1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
|
function [x,FVAL,EXITFLAG,OUTPUT,JACOB] = lmmcp(FUN,x,lb,ub,options,varargin)
% LMMCP solves a mixed complementarity problem.
%
% LMMCP uses a semismooth least squares formulation. The method applies a
% Levenberg-Marquardt/Gauss-Newton algorithm to a least-squares formulation.
%
% X = LMMCP(FUN,X0) tries to solve the system of nonlinear equations F(X)=0 and
% starts at the vector X0. FUN accepts a vector X and return a vector F of equation
% values F evaluated at X and, as second output if required, a matrix J, the
% Jacobian evaluated at X.
%
% X = LMMCP(FUN,X0,LB,UB) solves the mixed complementarity problem of the form:
% LB =X => F(X)>0,
% LB<=X<=UB => F(X)=0,
% X =UB => F(X)<0.
%
% X = LMMCP(FUN,X0,LB,UB,OPTIONS) solves the MCP problem using the options
% defined in the structure OPTIONS. Main fields are
% Display : control the display of iterations, 'none' (default),
% 'iter-detailed' or 'final-detailed'
% Switch from phase I to phase II
% preprocess : activate preprocessor for phase I (default = 1)
% presteps : number of iterations in phase I (default = 20)
% Termination parameters
% MaxIter : Maximum number of iterations (default = 500)
% tmin : safeguard stepsize (default = 1E-12)
% TolFun : Termination tolerance on the function value, a positive
% scalar (default = sqrt(eps))
% Stepsize parameters
% m : number of previous function values to use in the nonmonotone
% line search rule (default = 10)
% kwatch : maximum number of steps (default = 20 and should not be
% smaller than m)
% watchdog : activate the watchdog strategy (default = 1)
% Ther are other minor parameters. Please see the code for their default values
% and interpretation.
%
% [X,FVAL] = LMMCP(FUN,X0,...) returns the value of the equations FUN at X.
%
% [X,FVAL,EXITFLAG] = LMMCP(FUN,X0,...) returns EXITFLAG that describes the exit
% conditions. Possible values are
% 1 : LMMCP converged to a root
% 0 : Too many iterations
% -1 :
%
% [X,FVAL,EXITFLAG,OUTPUT] = LMMCP(FUN,X0,...) returns the structure OUTPUT that
% contains the number of iterations (OUTPUT.iterations), the value of the merit
% function (OUTPUT.Psix), and the norm of the derivative of the merit function
% (OUTPUT.normDPsix).
%
% [X,FVAL,EXITFLAG,OUTPUT,JACOB] = LMMCP(FUN,X0,...) returns JACOB the Jacobian
% of FUN evaluated at X.
%
% More details of the main program may be found in the following paper:
%
% Christian Kanzow and Stefania Petra: On a semismooth least squares formulation of
% complementarity problems with gap reduction. Optimization Methods and Software
% 19, 2004, pp. 507-525.
%
% In addition, the current implementation uses a preprocessor which is the
% projected Levenberg-Marquardt step from the following preprint:
%
% Christian Kanzow and Stefania Petra: Projected filter trust region methods for a
% semismooth least squares formulation of mixed complementarity
% problems. Optimization Methods and Software
% 22, 2007, pp. 713-735.
%
% A user's guide is also available:
%
% Christian Kanzow and Stefania Petra (2005).
% LMMCP --- A Levenberg-Marquardt-type MATLAB Solver for Mixed Complementarity Problems.
% University of Wuerzburg.
% http://www.mathematik.uni-wuerzburg.de/~kanzow/software/UserGuide.pdf
%
% This is a modification by Christophe Gouel of the original files, which can be
% downloaded from:
% http://www.mathematik.uni-wuerzburg.de/~kanzow/software/LMMCP.zip
%
% Written by Christian Kanzow and Stefania Petra
% Institute of Applied Mathematics and Statistics
% University of Wuerzburg
% Am Hubland
% 97074 Wuerzburg
% GERMANY
%
% e-mail: kanzow@mathematik.uni-wuerzburg.de
% petra@mathematik.uni-wuerzburg.de
%
% Christian Kanzow sent a private message to Dynare Team on July 8, 2014,
% confirming the free software status of lmmcp and granting unlimited
% permission to use, copy, modifiy or redistribute the file.
% Copyright (C) 2005 Christian Kanzow and Stefania Petra
% Copyright (C) 2013 Christophe Gouel
% Copyright (C) 2014-2017 Dynare Team
%
% Unlimited permission is granted to everyone to use, copy, modify or
% distribute this software.
