File: identification_checks_via_subsets.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (505 lines) | stat: -rw-r--r-- 25,439 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
function [ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal] = identification_checks_via_subsets(ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal, totparam_nbr, modparam_nbr, options_ident)
%[ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal] = identification_checks_via_subsets(ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal, totparam_nbr, modparam_nbr, options_ident)
% -------------------------------------------------------------------------
% Finds problematic sets of paramters via checking the necessary rank condition
% of the Jacobians for all possible combinations of parameters. The rank is
% computed via an inbuild function based on the SVD, similar to matlab's
% rank. The idea is that once we have the Jacobian for all parameters, we
% can easily set up Jacobians containing all combinations of parameters by
% picking the relevant columns/elements of the full Jacobian. Then the rank
% of these smaller Jacobians indicates whether this paramter combination is
% identified or not. To speed up computations:
% (1) single parameters are removed from possible higher-order sets,
% (2) for parameters that are collinear, i.e. rank failure for 2 element sets,
% we replace the second parameter by the first one, and then compute
% higher-order combinations [uncommented]
% (3) all lower-order problematic sets are removed from higher-order sets
% by an inbuild function
% (4) we could replace nchoosek by a mex version, e.g. VChooseK
% (https://de.mathworks.com/matlabcentral/fileexchange/26190-vchoosek) as
% nchoosek could be the bottleneck in terms of speed (and memory for models
% with totparam_nbr > 150)
% =========================================================================
% INPUTS
%   ide_reducedform:    [structure] Containing results from identification
%                       analysis based on the reduced-form solution (Ratto
%                       and Iskrev, 2011). If ide_reducedform.no_identification_reducedform
%                       is 1 then the search for problematic parameter sets will be skipped
%   ide_moments:        [structure] Containing results from identification
%                       analysis based on moments (Iskrev, 2010). If
%                       ide_moments.no_identification_moments is 1 then the search for
%                       problematic parameter sets will be skipped
%   ide_spectrum:       [structure] Containing results from identification
%                       analysis based on the spectrum (Qu and Tkachenko, 2012).
%                       If ide_spectrum.no_identification_spectrum is 1 then the search for
%                       problematic parameter sets will be skipped
%   ide_minimal:        [structure] Containing results from identification
%                       analysis based on the minimal state space system
%                       (Komunjer and Ng, 2011). If ide_minimal.no_identification_minimal
%                       is 1 then the search for problematic parameter sets will be skipped
%   totparam_nbr:       [integer] number of estimated stderr, corr and model parameters
%   numzerotolrank:     [double] tolerance level for rank compuations
% -------------------------------------------------------------------------
% OUTPUTS
%   ide_reducedform, ide_moments, ide_spectrum, ide_minimal are augmented by the
%   following fields:
%   * problpars:  [1 by totparam_nbr] cell with the following structure for j=1:totparam_nbr
%                  problpars{j}:   [nonidentified_j_set_parameters_nbr by j]
%                  matrix with j collinear parameters in each row
%   * rank:       [integer] rank of Jacobian
% -------------------------------------------------------------------------
% This function is called by
%   * identification_analysis.m
% =========================================================================
% Copyright (C) 2019 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
% =========================================================================

%% initialize output objects and get options
no_identification_dynamic             = 0; %always compute dynamic
no_identification_reducedform         = options_ident.no_identification_reducedform;
no_identification_moments             = options_ident.no_identification_moments;
no_identification_spectrum            = options_ident.no_identification_spectrum;
no_identification_minimal             = options_ident.no_identification_minimal;
tol_rank               = options_ident.tol_rank;
max_dim_subsets_groups = options_ident.max_dim_subsets_groups;
dynamic_problpars      = cell(1,max_dim_subsets_groups);
reducedform_problpars  = cell(1,max_dim_subsets_groups);
moments_problpars      = cell(1,max_dim_subsets_groups);
spectrum_problpars     = cell(1,max_dim_subsets_groups);
minimal_problpars      = cell(1,max_dim_subsets_groups);

