1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
function optimal_bandwidth = mh_optimal_bandwidth(data,number_of_draws,bandwidth,kernel_function)
% This function gives the optimal bandwidth parameter of a kernel estimator
% used to estimate a posterior univariate density from realisations of a
% Metropolis-Hastings algorithm.
%
% INPUTS:
% data [double] Vector (number_of_draws*1) of draws.
% number_of_draws [integer] Scalar, number of draws.
% bandwidth [integer] Scalar equal to 0,-1 or -2.
% bandwidth = 0 => Silverman [1986] rule of thumb.
% bandwidth = -1 => Sheather and Jones [1991].
% bandwidth = -2 => Local bandwith parameters.
% kernel_function [string] Name of the kernel function: 'gaussian', 'triweight',
% 'uniform', 'triangle', 'epanechnikov', 'quartic',
% 'triweight' and 'cosinus'
%
% OUTPUTS:
% optimal_bandwidth: [double] Scalar or vector, optimal window width.
%
% SPECIAL REQUIREMENTS:
% none.
%
% REFERENCES:
% [1] M. Skoeld and G.O. Roberts [2003], "Density estimation for the Metropolis-Hastings algorithm".
% [2] Silverman [1986], "Density estimation for statistics and data analysis".
% Copyright (C) 2004-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% Kernel specifications.
if strcmpi(kernel_function,'gaussian')
% Kernel definition
k = @(x)inv(sqrt(2*pi))*exp(-0.5*x.^2);
% Second derivate of the kernel function
k2 = @(x)inv(sqrt(2*pi))*(-exp(-0.5*x.^2)+(x.^2).*exp(-0.5*x.^2));
% Fourth derivate of the kernel function
k4 = @(x)inv(sqrt(2*pi))*(3*exp(-0.5*x.^2)-6*(x.^2).*exp(-0.5*x.^2)+(x.^4).*exp(-0.5*x.^2));
% Sixth derivate of the kernel function
k6 = @(x)inv(sqrt(2*pi))*(-15*exp(-0.5*x.^2)+45*(x.^2).*exp(-0.5*x.^2)-15*(x.^4).*exp(-0.5*x.^2)+(x.^6).*exp(-0.5*x.^2));
mu02 = inv(2*sqrt(pi));
mu21 = 1;
elseif strcmpi(kernel_function,'uniform')
k = @(x)0.5*(abs(x) <= 1);
mu02 = 0.5;
mu21 = 1/3;
elseif strcmpi(kernel_function,'triangle')
k = @(x)(1-abs(x)).*(abs(x) <= 1);
mu02 = 2/3;
mu21 = 1/6;
elseif strcmpi(kernel_function,'epanechnikov')
k = @(x)0.75*(1-x.^2).*(abs(x) <= 1);
mu02 = 3/5;
mu21 = 1/5;
elseif strcmpi(kernel_function,'quartic')
k = @(x)0.9375*((1-x.^2).^2).*(abs(x) <= 1);
mu02 = 15/21;
mu21 = 1/7;
elseif strcmpi(kernel_function,'triweight')
k = @(x)1.09375*((1-x.^2).^3).*(abs(x) <= 1);
k2 = @(x)(105/4*(1-x.^2).*x.^2-105/16*(1-x.^2).^2).*(abs(x) <= 1);
k4 = @(x)(-1575/4*x.^2+315/4).*(abs(x) <= 1);
k6 = @(x)(-1575/2).*(abs(x) <= 1);
mu02 = 350/429;
mu21 = 1/9;
elseif strcmpi(kernel_function,'cosinus')
k = @(x)(pi/4)*cos((pi/2)*x).*(abs(x) <= 1);
k2 = @(x)(-1/16*cos(pi*x/2)*pi^3).*(abs(x) <= 1);
k4 = @(x)(1/64*cos(pi*x/2)*pi^5).*(abs(x) <= 1);
k6 = @(x)(-1/256*cos(pi*x/2)*pi^7).*(abs(x) <= 1);
mu02 = (pi^2)/16;
mu21 = (pi^2-8)/pi^2;
else
disp('mh_optimal_bandwidth:: ');
error('This kernel function is not yet implemented in Dynare!');
end
% Get the Skold and Roberts' correction.
