1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
function oo = model_comparison(ModelNames,ModelPriors,oo,options_,fname)
% function oo = model_comparison(ModelNames,ModelPriors,oo,options_,fname)
% Conducts Bayesian model comparison. This function computes Odds ratios and
% estimates a posterior density over a collection of models.
%
% INPUTS
% ModelNames [string] m*1 cell array of string.
% ModelPriors [double] m*1 vector of prior probabilities
% oo [struct] Dynare results structure
% options_ [struct] Dynare options structure
% fname [string] name of the current mod-file
%
% OUTPUTS
% oo [struct] Dynare results structure containing the
% results in a field PosteriorOddsTable
%
% ALGORITHM
% See e.g. Koop (2003): Bayesian Econometrics
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2007-2018 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
NumberOfModels = size(ModelNames,2);
skipline(2)
if isempty(ModelPriors)
prior_flag = 0;% empty_prior=0
ModelPriors = ones(NumberOfModels,1)/NumberOfModels;
else % The prior density has to sum up to one.
prior_flag = 1;
improper = abs(sum(ModelPriors)-1)>1e-6;
if improper
if ~all(ModelPriors==1)
disp('model_comparison:: The user supplied prior distribution over models is improper...')
disp('model_comparison:: The distribution is automatically rescaled!')
end
ModelPriors=ModelPriors/sum(ModelPriors);
end
end
% The marginal densities are based on Laplace approxiations (default) or
% modified harmonic mean estimators.
if isfield(options_,'mc_marginal_density')
type = options_.mc_marginal_density;
if strcmp(type,'laplace') || strcmp(type,'Laplace')
type = 'LaplaceApproximation';
title = 'Model Comparison (based on Laplace approximation)';
elseif strcmp(type,'modifiedharmonicmean') || strcmp(type,'ModifiedHarmonicMean')
type = 'ModifiedHarmonicMean';
title = 'Model Comparison (based on Modified Harmonic Mean Estimator)';
end
else
type = 'LaplaceApproximation';
title = 'Model Comparison (based on Laplace approximation)';
end
% Get the estimated logged marginal densities.
MarginalLogDensity = zeros(NumberOfModels,1);
ShortModelNames = get_short_names(ModelNames);
iname = strmatch(fname,ShortModelNames,'exact');
for i=1:NumberOfModels
if i==iname
mstruct.oo_ = oo;
else
if strcmpi(ModelNames{i}(end-3:end),'.mod') || strcmpi(ModelNames{i}(end-3:end),'.dyn')
mstruct = load([ModelNames{i}(1:end-4) '_results.mat' ],'oo_');
else
mstruct = load([ModelNames{i} '_results.mat' ],'oo_');
end
end
try
eval(['MarginalLogDensity(i) = mstruct.oo_.MarginalDensity.' type ';'])
catch
if strcmpi(type,'LaplaceApproximation')
if isfield(mstruct.oo_,'mle_mode')
disp(['MODEL_COMPARISON: Model comparison is a Bayesian approach and does not support models estimated with ML'])
else
disp(['MODEL_COMPARISON: I cant''t find the Laplace approximation associated to model ' ModelNames{i}])
end
return
elseif strcmpi(type,'ModifiedHarmonicMean')
if isfield(mstruct.oo_,'mle_mode')
disp(['MODEL_COMPARISON: Model comparison is a Bayesian approach and does not support models estimated with ML'])
else
disp(['MODEL_COMPARISON: I cant''t find the modified harmonic mean estimate associated to model ' ModelNames{i}])
end
return
end
end
end
% In order to avoid overflow, we divide the numerator and the denominator
% of the Posterior Odds Ratio by the largest Marginal Posterior Density
lmpd = log(ModelPriors)+MarginalLogDensity;
[maxval,k] = max(lmpd);
elmpd = exp(lmpd-maxval);
% Now I display the posterior probabilities.
headers = vertcat('Model', ShortModelNames);
if prior_flag
labels = {'Priors'; 'Log Marginal Density'; 'Bayes Ratio'; 'Posterior Model Probability'};
field_labels={'Prior','Log_Marginal_Density','Bayes_Ratio', 'Posterior_Model_Probability'};
values = [ModelPriors';MarginalLogDensity';exp(lmpd-lmpd(1))'; elmpd'/sum(elmpd)];
else
labels = {'Priors'; 'Log Marginal Density'; 'Bayes Ratio'; 'Posterior Odds Ratio'; 'Posterior Model Probability'};
field_labels={'Prior','Log_Marginal_Density','Bayes_Ratio','Posterior_Odds_Ratio','Posterior_Model_Probability'};
values = [ModelPriors';MarginalLogDensity'; exp(MarginalLogDensity-MarginalLogDensity(1))'; exp(lmpd-lmpd(1))'; elmpd'/sum(elmpd)];
end
for model_iter = 1:NumberOfModels
for var_iter = 1:length(labels)
oo.Model_Comparison.(headers{1+model_iter}).(field_labels{var_iter}) = values(var_iter, model_iter);
end
end
dyntable(options_, title, headers, labels, values, 0, 15, 6);
if options_.TeX
M_temp.fname = fname;
M_temp.dname = fname;
headers_tex = {};
for ii = 1:length(headers)
headers_tex = vertcat(headers_tex, strrep(headers{ii}, '_', '\_'));
end
labels_tex = {};
for ii = 1:length(labels)
labels_tex = vertcat(labels_tex, strrep(labels{ii},' ', '\ '));
end
dyn_latex_table(M_temp, options_, title, ['model_comparison', type], headers_tex, labels_tex, values, 0, 16, 6);
end
function name = get_model_name_without_path(modelname)
idx = strfind(modelname,'\');
if isempty(idx)
idx = strfind(modelname,'/');
end
if isempty(idx)
name = modelname;
return
end
name = modelname(idx(end)+1:end);
function name = get_model_name_without_extension(modelname)
idx = strfind(modelname,'.mod');
if isempty(idx)
idx = strfind(modelname,'.dyn');
end
if isempty(idx)
name = modelname;
return
end
name = modelname(1:end-4);
function modellist = get_short_names(modelnames)
n = length(modelnames);
modellist = cell(n, 1);
for i=1:n
name = get_model_name_without_extension(modelnames{i});
name = get_model_name_without_path(name);
modellist(i) = {name};
end
|