indtotparam            = 1:totparam_nbr; %initialize index of parameters

%% Prepare Jacobians and check rank
% initialize linear rational expectations model
if ~no_identification_dynamic
    dDYNAMIC = ide_dynamic.dDYNAMIC;
    dDYNAMIC(ide_dynamic.ind_dDYNAMIC,:) = dDYNAMIC(ide_dynamic.ind_dDYNAMIC,:)./ide_dynamic.norm_dDYNAMIC; %normalize
    if totparam_nbr > modparam_nbr
        dDYNAMIC = [zeros(size(ide_dynamic.dDYNAMIC,1),totparam_nbr-modparam_nbr) dDYNAMIC]; %add derivatives wrt stderr and corr parameters
    end
    if strcmp(tol_rank,'robust')
        rank_dDYNAMIC = rank(full(dDYNAMIC)); %compute rank with imposed tolerance level
    else
        rank_dDYNAMIC = rank(full(dDYNAMIC),tol_rank); %compute rank with imposed tolerance level
    end
    ide_dynamic.rank = rank_dDYNAMIC;
    % check rank criteria for full Jacobian
    if rank_dDYNAMIC == totparam_nbr
        % all parameters are identifiable
        no_identification_dynamic = 1; %skip in the following
        indparam_dDYNAMIC = [];
    else
        % there is lack of identification
        indparam_dDYNAMIC = indtotparam; %initialize for nchoosek
    end
else
    indparam_dDYNAMIC = []; %empty for nchoosek
end

% initialize for reduced form solution criteria
if ~no_identification_reducedform
    dREDUCEDFORM = ide_reducedform.dREDUCEDFORM;
    dREDUCEDFORM(ide_reducedform.ind_dREDUCEDFORM,:) = dREDUCEDFORM(ide_reducedform.ind_dREDUCEDFORM,:)./ide_reducedform.norm_dREDUCEDFORM; %normalize
    if strcmp(tol_rank,'robust')
        rank_dREDUCEDFORM = rank(full(dREDUCEDFORM)); %compute rank with imposed tolerance level
    else
        rank_dREDUCEDFORM = rank(full(dREDUCEDFORM),tol_rank); %compute rank with imposed tolerance level
    end
    ide_reducedform.rank = rank_dREDUCEDFORM;
    % check rank criteria for full Jacobian
    if rank_dREDUCEDFORM == totparam_nbr
        % all parameters are identifiable
        no_identification_reducedform = 1; %skip in the following
        indparam_dREDUCEDFORM = [];
    else
        % there is lack of identification
        indparam_dREDUCEDFORM = indtotparam; %initialize for nchoosek
    end
else
    indparam_dREDUCEDFORM = []; %empty for nchoosek
end

% initialize for moments criteria
if ~no_identification_moments
    dMOMENTS = ide_moments.dMOMENTS;
    dMOMENTS(ide_moments.ind_dMOMENTS,:) = dMOMENTS(ide_moments.ind_dMOMENTS,:)./ide_moments.norm_dMOMENTS; %normalize
    if strcmp(tol_rank,'robust')
        rank_dMOMENTS = rank(full(dMOMENTS)); %compute rank with imposed tolerance level
    else
        rank_dMOMENTS = rank(full(dMOMENTS),tol_rank); %compute rank with imposed tolerance level
    end
    ide_moments.rank = rank_dMOMENTS;
    % check rank criteria for full Jacobian
    if rank_dMOMENTS == totparam_nbr
        % all parameters are identifiable
        no_identification_moments = 1; %skip in the following
        indparam_dMOMENTS = [];
    else
        % there is lack of identification
        indparam_dMOMENTS = indtotparam; %initialize for nchoosek
    end
else
    indparam_dMOMENTS = []; %empty for nchoosek
end

% initialize for spectrum criteria
if ~no_identification_spectrum
    dSPECTRUM = ide_spectrum.tilda_dSPECTRUM; %tilda dSPECTRUM is normalized dSPECTRUM matrix in identification_analysis.m
    %alternative normalization
    %dSPECTRUM = ide_spectrum.dSPECTRUM;
    %dSPECTRUM(ide_spectrum.ind_dSPECTRUM,:) = dSPECTRUM(ide_spectrum.ind_dSPECTRUM,:)./ide_spectrum.norm_dSPECTRUM; %normalize
    if strcmp(tol_rank,'robust')
        rank_dSPECTRUM = rank(full(dSPECTRUM)); %compute rank with imposed tolerance level
    else
        rank_dSPECTRUM = rank(full(dSPECTRUM),tol_rank); %compute rank with imposed tolerance level
    end
    ide_spectrum.rank = rank_dSPECTRUM;
    % check rank criteria for full Jacobian
    if rank_dSPECTRUM == totparam_nbr
        % all parameters are identifiable
        no_identification_spectrum = 1; %skip in the following
        indparam_dSPECTRUM = [];
    else
        % lack of identification
        indparam_dSPECTRUM = indtotparam; %initialize for nchoosek
    end
else
    indparam_dSPECTRUM = []; %empty for nchoosek
end

