1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
function [alphahat,epsilonhat,etahat,atilde,P,aK,PK,decomp,V] = missing_DiffuseKalmanSmootherH1_Z(T,Z,R,Q,H,Pinf1,Pstar1,Y,pp,mm,smpl,data_index,nk,kalman_tol,diffuse_kalman_tol,decomp_flag,state_uncertainty_flag)
% function [alphahat,epsilonhat,etahat,a,aK,PK,decomp] = DiffuseKalmanSmoother1(T,Z,R,Q,H,Pinf1,Pstar1,Y,pp,mm,smpl,data_index,nk,kalman_tol,diffuse_kalman_tol,decomp_flag,state_uncertainty_flag)
% Computes the diffuse kalman smoother without measurement error, in the case of a non-singular var-cov matrix.
%
% INPUTS
% T: mm*mm matrix
% Z: pp*mm matrix
% R: mm*rr matrix
% Q: rr*rr matrix
% H: pp*pp matrix variance of measurement errors
% Pinf1: mm*mm diagonal matrix with with q ones and m-q zeros
% Pstar1: mm*mm variance-covariance matrix with stationary variables
% Y: pp*1 vector
% pp: number of observed variables
% mm: number of state variables
% smpl: sample size
% data_index [cell] 1*smpl cell of column vectors of indices.
% nk number of forecasting periods
% kalman_tol tolerance for reciprocal condition number
% diffuse_kalman_tol tolerance for reciprocal condition number (for Finf) and the rank of Pinf
% decomp_flag if true, compute filter decomposition
% state_uncertainty_flag if true, compute uncertainty about smoothed
% state estimate
%
% OUTPUTS
% alphahat: smoothed variables (a_{t|T})
% epsilonhat:smoothed measurement errors
% etahat: smoothed shocks
% atilde: matrix of updated variables (a_{t|t})
% aK: 3D array of k step ahead filtered state variables (a_{t+k|t)
% (meaningless for periods 1:d)
% P: 3D array of one-step ahead forecast error variance
% matrices
% PK: 4D array of k-step ahead forecast error variance
% matrices (meaningless for periods 1:d)
% decomp: decomposition of the effect of shocks on filtered values
% V: 3D array of state uncertainty matrices
%
% Notes:
% Outputs are stored in decision-rule order, i.e. to get variables in order of declaration
% as in M_.endo_names, ones needs code along the lines of:
% variables_declaration_order(dr.order_var,:) = alphahat
%
% SPECIAL REQUIREMENTS
% See "Filtering and Smoothing of State Vector for Diffuse State Space
% Models", S.J. Koopman and J. Durbin (2003, in Journal of Time Series
% Analysis, vol. 24(1), pp. 85-98).
% Durbin/Koopman (2012): "Time Series Analysis by State Space Methods", Oxford University Press,
% Second Edition, Ch. 5
% Copyright (C) 2004-2018 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% modified by M. Ratto:
% new output argument aK (1-step to k-step predictions)
% new options_.nk: the max step ahed prediction in aK (default is 4)
% new crit1 value for rank of Pinf
% it is assured that P is symmetric
d = 0;
decomp = [];
spinf = size(Pinf1);
spstar = size(Pstar1);
v = zeros(pp,smpl);
a = zeros(mm,smpl+1);
atilde = zeros(mm,smpl);
aK = zeros(nk,mm,smpl+nk);
PK = zeros(nk,mm,mm,smpl+nk);
iF = zeros(pp,pp,smpl);
Fstar = zeros(pp,pp,smpl);
iFstar = zeros(pp,pp,smpl);
iFinf = zeros(pp,pp,smpl);
K = zeros(mm,pp,smpl);
L = zeros(mm,mm,smpl);
Linf = zeros(mm,mm,smpl);
Lstar = zeros(mm,mm,smpl);
Kstar = zeros(mm,pp,smpl);
Kinf = zeros(mm,pp,smpl);
P = zeros(mm,mm,smpl+1);
Pstar = zeros(spstar(1),spstar(2),smpl+1);
Pstar(:,:,1) = Pstar1;
Pinf = zeros(spinf(1),spinf(2),smpl+1);
Pinf(:,:,1) = Pinf1;
rr = size(Q,1);
QQ = R*Q*transpose(R);
QRt = Q*transpose(R);
alphahat = zeros(mm,smpl);
etahat = zeros(rr,smpl);
epsilonhat = zeros(rr,smpl);
r = zeros(mm,smpl+1);
Finf_singular = zeros(1,smpl);
if state_uncertainty_flag
V = zeros(mm,mm,smpl);
N = zeros(mm,mm,smpl+1);
else
V=[];
end
t = 0;
while rank(Pinf(:,:,t+1),diffuse_kalman_tol) && t<smpl
t = t+1;
di = data_index{t};
if isempty(di)
%no observations, propagate forward without updating based on
%observations
atilde(:,t) = a(:,t);
a(:,t+1) = T*atilde(:,t);
Linf(:,:,t) = T;
Pstar(:,:,t+1) = T*Pstar(:,:,t)*T' + QQ;
Pinf(:,:,t+1) = T*Pinf(:,:,t)*T';
else
ZZ = Z(di,:); %span selector matrix
v(di,t)= Y(di,t) - ZZ*a(:,t); %get prediction error v^(0) in (5.13) DK (2012)
Finf = ZZ*Pinf(:,:,t)*ZZ'; % (5.7) in DK (2012)
if rcond(Finf) < diffuse_kalman_tol %F_{\infty,t} = 0
if ~all(abs(Finf(:)) < diffuse_kalman_tol) %rank-deficient but not rank 0
% The univariate diffuse kalman filter should be used.