%% Initialization
defaultopt = struct(...
'beta', 0.55,...
'Big', 1e10,...
'delta', 5,...
'deltamin', 1,...
'Display', 'none',...
'epsilon1', 1e-6,...
'eta', 0.95,...
'kwatch', 20,...
'lambda1', 0.1,...
'm', 10,...
'MaxIter', 500,...
'null', 1e-10,...
'preprocess', 1,...
'presteps', 20,...
'sigma', 1e-4,...
'sigma1', 0.5,...
'sigma2', 2,...
'tmin', 1e-12,...
'TolFun', sqrt(eps),...
'watchdog', 1);
if nargin < 4
ub = inf(size(x));
if nargin < 3
lb = -inf(size(x));
end
end
if nargin < 5 || isempty(options) || ~isstruct(options)
options = defaultopt;
else
warning('off','catstruct:DuplicatesFound')
options = catstruct(defaultopt,options);
end
warning('off','MATLAB:rankDeficientMatrix')
switch options.Display
case {'off','none'}
verbosity = 0;
case {'iter','iter-detailed'}
verbosity = 2;
case {'final','final-detailed'}
verbosity = 1;
otherwise
verbosity = 0;
end
% parameter settings
eps1 = options.epsilon1;
eps2 = 0.5*options.TolFun^2;
null = options.null;
Big = options.Big;
% maximal number of iterations
kmax = options.MaxIter;
% choice of lambda
lambda1 = options.lambda1;
lambda2 = 1-lambda1;
% steplength parameters
beta = options.beta;
sigma = options.sigma;
tmin = options.tmin;
% parameters watchdog and nonmonotone line search; redefined later
m = options.m;
kwatch = options.kwatch;
watchdog = options.watchdog; % 1=watchdog strategy active, otherwise not
% parameters for preprocessor
preprocess = options.preprocess; % 1=preprocessor used, otherwise not
presteps = options.presteps; % maximum number of preprocessing steps
% trust-region parameters for preprocessor
delta = options.delta;
deltamin = options.deltamin;
sigma1 = options.sigma1;
sigma2 = options.sigma2;
eta = options.eta;
% initializations
k = 0;
k_main = 0;
% compute a feasible starting point by projection
x = max(lb,min(x,ub));
n = length(x);
OUTPUT.Dim = n;
% definition of index sets I_l, I_u and I_lu
Indexset = zeros(n,1);
I_l = lb>-Big & ub>Big;
I_u = lb<-Big & ub<Big;
I_lu = lb>-Big & ub<Big;
Indexset(I_l) = 1;
Indexset(I_u) = 2;
Indexset(I_lu) = 3;
% function evaluations
[Fx,DFx] = feval(FUN,x,varargin{:});
% choice of NCP-function and corresponding evaluations
Phix = Phi(x,Fx,lb,ub,lambda1,lambda2,n,Indexset);
normPhix = norm(Phix);
Psix = 0.5*(Phix'*Phix);
DPhix = DPhi(x,Fx,DFx,lb,ub,lambda1,lambda2,n,Indexset);
DPsix = DPhix'*Phix;
normDPsix = norm(DPsix);
% save initial values
x0 = x;
Phix0 = Phix;
Psix0 = Psix;
DPhix0 = DPhix;
DPsix0 = DPsix;
normDPsix0 = normDPsix;
% watchdog strategy
aux = zeros(m,1);
aux(1) = Psix;
MaxPsi = Psix;
if watchdog==1
kbest = k;
xbest = x;
Phibest = Phix;
Psibest = Psix;
DPhibest = DPhix;
DPsibest = DPsix;
normDPsibest = normDPsix;
end
% initial output
if verbosity > 1
fprintf(' k Psi(x) || DPsi(x) || stepsize\n');
disp('====================================================================')
disp('********************* Output at starting point *********************')
fprintf('%4.0f %24.5e %24.5e\n',k,Psix,normDPsix);
end
%% Preprocessor using local method
if preprocess==1
if verbosity > 1
disp('************************** Preprocessor ****************************')
end
normpLM=1;
while (k < presteps) && (Psix > eps2) && (normpLM>null)
k = k+1;
% choice of Levenberg-Marquardt parameter, note that we do not use
% the condition estimator for large-scale problems, although this
% may cause numerical problems in some examples
i = false;
mu = 0;
if n<100
i = true;
mu = 1e-16;
if condest(DPhix'*DPhix)>1e25
mu = 1e-6/(k+1);
end
end
if i
pLM = [DPhix; sqrt(mu)*speye(n)]\[-Phix; zeros(n,1)];
else
pLM = -DPhix\Phix;
end
normpLM = norm(pLM);
% compute the projected Levenberg-Marquard step onto box Xk
lbnew = max(min(lb-x,0),-delta);
ubnew = min(max(ub-x,0),delta);
d = max(lbnew,min(pLM,ubnew));
xnew = x+d;
% function evaluations etc.