% initialize for minimal system criteria
if ~no_identification_minimal
    dMINIMAL = ide_minimal.dMINIMAL;
    dMINIMAL(ide_minimal.ind_dMINIMAL,:) = dMINIMAL(ide_minimal.ind_dMINIMAL,:)./ide_minimal.norm_dMINIMAL; %normalize
    dMINIMAL_par  = dMINIMAL(:,1:totparam_nbr);       %part of dMINIMAL that is dependent on parameters
    dMINIMAL_rest = dMINIMAL(:,(totparam_nbr+1):end); %part of dMINIMAL that is independent of parameters
    if strcmp(tol_rank,'robust')
        rank_dMINIMAL = rank(full(dMINIMAL)); %compute rank via SVD see function below
    else
        rank_dMINIMAL = rank(full(dMINIMAL),tol_rank); %compute rank via SVD see function below
    end
    ide_minimal.rank = rank_dMINIMAL;
    dMINIMAL_fixed_rank_nbr = size(dMINIMAL_rest,2);
    % check rank criteria for full Jacobian
    if rank_dMINIMAL == totparam_nbr + dMINIMAL_fixed_rank_nbr
        % all parameters are identifiable
        no_identification_minimal = 1; %skip in the following
        indparam_dMINIMAL = [];
    else
        % lack of identification
        indparam_dMINIMAL = indtotparam; %initialize for nchoosek
    end
else
    indparam_dMINIMAL = []; %empty for nchoosek
end

%% Check single parameters
for j=1:totparam_nbr
    if ~no_identification_dynamic
        % Columns correspond to single parameters, i.e. full rank would be equal to 1
        if strcmp(tol_rank,'robust')
            if rank(full(dDYNAMIC(:,j))) == 0
                dynamic_problpars{1} = [dynamic_problpars{1};j];
            end
        else
            if rank(full(dDYNAMIC(:,j)),tol_rank) == 0
                dynamic_problpars{1} = [dynamic_problpars{1};j];
            end
        end
    end
    if ~no_identification_reducedform
        % Columns correspond to single parameters, i.e. full rank would be equal to 1
        if strcmp(tol_rank,'robust')
            if rank(full(dREDUCEDFORM(:,j))) == 0
                reducedform_problpars{1} = [reducedform_problpars{1};j];
            end
        else
            if rank(full(dREDUCEDFORM(:,j)),tol_rank) == 0
                reducedform_problpars{1} = [reducedform_problpars{1};j];
            end
        end
    end
    if ~no_identification_moments        
        % Columns correspond to single parameters, i.e. full rank would be equal to 1
        if strcmp(tol_rank,'robust')
            if rank(full(dMOMENTS(:,j))) == 0
                moments_problpars{1} = [moments_problpars{1};j];
            end
        else
            if rank(full(dMOMENTS(:,j)),tol_rank) == 0
                moments_problpars{1} = [moments_problpars{1};j];
            end
        end
    end
    if ~no_identification_spectrum
        % Diagonal values correspond to single parameters, absolute value needs to be greater than tolerance level
        if abs(dSPECTRUM(j,j)) < tol_rank
            spectrum_problpars{1} = [spectrum_problpars{1};j];
        end
    end
    if ~no_identification_minimal
        % Columns of dMINIMAL_par correspond to single parameters, needs to be augmented with dMINIMAL_rest (part that is independent of parameters),
        % full rank would be equal to 1+dMINIMAL_fixed_rank_nbr
        if strcmp(tol_rank,'robust')
            if rank(full([dMINIMAL_par(:,j) dMINIMAL_rest])) == dMINIMAL_fixed_rank_nbr
                minimal_problpars{1} = [minimal_problpars{1};j];
            end
        else
            if rank(full([dMINIMAL_par(:,j) dMINIMAL_rest]),tol_rank) == dMINIMAL_fixed_rank_nbr
                minimal_problpars{1} = [minimal_problpars{1};j];
            end
        end
    end
end