alphahat = Inf;
return
else %rank of F_{\infty,t} is 0
Finf_singular(1,t) = 1;
Fstar(di,di,t) = ZZ*Pstar(:,:,t)*ZZ' + H(di,di); % (5.7) in DK (2012)
if rcond(Fstar(di,di,t)) < kalman_tol %F_{*} is singular
if ~all(all(abs(Fstar(di,di,t))<kalman_tol))
% The univariate diffuse kalman filter should be used.
alphahat = Inf;
return
else %rank 0
a(:,t+1) = T*a(:,t);
Pstar(:,:,t+1) = T*Pstar(:,:,t)*transpose(T)+QQ;
Pinf(:,:,t+1) = T*Pinf(:,:,t)*transpose(T);
end
else
iFstar(di,di,t) = inv(Fstar(di,di,t));
Kstar(:,di,t) = Pstar(:,:,t)*ZZ'*iFstar(di,di,t); %(5.15) of DK (2012) with Kstar=T^{-1}*K^(0)
Pinf(:,:,t+1) = T*Pinf(:,:,t)*transpose(T); % DK (2012), 5.16
Lstar(:,:,t) = T - T*Kstar(:,di,t)*ZZ; %L^(0) in DK (2012), eq. 5.12
Pstar(:,:,t+1) = T*Pstar(:,:,t)*Lstar(:,:,t)'+QQ; % (5.17) DK (2012)
a(:,t+1) = T*(a(:,t)+Kstar(:,di,t)*v(di,t)); % (5.13) DK (2012)
end
end
else
%see notes in kalman_filter_d.m for details of computations
iFinf(di,di,t) = inv(Finf);
Kinf(:,di,t) = Pinf(:,:,t)*ZZ'*iFinf(di,di,t); %define Kinf=T^{-1}*K_0 with M_{\infty}=Pinf*Z'
atilde(:,t) = a(:,t) + Kinf(:,di,t)*v(di,t);
Linf(:,:,t) = T - T*Kinf(:,di,t)*ZZ; %L^(0) in DK (2012), eq. 5.12
Fstar(di,di,t) = ZZ*Pstar(:,:,t)*ZZ' + H(di,di); %(5.7) DK(2012)
Kstar(:,di,t) = (Pstar(:,:,t)*ZZ'-Kinf(:,di,t)*Fstar(di,di,t))*iFinf(di,di,t); %(5.12) DK(2012) with Kstar=T^{-1}*K^(1); note that there is a typo in DK (2003) with "+ Kinf" instead of "- Kinf", but it is correct in their appendix
Pstar(:,:,t+1) = T*Pstar(:,:,t)*Linf(:,:,t)'-T*Kinf(:,di,t)*Finf*Kstar(:,di,t)'*T' + QQ; %(5.14) DK(2012)
Pinf(:,:,t+1) = T*Pinf(:,:,t)*Linf(:,:,t)'; %(5.14) DK(2012)
end
a(:,t+1) = T*atilde(:,t);
aK(1,:,t+1) = a(:,t+1);
% isn't a meaningless as long as we are in the diffuse part? MJ
for jnk=2:nk
aK(jnk,:,t+jnk) = T*dynare_squeeze(aK(jnk-1,:,t+jnk-1));
end
end
end
d = t;
P(:,:,d+1) = Pstar(:,:,d+1);
iFinf = iFinf(:,:,1:d);
iFstar= iFstar(:,:,1:d);
Linf = Linf(:,:,1:d);
Lstar = Lstar(:,:,1:d);
Kstar = Kstar(:,:,1:d);
Pstar = Pstar(:,:,1:d);
Pinf = Pinf(:,:,1:d);
notsteady = 1;
while notsteady && t<smpl
t = t+1;
P(:,:,t)=tril(P(:,:,t))+transpose(tril(P(:,:,t),-1)); % make sure P is symmetric
di = data_index{t};
if isempty(di)
atilde(:,t) = a(:,t);
L(:,:,t) = T;
P(:,:,t+1) = T*P(:,:,t)*T' + QQ; %p. 111, DK(2012)
else
ZZ = Z(di,:);
v(di,t) = Y(di,t) - ZZ*a(:,t);
F = ZZ*P(:,:,t)*ZZ' + H(di,di);
sig=sqrt(diag(F));
if any(diag(F)<kalman_tol) || rcond(F./(sig*sig')) < kalman_tol
alphahat = Inf;
return
end
iF(di,di,t) = inv(F./(sig*sig'))./(sig*sig');
PZI = P(:,:,t)*ZZ'*iF(di,di,t);
atilde(:,t) = a(:,t) + PZI*v(di,t);
K(:,di,t) = T*PZI;
L(:,:,t) = T-K(:,di,t)*ZZ;