if bandwidth==0 || bandwidth==-1
correction = correction_for_repeated_draws(data,number_of_draws);
else
correction = 0;
end
% Compute the standard deviation of the draws.
sigma = std(data);
% Optimal bandwidth parameter.
if bandwidth == 0 % Rule of thumb bandwidth parameter (Silverman [1986].
h = 2*sigma*(sqrt(pi)*mu02/(12*(mu21^2)*number_of_draws))^(1/5);
h = h*correction^(1/5);
elseif bandwidth == -1 % Sheather and Jones [1991] plug-in estimation of the optimal bandwidth parameter.
if strcmp(kernel_function,'uniform') || ...
strcmp(kernel_function,'triangle') || ...
strcmp(kernel_function,'epanechnikov') || ...
strcmp(kernel_function,'quartic')
error(['I can''t compute the optimal bandwidth with this kernel...' ...
'Try the gaussian, triweight or cosinus kernels.']);
end
Itilda4 = 8*7*6*5/(((2*sigma)^9)*sqrt(pi));
g3 = abs(2*correction*k6(0)/(mu21*Itilda4*number_of_draws))^(1/9);
Ihat3 = 0;
for i=1:number_of_draws
Ihat3 = Ihat3 + sum(k6((data(i,1)-data)/g3));
end
Ihat3 = - Ihat3/((number_of_draws^2)*g3^7);
g2 = abs(2*correction*k4(0)/(mu21*Ihat3*number_of_draws))^(1/7);
Ihat2 = 0;
for i=1:number_of_draws
Ihat2 = Ihat2 + sum(k4((data(i)-data)/g2));
end
Ihat2 = Ihat2/((number_of_draws^2)*g2^5);
h = (correction*mu02/(number_of_draws*Ihat2*mu21^2))^(1/5); % equation (22) in Skold and Roberts [2003].
elseif bandwidth == -2 % Bump killing... I compute local bandwith parameters in order to remove
% spurious bumps introduced by long rejecting periods.
if strcmp(kernel_function,'uniform') || ...
strcmp(kernel_function,'triangle') || ...
strcmp(kernel_function,'epanechnikov') || ...
strcmp(kernel_function,'quartic')
error(['I can''t compute the optimal bandwidth with this kernel...' ...
'Try the gaussian, triweight or cosinus kernels.']);
end
T = zeros(number_of_draws, 1);
for i=1:number_of_draws
j = i;
while j<=number_of_draws && (data(j,1)-data(i,1))<2*eps
j = j+1;
end
T(i) = (j-i);
correction = correction + 2*T(i) - 1;
end
correction = correction/number_of_draws;
Itilda4 = 8*7*6*5/(((2*sigma)^9)*sqrt(pi));
g3 = abs(2*correction*k6(0)/(mu21*Itilda4*number_of_draws))^(1/9);
Ihat3 = 0;
for i=1:number_of_draws
Ihat3 = Ihat3 + sum(k6((data(i,1)-data)/g3));
end
Ihat3 = -Ihat3/((n^2)*g3^7);
g2 = abs(2*correction*k4(0)/(mu21*Ihat3*number_of_draws))^(1/7);
Ihat2 = 0;
for i=1:number_of_draws
Ihat2 = Ihat2 + sum(k4((data(i)-data)/g2));
end
Ihat2 = Ihat2/((number_of_draws^2)*g2^5);
h = ((2*T-1)*mu02/(number_of_draws*Ihat2*mu21^2)).^(1/5); % h is a column vector (local banwidth parameters).
else
disp('mh_optimal_bandwidth:: ');
error('Parameter bandwidth must be equal to 0, -1 or -2.');
end
optimal_bandwidth = h;
return
function correction = correction_for_repeated_draws(draws,n)
correction = 0;
for i=1:n
j = i;
while j<=n && ( draws(j,1) - draws(i,1) )<2*eps
j = j+1;
end
correction = correction + 2*(j-i) - 1;
end
correction = correction/n;
|