% Check whether lack of identification is only due to single parameters
if ~no_identification_dynamic
    if size(dynamic_problpars{1},1) == (totparam_nbr - rank_dDYNAMIC)
        %found all nonidentified parameter sets
        no_identification_dynamic = 1; %skip in the following
    else
        %still parameter sets that are nonidentified
        indparam_dDYNAMIC(dynamic_problpars{1}) = []; %remove single unidentified parameters from higher-order sets of indparam
    end
end
if ~no_identification_reducedform
    if size(reducedform_problpars{1},1) == (totparam_nbr - rank_dREDUCEDFORM)
        %found all nonidentified parameter sets
        no_identification_reducedform = 1; %skip in the following
    else
        %still parameter sets that are nonidentified
        indparam_dREDUCEDFORM(reducedform_problpars{1}) = []; %remove single unidentified parameters from higher-order sets of indparam
    end
end
if ~no_identification_moments
    if size(moments_problpars{1},1) == (totparam_nbr - rank_dMOMENTS)
        %found all nonidentified parameter sets
        no_identification_moments = 1; %skip in the following
    else
        %still parameter sets that are nonidentified
        indparam_dMOMENTS(moments_problpars{1}) = []; %remove single unidentified parameters from higher-order sets of indparam
    end
end
if ~no_identification_spectrum
    if size(spectrum_problpars{1},1) == (totparam_nbr - rank_dSPECTRUM)
        %found all nonidentified parameter sets
        no_identification_spectrum = 1; %skip in the following
    else
        %still parameter sets that are nonidentified
        indparam_dSPECTRUM(spectrum_problpars{1}) = []; %remove single unidentified parameters from higher-order sets of indparam
    end
end
if ~no_identification_minimal
    if size(minimal_problpars{1},1) == (totparam_nbr + dMINIMAL_fixed_rank_nbr - rank_dMINIMAL)
        %found all nonidentified parameter sets
        no_identification_minimal = 1; %skip in the following
    else
        %still parameter sets that are nonidentified
        indparam_dMINIMAL(minimal_problpars{1}) = []; %remove single unidentified parameters from higher-order sets of indparam
    end
end


%% check higher order (j>1) parameter sets
%get common parameter indices from which to sample higher-order sets using nchoosek (we do not want to run nchoosek three times), most of the times indparamdMOMENTS, indparamdSPECTRUM, and indparamdMINIMAL are equal anyways
indtotparam = unique([indparam_dDYNAMIC indparam_dREDUCEDFORM indparam_dMOMENTS indparam_dSPECTRUM indparam_dMINIMAL]);

for j=2:min(length(indtotparam),max_dim_subsets_groups) % Check j-element subsets
    h = dyn_waitbar(0,['Brute force collinearity for ' int2str(j) ' parameters.']);
    %Step1: get all possible unique subsets of j elements
    if ~no_identification_dynamic || ~no_identification_reducedform || ~no_identification_moments || ~no_identification_spectrum || ~no_identification_minimal
        indexj=nchoosek(int16(indtotparam),j);  %  int16 speeds up nchoosek
        % One could also use a mex version of nchoosek to speed this up, e.g.VChooseK from https://de.mathworks.com/matlabcentral/fileexchange/26190-vchoosek
    end
    
    %Step 2: remove already problematic sets and initialize rank vector
    if ~no_identification_dynamic
        indexj_dDYNAMIC = RemoveProblematicParameterSets(indexj,dynamic_problpars);
        rankj_dDYNAMIC  = zeros(size(indexj_dDYNAMIC,1),1);
    else
        indexj_dDYNAMIC = [];
    end
    if ~no_identification_reducedform
        indexj_dREDUCEDFORM = RemoveProblematicParameterSets(indexj,reducedform_problpars);
        rankj_dREDUCEDFORM  = zeros(size(indexj_dREDUCEDFORM,1),1);
    else
        indexj_dREDUCEDFORM = [];
    end
    if ~no_identification_moments
        indexj_dMOMENTS = RemoveProblematicParameterSets(indexj,moments_problpars);
        rankj_dMOMENTS = zeros(size(indexj_dMOMENTS,1),1);
    else
        indexj_dMOMENTS = [];
    end
    if ~no_identification_spectrum
        indexj_dSPECTRUM = RemoveProblematicParameterSets(indexj,spectrum_problpars);
        rankj_dSPECTRUM = zeros(size(indexj_dSPECTRUM,1),1);
    else
        indexj_dSPECTRUM = [];
    end
    if ~no_identification_minimal
        indexj_dMINIMAL = RemoveProblematicParameterSets(indexj,minimal_problpars);
        rankj_dMINIMAL = zeros(size(indexj_dMINIMAL,1),1);
    else
        indexj_dMINIMAL = [];
    end