P(:,:,t+1) = T*P(:,:,t)*L(:,:,t)' + QQ;
end
a(:,t+1) = T*atilde(:,t);
Pf = P(:,:,t);
aK(1,:,t+1) = a(:,t+1);
for jnk=1:nk
Pf = T*Pf*T' + QQ;
PK(jnk,:,:,t+jnk) = Pf;
if jnk>1
aK(jnk,:,t+jnk) = T*dynare_squeeze(aK(jnk-1,:,t+jnk-1));
end
end
% notsteady = ~(max(max(abs(P(:,:,t+1)-P(:,:,t))))<kalman_tol);
end
% $$$ if t<smpl
% $$$ PZI_s = PZI;
% $$$ K_s = K(:,:,t);
% $$$ iF_s = iF(:,:,t);
% $$$ P_s = P(:,:,t+1);
% $$$ P = cat(3,P(:,:,1:t),repmat(P_s,[1 1 smpl-t]));
% $$$ iF = cat(3,iF(:,:,1:t),repmat(iF_s,[1 1 smpl-t]));
% $$$ L = cat(3,L(:,:,1:t),repmat(T-K_s*Z,[1 1 smpl-t]));
% $$$ K = cat(3,K(:,:,1:t),repmat(T*P_s*Z'*iF_s,[1 1 smpl-t]));
% $$$ end
% $$$ while t<smpl
% $$$ t=t+1;
% $$$ v(:,t) = Y(:,t) - Z*a(:,t);
% $$$ atilde(:,t) = a(:,t) + PZI*v(:,t);
% $$$ a(:,t+1) = T*atilde(:,t);
% $$$ Pf = P(:,:,t);
% $$$ for jnk=1:nk,
% $$$ Pf = T*Pf*T' + QQ;
% $$$ aK(jnk,:,t+jnk) = T^jnk*atilde(:,t);
% $$$ PK(jnk,:,:,t+jnk) = Pf;
% $$$ end
% $$$ end
%% backward pass; r_T and N_T, stored in entry (smpl+1) were initialized at 0
t = smpl+1;
while t>d+1
t = t-1;
di = data_index{t};
if isempty(di)
% in this case, L is simply T due to Z=0, so that DK (2012), eq. 4.93 obtains
r(:,t) = L(:,:,t)'*r(:,t+1); %compute r_{t-1}, DK (2012), eq. 4.38 with Z=0
if state_uncertainty_flag
N(:,:,t)=L(:,:,t)'*N(:,:,t+1)*L(:,:,t); %compute N_{t-1}, DK (2012), eq. 4.42 with Z=0
end
else
ZZ = Z(di,:);
r(:,t) = ZZ'*iF(di,di,t)*v(di,t) + L(:,:,t)'*r(:,t+1); %compute r_{t-1}, DK (2012), eq. 4.38
if state_uncertainty_flag
N(:,:,t)=ZZ'*iF(di,di,t)*ZZ+L(:,:,t)'*N(:,:,t+1)*L(:,:,t); %compute N_{t-1}, DK (2012), eq. 4.42
end
end
alphahat(:,t) = a(:,t) + P(:,:,t)*r(:,t); %DK (2012), eq. 4.35
etahat(:,t) = QRt*r(:,t); %DK (2012), eq. 4.63
if state_uncertainty_flag
V(:,:,t) = P(:,:,t)-P(:,:,t)*N(:,:,t)*P(:,:,t); %DK (2012), eq. 4.43
end
end
if d %diffuse periods
% initialize r_d^(0) and r_d^(1) as below DK (2012), eq. 5.23
r0 = zeros(mm,d+1);
r0(:,d+1) = r(:,d+1); %set r0_{d}, i.e. shifted by one period
r1 = zeros(mm,d+1); %set r1_{d}, i.e. shifted by one period
if state_uncertainty_flag
%N_0 at (d+1) is N(d+1), so we can use N for continuing and storing N_0-recursion
N_1=zeros(mm,mm,d+1); %set N_1_{d}=0, i.e. shifted by one period, below DK (2012), eq. 5.26
N_2=zeros(mm,mm,d+1); %set N_2_{d}=0, i.e. shifted by one period, below DK (2012), eq. 5.26
end
for t = d:-1:1
di = data_index{t};
if isempty(di)
r1(:,t) = Linf(:,:,t)'*r1(:,t+1);
else
if ~Finf_singular(1,t)
r0(:,t) = Linf(:,:,t)'*r0(:,t+1); % DK (2012), eq. 5.21 where L^(0) is named Linf
r1(:,t) = Z(di,:)'*(iFinf(di,di,t)*v(di,t)-Kstar(:,di,t)'*T'*r0(:,t+1)) ...
