1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
function [x,u] = lyapunov_symm(a,b,lyapunov_fixed_point_tol,qz_criterium,lyapunov_complex_threshold,method,debug) % --*-- Unitary tests --*--
% Solves the Lyapunov equation x-a*x*a' = b, for b and x symmetric matrices.
% If a has some unit roots, the function computes only the solution of the stable subsystem.
%
% INPUTS:
% a [double] n*n matrix.
% b [double] n*n matrix.
% qz_criterium [double] unit root threshold for eigenvalues
% lyapunov_fixed_point_tol [double] convergence criteria for fixed_point algorithm.
% lyapunov_complex_threshold [double] scalar, complex block threshold for the upper triangular matrix T.
% method [integer] Scalar, if method=0 [default] then U, T, n and k are not persistent.
% method=1 then U, T, n and k are declared as persistent
% variables and the Schur decomposition is triggered.
% method=2 then U, T, n and k are declared as persistent
% variables and the Schur decomposition is not performed.
% method=3 fixed point method
% OUTPUTS
% x: [double] m*m solution matrix of the lyapunov equation, where m is the dimension of the stable subsystem.
% u: [double] Schur vectors associated with unit roots
%
% ALGORITHM
% Uses reordered Schur decomposition (Bartels-Stewart algorithm)
% [method<3] or a fixed point algorithm (method==3)
%
% SPECIAL REQUIREMENTS
% None
% Copyright (C) 2006-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
if nargin<6 || isempty(method)
method = 0;
end
if nargin<7
debug = 0;
end
if method == 3
persistent X method1;
if ~isempty(method1)
method = method1;
end
if debug
fprintf('lyapunov_symm:: [method=%d] \n',method);
end
if method == 3
%tol = 1e-10;
it_fp = 0;
evol = 100;
if isempty(X) || length(X)~=length(b)
X = b;
max_it_fp = 2000;
else
max_it_fp = 300;
end
at = a';
%fixed point iterations
while evol > lyapunov_fixed_point_tol && it_fp < max_it_fp
X_old = X;
X = a * X * at + b;
evol = max(sum(abs(X - X_old))); %norm_1
%evol = max(sum(abs(X - X_old)')); %norm_inf
it_fp = it_fp + 1;
end
if debug
fprintf('lyapunov_symm:: lyapunov fixed_point iterations=%d norm=%g\n',it_fp,evol);
end
if it_fp >= max_it_fp
disp(['lyapunov_symm:: convergence not achieved in solution of Lyapunov equation after ' int2str(it_fp) ' iterations, switching method from 3 to 0']);
method1 = 0;
method = 0;
else
method1 = 3;
x = X;
return
end
end
end
if method
persistent U T k n
else
% if exist('U','var')
% clear('U','T','k','n')
% end
end
u = [];
if size(a,1) == 1
x=b/(1-a*a);
return
end
if method<2
[U,T] = schur(a);
e1 = abs(ordeig(T)) > 2-qz_criterium;
k = sum(e1); % Number of unit roots.
n = length(e1)-k; % Number of stationary variables.
if k > 0
% Selects stable roots
[U,T] = ordschur(U,T,e1);
T = T(k+1:end,k+1:end);
end
end
B = U(:,k+1:end)'*b*U(:,k+1:end);
x = zeros(n,n);
i = n;
while i >= 2
if abs(T(i,i-1))<lyapunov_complex_threshold
if i == n
c = zeros(n,1);
else
c = T(1:i,:)*(x(:,i+1:end)*T(i,i+1:end)') + ...
T(i,i)*T(1:i,i+1:end)*x(i+1:end,i);
end
q = eye(i)-T(1:i,1:i)*T(i,i);
x(1:i,i) = q\(B(1:i,i)+c);
x(i,1:i-1) = x(1:i-1,i)';
i = i - 1;
else
if i == n
c = zeros(n,1);
c1 = zeros(n,1);
else
c = T(1:i,:)*(x(:,i+1:end)*T(i,i+1:end)') + ...
T(i,i)*T(1:i,i+1:end)*x(i+1:end,i) + ...
T(i,i-1)*T(1:i,i+1:end)*x(i+1:end,i-1);
c1 = T(1:i,:)*(x(:,i+1:end)*T(i-1,i+1:end)') + ...
T(i-1,i-1)*T(1:i,i+1:end)*x(i+1:end,i-1) + ...
T(i-1,i)*T(1:i,i+1:end)*x(i+1:end,i);
end
q = [ eye(i)-T(1:i,1:i)*T(i,i) , -T(1:i,1:i)*T(i,i-1) ; ...
-T(1:i,1:i)*T(i-1,i) , eye(i)-T(1:i,1:i)*T(i-1,i-1) ];
z = q\[ B(1:i,i)+c ; B(1:i,i-1) + c1 ];
x(1:i,i) = z(1:i);
x(1:i,i-1) = z(i+1:end);
x(i,1:i-1) = x(1:i-1,i)';
x(i-1,1:i-2) = x(1:i-2,i-1)';
i = i - 2;
end
end
if i == 1
c = T(1,:)*(x(:,2:end)*T(1,2:end)') + T(1,1)*T(1,2:end)*x(2:end,1);
x(1,1) = (B(1,1)+c)/(1-T(1,1)*T(1,1));
end
x = U(:,k+1:end)*x*U(:,k+1:end)';
u = U(:,1:k);
|