    %Step3: Check rank criteria on submatrices
    k_dDYNAMIC=0; k_dREDUCEDFORM=0; k_dMOMENTS=0; k_dSPECTRUM=0; k_dMINIMAL=0; %initialize counters
    maxk = max([size(indexj_dDYNAMIC,1), size(indexj_dREDUCEDFORM,1), size(indexj_dMOMENTS,1), size(indexj_dMINIMAL,1), size(indexj_dSPECTRUM,1)]);
    for k=1:maxk
        if ~no_identification_dynamic
            k_dDYNAMIC = k_dDYNAMIC+1;
            if k_dDYNAMIC <= size(indexj_dDYNAMIC,1)
                dDYNAMIC_j = dDYNAMIC(:,indexj_dDYNAMIC(k_dDYNAMIC,:)); % pick columns that correspond to parameter subset
                if strcmp(tol_rank,'robust')
                    rankj_dDYNAMIC(k_dDYNAMIC,1) = rank(full(dDYNAMIC_j)); %compute rank with imposed tolerance
                else
                    rankj_dDYNAMIC(k_dDYNAMIC,1) = rank(full(dDYNAMIC_j),tol_rank); %compute rank with imposed tolerance
                end
            end
        end
        if ~no_identification_reducedform
            k_dREDUCEDFORM = k_dREDUCEDFORM+1;
            if k_dREDUCEDFORM <= size(indexj_dREDUCEDFORM,1)
                dREDUCEDFORM_j = dREDUCEDFORM(:,indexj_dREDUCEDFORM(k_dREDUCEDFORM,:)); % pick columns that correspond to parameter subset
                if strcmp(tol_rank,'robust')
                    rankj_dREDUCEDFORM(k_dREDUCEDFORM,1) = rank(full(dREDUCEDFORM_j)); %compute rank with imposed tolerance
                else
                    rankj_dREDUCEDFORM(k_dREDUCEDFORM,1) = rank(full(dREDUCEDFORM_j),tol_rank); %compute rank with imposed tolerance
                end
            end
        end
        if ~no_identification_moments
            k_dMOMENTS = k_dMOMENTS+1;
            if k_dMOMENTS <= size(indexj_dMOMENTS,1)
                dMOMENTS_j = dMOMENTS(:,indexj_dMOMENTS(k_dMOMENTS,:)); % pick columns that correspond to parameter subset
                if strcmp(tol_rank,'robust')
                    rankj_dMOMENTS(k_dMOMENTS,1) = rank(full(dMOMENTS_j)); %compute rank with imposed tolerance
                else
                    rankj_dMOMENTS(k_dMOMENTS,1) = rank(full(dMOMENTS_j),tol_rank); %compute rank with imposed tolerance
                end
            end
        end
        if ~no_identification_minimal
            k_dMINIMAL = k_dMINIMAL+1;
            if k_dMINIMAL <= size(indexj_dMINIMAL,1)
                dMINIMAL_j = [dMINIMAL_par(:,indexj_dMINIMAL(k_dMINIMAL,:)) dMINIMAL_rest]; % pick columns in dMINIMAL_par that correspond to parameter subset and augment with parameter-indepdendet part dMINIMAL_rest
                if strcmp(tol_rank,'robust')
                    rankj_dMINIMAL(k_dMINIMAL,1) = rank(full(dMINIMAL_j)); %compute rank with imposed tolerance
                else
                    rankj_dMINIMAL(k_dMINIMAL,1) = rank(full(dMINIMAL_j),tol_rank); %compute rank with imposed tolerance
                end
            end
        end
        if ~no_identification_spectrum
            k_dSPECTRUM = k_dSPECTRUM+1;
            if k_dSPECTRUM <= size(indexj_dSPECTRUM,1)
                dSPECTRUM_j = dSPECTRUM(indexj_dSPECTRUM(k_dSPECTRUM,:),indexj_dSPECTRUM(k_dSPECTRUM,:)); % pick rows and columns that correspond to parameter subset
                if strcmp(tol_rank,'robust')
                    rankj_dSPECTRUM(k_dSPECTRUM,1) = rank(full(dSPECTRUM_j)); % Compute rank with imposed tol
                else
                    rankj_dSPECTRUM(k_dSPECTRUM,1) = rank(full(dSPECTRUM_j),tol_rank); % Compute rank with imposed tol
                end
            end
        end
        dyn_waitbar(k/maxk,h)
    end