[Fxnew,DFxnew] = feval(FUN,xnew,varargin{:});
Phixnew = Phi(xnew,Fxnew,lb,ub,lambda1,lambda2,n,Indexset);
Psixnew = 0.5*(Phixnew'*Phixnew);
normPhixnew = norm(Phixnew);
% update of delta
if normPhixnew<=eta*normPhix
delta = max(deltamin,sigma2*delta);
elseif normPhixnew>5*eta*normPhix
delta = max(deltamin,sigma1*delta);
end
% update
x = xnew;
Fx = Fxnew;
DFx = DFxnew;
Phix = Phixnew;
Psix = Psixnew;
normPhix = normPhixnew;
DPhix = DPhi(x,Fx,DFx,lb,ub,lambda1,lambda2,n,Indexset);
DPsix = DPhix'*Phix;
normDPsix = norm(DPsix,inf);
% output at each iteration
t=1;
if verbosity > 1
fprintf('%4.0f %24.5e %24.5e %11.7g\n',k,Psix,normDPsix,t);
end
end
end
% terminate program or redefine current iterate as original initial point
if preprocess==1 && Psix<eps2
if verbosity > 0
fprintf('Psix = %1.4e\nnormDPsix = %1.4e\n',Psix,normDPsix);
disp('Approximate solution found.')
end
EXITFLAG = 1;
FVAL = Fx;
OUTPUT.iterations = k;
OUTPUT.Psix = Psix;
OUTPUT.normDPsix = normDPsix;
JACOB = DFx;
return
elseif preprocess==1 && Psix>=eps2
x=x0;
Phix=Phix0;
Psix=Psix0;
DPhix=DPhix0;
DPsix=DPsix0;
if verbosity > 1
disp('******************** Restart with initial point ********************')
fprintf('%4.0f %24.5e %24.5e\n',k_main,Psix0,normDPsix0);
end
end
%% Main algorithm
if verbosity > 1
disp('************************** Main program ****************************')
end
while (k < kmax) && (Psix > eps2)
% choice of Levenberg-Marquardt parameter, note that we do not use
% the condition estimator for large-scale problems, although this
% may cause numerical problems in some examples
i = false;
if n<100
i = true;
mu = 1e-16;
if condest(DPhix'*DPhix)>1e25
mu = 1e-1/(k+1);
end
end
% compute a Levenberg-Marquard direction
if i
d = [DPhix; sqrt(mu)*speye(n)]\[-Phix; zeros(n,1)];
else
d = -DPhix\Phix;
end
% computation of steplength t using the nonmonotone Armijo-rule
% starting with the 6-th iteration
% computation of steplength t using the monotone Armijo-rule if
% d is a 'good' descent direction or k<=5
t = 1;
xnew = x+d;
Fxnew = feval(FUN,xnew,varargin{:});
Phixnew = Phi(xnew,Fxnew,lb,ub,lambda1,lambda2,n,Indexset);
Psixnew = 0.5*(Phixnew'*Phixnew);
const = sigma*DPsix'*d;
while (Psixnew > MaxPsi + const*t) && (t > tmin)
t = t*beta;
xnew = x+t*d;
Fxnew = feval(FUN,xnew,varargin{:});
Phixnew = Phi(xnew,Fxnew,lb,ub,lambda1,lambda2,n,Indexset);
Psixnew = 0.5*(Phixnew'*Phixnew);
end
% updatings
x = xnew;
Fx = Fxnew;
Phix = Phixnew;
Psix = Psixnew;
[~,DFx] = feval(FUN,x,varargin{:});
DPhix = DPhi(x,Fx,DFx,lb,ub,lambda1,lambda2,n,Indexset);
DPsix = DPhix'*Phix;
normDPsix = norm(DPsix);
k = k+1;
k_main = k_main+1;
if k_main<=5
aux(mod(k_main,m)+1) = Psix;
MaxPsi = Psix;
else
aux(mod(k_main,m)+1) = Psix;
MaxPsi = max(aux);
end
