File: model_comparison.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (180 lines) | stat: -rw-r--r-- 6,717 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
function oo = model_comparison(ModelNames,ModelPriors,oo,options_,fname)
% function oo = model_comparison(ModelNames,ModelPriors,oo,options_,fname)
% Conducts Bayesian model comparison. This function computes Odds ratios and
% estimates a posterior density over a collection of models.
%
% INPUTS
%    ModelNames       [string]     m*1 cell array of string.
%    ModelPriors      [double]     m*1 vector of prior probabilities
%    oo               [struct]     Dynare results structure
%    options_         [struct]     Dynare options structure
%    fname            [string]     name of the current mod-file
%
% OUTPUTS
%    oo               [struct]    Dynare results structure containing the
%                                   results in a field PosteriorOddsTable
%
% ALGORITHM
%    See e.g. Koop (2003): Bayesian Econometrics
%
% SPECIAL REQUIREMENTS
%    none

% Copyright (C) 2007-2018 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

NumberOfModels = size(ModelNames,2);

skipline(2)
if isempty(ModelPriors)
    prior_flag = 0;% empty_prior=0
    ModelPriors = ones(NumberOfModels,1)/NumberOfModels;
else % The prior density has to sum up to one.
    prior_flag = 1;
    improper = abs(sum(ModelPriors)-1)>1e-6;
    if improper
        if ~all(ModelPriors==1)
            disp('model_comparison:: The user supplied prior distribution over models is improper...')
            disp('model_comparison:: The distribution is automatically rescaled!')
        end
        ModelPriors=ModelPriors/sum(ModelPriors);
    end
end

% The marginal densities are based on Laplace approxiations (default) or
% modified harmonic mean estimators.
if isfield(options_,'mc_marginal_density')
    type = options_.mc_marginal_density;
    if strcmp(type,'laplace') || strcmp(type,'Laplace')
        type = 'LaplaceApproximation';
        title = 'Model Comparison (based on Laplace approximation)';
    elseif strcmp(type,'modifiedharmonicmean') || strcmp(type,'ModifiedHarmonicMean')
        type = 'ModifiedHarmonicMean';
        title = 'Model Comparison (based on Modified Harmonic Mean Estimator)';
    end
else
    type = 'LaplaceApproximation';
    title = 'Model Comparison (based on Laplace approximation)';
end

% Get the estimated logged marginal densities.
MarginalLogDensity = zeros(NumberOfModels,1);
ShortModelNames = get_short_names(ModelNames);
iname = strmatch(fname,ShortModelNames,'exact');

for i=1:NumberOfModels
    if i==iname
        mstruct.oo_ = oo;
    else
        if strcmpi(ModelNames{i}(end-3:end),'.mod') || strcmpi(ModelNames{i}(end-3:end),'.dyn')
            mstruct = load([ModelNames{i}(1:end-4) '_results.mat' ],'oo_');
        else
            mstruct = load([ModelNames{i} '_results.mat' ],'oo_');
        end
    end
    try
        eval(['MarginalLogDensity(i) = mstruct.oo_.MarginalDensity.' type ';'])
    catch
        if strcmpi(type,'LaplaceApproximation')
            if isfield(mstruct.oo_,'mle_mode')
                disp(['MODEL_COMPARISON: Model comparison is a Bayesian approach and does not support models estimated with ML'])
            else
                disp(['MODEL_COMPARISON: I cant''t find the Laplace approximation associated to model ' ModelNames{i}])
            end
            return
        elseif strcmpi(type,'ModifiedHarmonicMean')
            if isfield(mstruct.oo_,'mle_mode')
                disp(['MODEL_COMPARISON: Model comparison is a Bayesian approach and does not support models estimated with ML'])
            else
                disp(['MODEL_COMPARISON: I cant''t find the modified harmonic mean estimate associated to model ' ModelNames{i}])
            end
            return
        end
    end
end

% In order to avoid overflow, we divide the numerator and the denominator
% of the Posterior Odds Ratio by the largest Marginal Posterior Density
lmpd = log(ModelPriors)+MarginalLogDensity;
[maxval,k] = max(lmpd);
elmpd = exp(lmpd-maxval);

% Now I display the posterior probabilities.
headers = vertcat('Model', ShortModelNames);
if prior_flag
    labels = {'Priors'; 'Log Marginal Density'; 'Bayes Ratio'; 'Posterior Model Probability'};
    field_labels={'Prior','Log_Marginal_Density','Bayes_Ratio', 'Posterior_Model_Probability'};
    values = [ModelPriors';MarginalLogDensity';exp(lmpd-lmpd(1))'; elmpd'/sum(elmpd)];
else
    labels = {'Priors'; 'Log Marginal Density'; 'Bayes Ratio'; 'Posterior Odds Ratio'; 'Posterior Model Probability'};
    field_labels={'Prior','Log_Marginal_Density','Bayes_Ratio','Posterior_Odds_Ratio','Posterior_Model_Probability'};
    values = [ModelPriors';MarginalLogDensity'; exp(MarginalLogDensity-MarginalLogDensity(1))'; exp(lmpd-lmpd(1))'; elmpd'/sum(elmpd)];
end

for model_iter = 1:NumberOfModels
    for var_iter = 1:length(labels)
        oo.Model_Comparison.(headers{1+model_iter}).(field_labels{var_iter}) = values(var_iter, model_iter);
    end
end

dyntable(options_, title, headers, labels, values, 0, 15, 6);
if options_.TeX
    M_temp.fname = fname;
    M_temp.dname = fname;
    headers_tex = {};
    for ii = 1:length(headers)
        headers_tex = vertcat(headers_tex, strrep(headers{ii}, '_', '\_'));
    end
    labels_tex = {};
    for ii = 1:length(labels)
        labels_tex = vertcat(labels_tex, strrep(labels{ii},' ', '\ '));
    end
    dyn_latex_table(M_temp, options_, title, ['model_comparison', type], headers_tex, labels_tex, values, 0, 16, 6);
end

function name = get_model_name_without_path(modelname)
idx = strfind(modelname,'\');
if isempty(idx)
    idx = strfind(modelname,'/');
end
if isempty(idx)
    name = modelname;
    return
end
name = modelname(idx(end)+1:end);


function name = get_model_name_without_extension(modelname)
idx = strfind(modelname,'.mod');
if isempty(idx)
    idx = strfind(modelname,'.dyn');
end
if isempty(idx)
    name = modelname;
    return
end
name = modelname(1:end-4);


function modellist = get_short_names(modelnames)
n = length(modelnames);
modellist = cell(n, 1);
for i=1:n
    name = get_model_name_without_extension(modelnames{i});
    name = get_model_name_without_path(name);
    modellist(i) = {name};
end