+ Linf(:,:,t)'*r1(:,t+1); % DK (2012), eq. 5.21, noting that i) F^(1)=(F^Inf)^(-1)(see 5.10), ii) where L^(0) is named Linf, and iii) Kstar=T^{-1}*K^(1)
if state_uncertainty_flag
L_1=(-T*Kstar(:,di,t)*Z(di,:)); % noting that Kstar=T^{-1}*K^(1)
N(:,:,t)=Linf(:,:,t)'*N(:,:,t+1)*Linf(:,:,t); % DK (2012), eq. 5.19, noting that L^(0) is named Linf
N_1(:,:,t)=Z(di,:)'*iFinf(di,di,t)*Z(di,:)+Linf(:,:,t)'*N_1(:,:,t+1)*Linf(:,:,t)...
+L_1'*N(:,:,t+1)*Linf(:,:,t); % DK (2012), eq. 5.29; note that, compared to DK (2003) this drops the term (L_1'*N(:,:,t+1)*Linf(:,:,t))' in the recursion due to it entering premultiplied by Pinf when computing V, and Pinf*Linf'*N=0
N_2(:,:,t)=Z(di,:)'*(-iFinf(di,di,t)*Fstar(di,di,t)*iFinf(di,di,t))*Z(di,:) ...
+ Linf(:,:,t)'*N_2(:,:,t+1)*Linf(:,:,t)...
+ Linf(:,:,t)'*N_1(:,:,t+1)*L_1...
+ L_1'*N_1(:,:,t+1)'*Linf(:,:,t)...
+ L_1'*N(:,:,t+1)*L_1; % DK (2012), eq. 5.29
end
else
r0(:,t) = Z(di,:)'*iFstar(di,di,t)*v(di,t)-Lstar(:,:,t)'*r0(:,t+1); % DK (2003), eq. (14)
r1(:,t) = T'*r1(:,t+1); % DK (2003), eq. (14)
if state_uncertainty_flag
N(:,:,t)=Z(di,:)'*iFstar(di,di,t)*Z(di,:)...
+Lstar(:,:,t)'*N(:,:,t+1)*Lstar(:,:,t); % DK (2003), eq. (14)
N_1(:,:,t)=T'*N_1(:,:,t+1)*Lstar(:,:,t); % DK (2003), eq. (14)
N_2(:,:,t)=T'*N_2(:,:,t+1)*T'; % DK (2003), eq. (14)
end
end
end
alphahat(:,t) = a(:,t) + Pstar(:,:,t)*r0(:,t) + Pinf(:,:,t)*r1(:,t); % DK (2012), eq. 5.23
etahat(:,t) = QRt*r0(:,t); % DK (2012), p. 135
if state_uncertainty_flag
V(:,:,t)=Pstar(:,:,t)-Pstar(:,:,t)*N(:,:,t)*Pstar(:,:,t)...
-(Pinf(:,:,t)*N_1(:,:,t)*Pstar(:,:,t))'...
- Pinf(:,:,t)*N_1(:,:,t)*Pstar(:,:,t)...
- Pinf(:,:,t)*N_2(:,:,t)*Pinf(:,:,t); % DK (2012), eq. 5.30
end
end
end
if decomp_flag
decomp = zeros(nk,mm,rr,smpl+nk);
ZRQinv = inv(Z*QQ*Z');
for t = max(d,1):smpl
di = data_index{t};
% calculate eta_tm1t
eta_tm1t = QRt*Z(di,:)'*iF(di,di,t)*v(di,t);
AAA = P(:,:,t)*Z(di,:)'*ZRQinv(di,di)*bsxfun(@times,Z(di,:)*R,eta_tm1t');
% calculate decomposition
decomp(1,:,:,t+1) = AAA;
for h = 2:nk
AAA = T*AAA;
decomp(h,:,:,t+h) = AAA;
end
end
end
epsilonhat = Y-Z*alphahat;
|