dMINIMAL,1),1);
else
indexj_dMINIMAL = [];
end
%Step3: Check rank criteria on submatrices
k_dDYNAMIC=0; k_dREDUCEDFORM=0; k_dMOMENTS=0; k_dSPECTRUM=0; k_dMINIMAL=0; %initialize counters
maxk = max([size(indexj_dDYNAMIC,1), size(indexj_dREDUCEDFORM,1), size(indexj_dMOMENTS,1), size(indexj_dMINIMAL,1), size(indexj_dSPECTRUM,1)]);
for k=1:maxk
if ~no_identification_dynamic
k_dDYNAMIC = k_dDYNAMIC+1;
if k_dDYNAMIC <= size(indexj_dDYNAMIC,1)
dDYNAMIC_j = dDYNAMIC(:,indexj_dDYNAMIC(k_dDYNAMIC,:)); % pick columns that correspond to parameter subset
if strcmp(tol_rank,'robust')
rankj_dDYNAMIC(k_dDYNAMIC,1) = rank(full(dDYNAMIC_j)); %compute rank with imposed tolerance
else
rankj_dDYNAMIC(k_dDYNAMIC,1) = rank(full(dDYNAMIC_j),tol_rank); %compute rank with imposed tolerance
end
end
end
if ~no_identification_reducedform
k_dREDUCEDFORM = k_dREDUCEDFORM+1;
if k_dREDUCEDFORM <= size(indexj_dREDUCEDFORM,1)
dREDUCEDFORM_j = dREDUCEDFORM(:,indexj_dREDUCEDFORM(k_dREDUCEDFORM,:)); % pick columns that correspond to parameter subset
if strcmp(tol_rank,'robust')
rankj_dREDUCEDFORM(k_dREDUCEDFORM,1) = rank(full(dREDUCEDFORM_j)); %compute rank with imposed tolerance
else
rankj_dREDUCEDFORM(k_dREDUCEDFORM,1) = rank(full(dREDUCEDFORM_j),tol_rank); %compute rank with imposed tolerance
end
end
end
if ~no_identification_moments
k_dMOMENTS = k_dMOMENTS+1;
if k_dMOMENTS <= size(indexj_dMOMENTS,1)
dMOMENTS_j = dMOMENTS(:,indexj_dMOMENTS(k_dMOMENTS,:)); % pick columns that correspond to parameter subset
if strcmp(tol_rank,'robust')
rankj_dMOMENTS(k_dMOMENTS,1) = rank(full(dMOMENTS_j)); %compute rank with imposed tolerance
else
rankj_dMOMENTS(k_dMOMENTS,1) = rank(full(dMOMENTS_j),tol_rank); %compute rank with imposed tolerance
end
end
end
if ~no_identification_minimal
k_dMINIMAL = k_dMINIMAL+1;
if k_dMINIMAL <= size(indexj_dMINIMAL,1)
dMINIMAL_j = [dMINIMAL_par(:,indexj_dMINIMAL(k_dMINIMAL,:)) dMINIMAL_rest]; % pick columns in dMINIMAL_par that correspond to parameter subset and augment with parameter-indepdendet part dMINIMAL_rest
if strcmp(tol_rank,'robust')
rankj_dMINIMAL(k_dMINIMAL,1) = rank(full(dMINIMAL_j)); %compute rank with imposed tolerance
else
rankj_dMINIMAL(k_dMINIMAL,1) = rank(full(dMINIMAL_j),tol_rank); %compute rank with imposed tolerance
end
end
end
if ~no_identification_spectrum
k_dSPECTRUM = k_dSPECTRUM+1;
if k_dSPECTRUM <= size(indexj_dSPECTRUM,1)
dSPECTRUM_j = dSPECTRUM(indexj_dSPECTRUM(k_dSPECTRUM,:),indexj_dSPECTRUM(k_dSPECTRUM,:)); % pick rows and columns that correspond to parameter subset
if strcmp(tol_rank,'robust')
rankj_dSPECTRUM(k_dSPECTRUM,1) = rank(full(dSPECTRUM_j)); % Compute rank with imposed tol
else
rankj_dSPECTRUM(k_dSPECTRUM,1) = rank(full(dSPECTRUM_j),tol_rank); % Compute rank with imposed tol
end
end
end
dyn_waitbar(k/maxk,h)
end
%Step 4: Compare rank conditions for all possible subsets. If rank condition is violated, then the corresponding numbers of the parameters are stored
if ~no_identification_dynamic
dynamic_problpars{j} = indexj_dDYNAMIC(rankj_dDYNAMIC < j,:);
end
if ~no_identification_reducedform
reducedform_problpars{j} = indexj_dREDUCEDFORM(rankj_dREDUCEDFORM < j,:);
end
if ~no_identification_moments
moments_problpars{j} = indexj_dMOMENTS(rankj_dMOMENTS < j,:);