% updatings for the watchdog strategy
if watchdog ==1
if Psix<Psibest
kbest = k;
xbest = x;
Phibest = Phix;
Psibest = Psix;
DPhibest = DPhix;
DPsibest = DPsix;
normDPsibest = normDPsix;
elseif k-kbest>kwatch
x=xbest;
Phix=Phibest;
Psix=Psibest;
DPhix=DPhibest;
DPsix=DPsibest;
normDPsix=normDPsibest;
MaxPsi=Psix;
end
end
if verbosity > 1
% output at each iteration
fprintf('%4.0f %24.5e %24.5e %11.7g\n',k,Psix,normDPsix,t);
end
end
%% Final output
if Psix<=eps2
EXITFLAG = 1;
if verbosity > 0, disp('Approximate solution found.'); end
elseif k>=kmax
EXITFLAG = 0;
if verbosity > 0, disp('Maximum iteration number reached.'); end
elseif normDPsix<=eps1
EXITFLAG = -1; % Provisoire
if verbosity > 0, disp('Approximate stationary point found.'); end
else
EXITFLAG = -1; % Provisoire
if verbosity > 0, disp('No solution found.'); end
end
FVAL = Fx;
OUTPUT.iterations = k;
OUTPUT.Psix = Psix;
OUTPUT.normDPsix = normDPsix;
JACOB = DFx;
%% Subfunctions
function y = Phi(x,Fx,lb,ub,lambda1,lambda2,n,Indexset)
%% PHI
y = zeros(2*n,1);
phi_u = sqrt((ub-x).^2+Fx.^2)-ub+x+Fx;
LZ = false(n,1); % logical zero
I0 = Indexset==0;
y(I0) = -lambda1*Fx(I0);
y([LZ; I0]) = -lambda2*Fx(I0);
I1 = Indexset==1;
y(I1) = lambda1*(-x(I1)+lb(I1)-Fx(I1)+sqrt((x(I1)-lb(I1)).^2+Fx(I1).^2));
y([LZ; I1]) = lambda2*max(0,x(I1)-lb(I1)).*max(0,Fx(I1));
I2 = Indexset==2;
y(I2) = -lambda1*phi_u(I2);
y([LZ; I2]) = lambda2*max(0,ub(I2)-x(I2)).*max(0,-Fx(I2));
I3 = Indexset==3;
y(I3) = lambda1*(sqrt((x(I3)-lb(I3)).^2+phi_u(I3).^2)-x(I3)+lb(I3)-phi_u(I3));
y([LZ; I3]) = lambda2*(max(0,x(I3)-lb(I3)).*max(0,Fx(I3))+max(0,ub(I3)-x(I3)).*max(0,-Fx(I3)));
function H = DPhi(x,Fx,DFx,lb,ub,lambda1,lambda2,n,Indexset)
%% DPHI evaluates an element of the C-subdifferential of operator Phi
null = 1e-8;
beta_l = zeros(n,1);
beta_u = zeros(n,1);
alpha_l = zeros(n,1);
alpha_u = zeros(n,1);
z = zeros(n,1);
H2 = sparse(n,n);
I = abs(x-lb)<=null & abs(Fx)<=null;
beta_l(I) = 1;
z(I) = 1;
I = abs(ub-x)<=null & abs(Fx)<=null;
beta_u(I) = 1;
z(I) = 1;
I = x-lb>=-null & Fx>=-null;
alpha_l(I) = 1;
I = ub-x>=-null & Fx<=null;
alpha_u(I) = 1;
Da = zeros(n,1);
Db = zeros(n,1);
I = 1:n;
I0 = Indexset==0;
Da(I0) = 0;
Db(I0) = -1;
H2(I0,:) = -DFx(I0,:);
I1 = Indexset==1;
denom1 = zeros(n,1);
denom2 = zeros(n,1);
if any(I1)
denom1(I1) = max(null,sqrt((x(I1)-lb(I1)).^2+Fx(I1).^2));
denom2(I1) = max(null,sqrt(z(I1).^2+(DFx(I1,:)*z).^2));
end
I1b = Indexset==1 & beta_l==0;
Da(I1b) = (x(I1b)-lb(I1b))./denom1(I1b)-1;
Db(I1b) = Fx(I1b)./denom1(I1b)-1;
I1b = Indexset==1 & beta_l~=0;
if any(I1b)
Da(I1b) = z(I1b)./denom2(I1b)-1;
Db(I1b) = (DFx(I1b,:)*z)./denom2(I1b)-1;
end
I1a = I(Indexset==1 & alpha_l==1);
if any(I1a)
H2(I1a,:) = spdiags(x(I1a)-lb(I1a), 0, length(I1a), length(I1a))*DFx(I1a,:) +...