    %Step 4: Compare rank conditions for all possible subsets. If rank condition is violated, then the corresponding numbers of the parameters are stored
    if ~no_identification_dynamic
        dynamic_problpars{j} = indexj_dDYNAMIC(rankj_dDYNAMIC < j,:);
    end
    if ~no_identification_reducedform
        reducedform_problpars{j} = indexj_dREDUCEDFORM(rankj_dREDUCEDFORM < j,:);
    end
    if ~no_identification_moments
        moments_problpars{j} = indexj_dMOMENTS(rankj_dMOMENTS < j,:);
    end
    if ~no_identification_minimal
        minimal_problpars{j} = indexj_dMINIMAL(rankj_dMINIMAL < (j+dMINIMAL_fixed_rank_nbr),:);
    end
    if ~no_identification_spectrum
        spectrum_problpars{j} = indexj_dSPECTRUM(rankj_dSPECTRUM < j,:);
    end
%     % Optional Step 5: % remove redundant 2-sets, eg. if the problematic sets are [(p1,p2);(p1,p3);(p2,p3)], then the unique problematic parameter sets are actually only [(p1,p2),(p1,p3)]        
%     if j == 2        
%         for jj=1:max([size(dynamic_problpars{2},1), size(reducedform_problpars{2},1), size(moments_problpars{2},1), size(spectrum_problpars{2},1), size(minimal_problpars{2},1)])
%             if jj <= size(dynamic_problpars{2},1)
%                 dynamic_problpars{2}(dynamic_problpars{2}(jj,2)==dynamic_problpars{2}(:,1)) = dynamic_problpars{2}(jj,1);
%             end
%             if jj <= size(reducedform_problpars{2},1)
%                 reducedform_problpars{2}(reducedform_problpars{2}(jj,2)==reducedform_problpars{2}(:,1)) = reducedform_problpars{2}(jj,1);
%             end
%             if jj <= size(moments_problpars{2},1)
%                 moments_problpars{2}(moments_problpars{2}(jj,2)==moments_problpars{2}(:,1)) = moments_problpars{2}(jj,1);
%             end
%             if jj <= size(spectrum_problpars{2},1)
%                 spectrum_problpars{2}(spectrum_problpars{2}(jj,2)==spectrum_problpars{2}(:,1)) = spectrum_problpars{2}(jj,1);
%             end
%             if jj <= size(minimal_problpars{2},1)
%                 minimal_problpars{2}(minimal_problpars{2}(jj,2)==minimal_problpars{2}(:,1)) = minimal_problpars{2}(jj,1);
%             end
%         end
%         dynamic_problpars{2} = unique(dynamic_problpars{2},'rows');
%         reducedform_problpars{2} = unique(reducedform_problpars{2},'rows');
%         moments_problpars{2} = unique(moments_problpars{2},'rows');
%         spectrum_problpars{2} = unique(spectrum_problpars{2},'rows');
%         minimal_problpars{2} = unique(minimal_problpars{2},'rows');
%         % in indparam we replace the second parameter of problematic 2-sets by the observational equivalent first parameter to speed up nchoosek
%         idx2 = unique([dynamic_problpars{2}; reducedform_problpars{2}; moments_problpars{2}; spectrum_problpars{2}; minimal_problpars{2}],'rows');
%         if ~isempty(idx2)
%             indtotparam(ismember(indtotparam,idx2(:,2))) = [];
%         end
%     end
    dyn_waitbar_close(h);
end

%% Save output variables
if ~isempty(dynamic_problpars{1})
    dynamic_problpars{1}(ismember(dynamic_problpars{1},1:(totparam_nbr-modparam_nbr))) = []; % get rid of stderr and corr variables for dynamic
end
ide_dynamic.problpars         = dynamic_problpars;
ide_reducedform.problpars = reducedform_problpars;
ide_moments.problpars     = moments_problpars;
ide_spectrum.problpars    = spectrum_problpars;
ide_minimal.problpars     = minimal_problpars;

%% Auxiliary functions
function idx = RemoveProblematicParameterSets(idx,problparset)
% Remove already problematic parameters
% INPUTS:
%   * idx:         complete index of possible combinations
%   * problparset  [cell] of all lower order combinations that are problematic
%   * iset         [integer] number of elements in set to consider
% OUTPUTS:
%   * idx:         index of possible combinations without already
%                  problematic lower order sets
    iset = size(idx,2);
    for iii=1:(iset-1)
        if ~isempty(problparset{iii})
            for kkk=1:size(problparset{iii},1)                
                idx((sum(ismember(idx,problparset{iii}(kkk,:)),2)==iii),:) = [];
            end
        end
    end 
end%RemoveProblematicParameterSets ed


end %main function end