end
if ~no_identification_minimal
minimal_problpars{j} = indexj_dMINIMAL(rankj_dMINIMAL < (j+dMINIMAL_fixed_rank_nbr),:);
end
if ~no_identification_spectrum
spectrum_problpars{j} = indexj_dSPECTRUM(rankj_dSPECTRUM < j,:);
end
% % Optional Step 5: % remove redundant 2-sets, eg. if the problematic sets are [(p1,p2);(p1,p3);(p2,p3)], then the unique problematic parameter sets are actually only [(p1,p2),(p1,p3)]
% if j == 2
% for jj=1:max([size(dynamic_problpars{2},1), size(reducedform_problpars{2},1), size(moments_problpars{2},1), size(spectrum_problpars{2},1), size(minimal_problpars{2},1)])
% if jj <= size(dynamic_problpars{2},1)
% dynamic_problpars{2}(dynamic_problpars{2}(jj,2)==dynamic_problpars{2}(:,1)) = dynamic_problpars{2}(jj,1);
% end
% if jj <= size(reducedform_problpars{2},1)
% reducedform_problpars{2}(reducedform_problpars{2}(jj,2)==reducedform_problpars{2}(:,1)) = reducedform_problpars{2}(jj,1);
% end
% if jj <= size(moments_problpars{2},1)
% moments_problpars{2}(moments_problpars{2}(jj,2)==moments_problpars{2}(:,1)) = moments_problpars{2}(jj,1);
% end
% if jj <= size(spectrum_problpars{2},1)
% spectrum_problpars{2}(spectrum_problpars{2}(jj,2)==spectrum_problpars{2}(:,1)) = spectrum_problpars{2}(jj,1);
% end
% if jj <= size(minimal_problpars{2},1)
% minimal_problpars{2}(minimal_problpars{2}(jj,2)==minimal_problpars{2}(:,1)) = minimal_problpars{2}(jj,1);
% end
% end
% dynamic_problpars{2} = unique(dynamic_problpars{2},'rows');
% reducedform_problpars{2} = unique(reducedform_problpars{2},'rows');
% moments_problpars{2} = unique(moments_problpars{2},'rows');
% spectrum_problpars{2} = unique(spectrum_problpars{2},'rows');
% minimal_problpars{2} = unique(minimal_problpars{2},'rows');
% % in indparam we replace the second parameter of problematic 2-sets by the observational equivalent first parameter to speed up nchoosek
% idx2 = unique([dynamic_problpars{2}; reducedform_problpars{2}; moments_problpars{2}; spectrum_problpars{2}; minimal_problpars{2}],'rows');
% if ~isempty(idx2)
% indtotparam(ismember(indtotparam,idx2(:,2))) = [];
% end
% end
dyn_waitbar_close(h);
end
%% Save output variables
if ~isempty(dynamic_problpars{1})
dynamic_problpars{1}(ismember(dynamic_problpars{1},1:(totparam_nbr-modparam_nbr))) = []; % get rid of stderr and corr variables for dynamic
end
ide_dynamic.problpars = dynamic_problpars;
ide_reducedform.problpars = reducedform_problpars;
ide_moments.problpars = moments_problpars;
ide_spectrum.problpars = spectrum_problpars;
ide_minimal.problpars = minimal_problpars;
%% Auxiliary functions
function idx = RemoveProblematicParameterSets(idx,problparset)
% Remove already problematic parameters
% INPUTS:
% * idx: complete index of possible combinations
% * problparset [cell] of all lower order combinations that are problematic
% * iset [integer] number of elements in set to consider
% OUTPUTS:
% * idx: index of possible combinations without already
% problematic lower order sets
iset = size(idx,2);
for iii=1:(iset-1)
if ~isempty(problparset{iii})
for kkk=1:size(problparset{iii},1)
idx((sum(ismember(idx,problparset{iii}(kkk,:)),2)==iii),:) = [];
end
end
end
end%RemoveProblematicParameterSets ed
end %main function end
|