sparse(1:length(I1a),I1a,Fx(I1a),length(I1a),n,length(I1a));
end
I2 = Indexset==2;
denom1 = zeros(n,1);
denom2 = zeros(n,1);
if any(I2)
denom1(I2) = max(null,sqrt((ub(I2)-x(I2)).^2+Fx(I2).^2));
denom2(I2) = max(null,sqrt(z(I2).^2+(DFx(I2,:)*z).^2));
end
I2b = Indexset==2 & beta_u==0;
Da(I2b) = (ub(I2b)-x(I2b))./denom1(I2b)-1;
Db(I2b) = -Fx(I2b)./denom1(I2b)-1;
I2b = Indexset==2 & beta_u~=0;
if any(I2b)
Da(I2b) = -z(I2b)./denom2(I2b)-1;
Db(I2b) = -(DFx(I2b,:)*z)./denom2(I2b)-1;
end
I2a = I(Indexset==2 & alpha_u==1);
if any(I2a)
H2(I2a,:) = bsxfun(@times,x(I2a)-ub(I2a),DFx(I2a,:))+...
sparse(1:length(I2a),I2a,Fx(I2a),length(I2a),n,length(I2a));
end
I3 = Indexset==3;
phi = zeros(n,1);
ai = zeros(n,1);
bi = zeros(n,1);
ci = zeros(n,1);
di = zeros(n,1);
denom1 = zeros(n,1);
denom2 = zeros(n,1);
denom3 = zeros(n,1);
denom4 = zeros(n,1);
if any(I3)
phi(I3) = -ub(I3)+x(I3)+Fx(I3)+sqrt((ub(I3)-x(I3)).^2+Fx(I3).^2);
denom1(I3) = max(null,sqrt((x(I3)-lb(I3)).^2+phi(I3).^2));
denom2(I3) = max(null,sqrt(z(I3).^2+(DFx(I3,:)*z).^2));
denom3(I3) = max(null,sqrt((ub(I3)-x(I3)).^2+Fx(I3).^2));
denom4(I3) = max(null,sqrt(z(I3).^2));
end
I3bu = Indexset==3 & beta_u==0;
ci(I3bu) = (x(I3bu)-ub(I3bu))./denom3(I3bu)+1;
di(I3bu) = Fx(I3bu)./denom3(I3bu)+1;
I3bu = Indexset==3 & beta_u~=0;
if any(I3bu)
ci(I3bu) = 1+z(I3bu)./denom2(I3bu);
di(I3bu) = 1+(DFx(I3bu,:)*z)./denom2(I3bu);
end
I3bl = Indexset==3 & beta_l==0;
ai(I3bl) = (x(I3bl)-lb(I3bl))./denom1(I3bl)-1;
bi(I3bl) = phi(I3bl)./denom1(I3bl)-1;
I3bl = Indexset==3 & beta_l~=0;
if any(I3bl)
ai(I3bl) = z(I3bl)./denom4(I3bl)-1;
bi(I3bl) = (ci(I3bl).*z(I3bl)+(di(I3bl,ones(1,n)).*DFx(I3bl,:))*z)./denom4(I3bl)-1;
end
Da(I3) = ai(I3)+bi(I3).*ci(I3);
Db(I3) = bi(I3).*di(I3);
I3a = I(Indexset==3 & alpha_l==1 & alpha_u==1);
if any(I3a)
H2(I3a,:) = bsxfun(@times,-lb(I3a)-ub(I3a)+2*x(I3a),DFx(I3a,:))+...
2*sparse(1:length(I3a),I3a,Fx(I3a),length(I3a),n,length(I3a));
end
I3a = I(Indexset==3 & alpha_l==1 & alpha_u~=1);
if any(I3a)
H2(I3a,:) = bsxfun(@times,x(I3a)-lb(I3a),DFx(I3a,:))+...
sparse(1:length(I3a),I3a,Fx(I3a),length(I3a),n,length(I3a));
end
I3a = I(Indexset==3 & alpha_l~=1 & alpha_u==1);
if any(I3a)
H2(I3a,:) = bsxfun(@times,x(I3a)-ub(I3a),DFx(I3a,:))+...
sparse(1:length(I3a),I3a,Fx(I3a),length(I3a),n,length(I3a));
end
H1 = spdiags(Db,0,length(Db),length(Db))*DFx;
H1 = H1 + spdiags(Da, 0, length(Da), length(Da));
H = [lambda1*H1; lambda2*H2];
|