1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
|
function data_set = det_cond_forecast(varargin)
% Computes conditional forecasts using the extended path method.
%
% INPUTS
% o plan [structure] A structure describing the different shocks and the endogenous varibales, the date of the shocks and the path of the shock.
% The plan structure is created by the functions init_plan, basic_plan and flip_plan
% o [dataset] [dseries] A dserie containing the initial values of the shocks and the endogenous variables (usually the dseries generated by the smoother).
% o [starting_date] [dates] The first date of the forecast.
%
%
% OUTPUTS
% dataset [dseries] Returns a dseries containing the forecasted endgenous variables and shocks
%
% Copyright (C) 2013-2018 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global options_ oo_ M_
pp = 2;
initial_conditions = oo_.steady_state;
verbosity = options_.verbosity;
if options_.periods == 0
options_.periods = 25;
end
if isempty(options_.qz_criterium)
options_.qz_criterium = 1+1e-6;
end
%We have to get an initial guess for the conditional forecast
% and terminal conditions for the non-stationary variables, we
% use the first order approximation of the rational expectation solution.
if ~isfield(oo_,'dr') || ~isfield(oo_.dr,'ghx')
fprintf('computing the first order solution of the model as initial guess...');
dr = struct();
oo_.dr=set_state_space(dr,M_,options_);
options_.order = 1;
[dr,Info,M_,options_,oo_] = resol(0,M_,options_,oo_);
fprintf('done\n');
end
b_surprise = 0;
b_pf = 0;
surprise = 0;
pf = 0;
is_shock = [];
is_constraint = [];
if length(varargin) > 3
% regular way to call
constrained_paths = varargin{1};
max_periods_simulation = size(constrained_paths, 2);
constrained_vars = varargin{2};
options_cond_fcst = varargin{3};
constrained_perfect_foresight = varargin{4};
constraint_index = cell(max_periods_simulation,1);
nvars = length(constrained_vars);
for i = 1:max_periods_simulation
constraint_index{i} = 1:nvars;
end
direct_mode = 0;
shocks_present = 0;
controlled_varexo = options_cond_fcst.controlled_varexo;
nvarexo = size(controlled_varexo, 1);
options_cond_fcst.controlled_varexo = zeros(nvarexo,1);
exo_names = M_.exo_names;
for i = 1:nvarexo
j = find(strcmp(controlled_varexo(i,:), exo_names));
if ~isempty(j)
options_cond_fcst.controlled_varexo(i) = j;
else
error(['Unknown exogenous variable ' controlled_varexo(i,:)]);
end
end
else
% alternative way to call: plan, dset, dates_of_frcst
plan = varargin{1};
if length(varargin) >= 2
dset = varargin{2};
if ~isa(dset,'dseries')
error('the second argmuent should be a dseries');
end
if length(varargin) >= 3
range = varargin{3};
if ~isa(range,'dates')
error('the third argmuent should be a dates');
end
%if (range(range.ndat) > dset.time(dset.nobs) )
if (range(range.ndat) > dset.dates(dset.nobs)+1 )
s1 = strings(dset.dates(dset.nobs));
s2 = strings(range(range.ndat));
error(['the dseries ' inputname(2) ' finish at time ' s1{1} ' before the last period of forecast ' s2{1}]);
end
sym_dset = dset(dates(-range(1)):dates(range(range.ndat)));
periods = options_.periods + M_.maximum_lag + M_.maximum_lead;
total_periods = periods + range.ndat;
if isfield(oo_, 'exo_simul')
if size(oo_.exo_simul, 1) ~= total_periods
oo_.exo_simul = repmat(oo_.exo_steady_state',total_periods,1);
end
else
oo_.exo_simul = repmat(oo_.exo_steady_state',total_periods,1);
end
oo_.endo_simul = repmat(oo_.steady_state, 1, total_periods);
for i = 1:sym_dset.vobs
iy = find(strcmp(strtrim(sym_dset.name{i}), strtrim(plan.endo_names)));
if ~isempty(iy)
oo_.endo_simul(iy,1:sym_dset.nobs) = sym_dset.data(:, i);
initial_conditions(iy) = sym_dset.data(1, i);
else
ix = find(strcmp(strtrim(sym_dset.name{i}), strtrim(plan.exo_names)));
if ~isempty(ix)
oo_.exo_simul(1, ix) = sym_dset.data(1, i)';
else
%warning(['The variable ' sym_dset.name{i} ' in the dataset ' inputname(2) ' is not a endogenous neither an exogenous variable!!']);
end
end
end
for i = 1:length(M_.aux_vars)
if M_.aux_vars(i).type == 1 %lag variable
iy = find(strcmp(M_.endo_names{M_.aux_vars(i).orig_index}, sym_dset.name));
if ~isempty(iy)
oo_.endo_simul(M_.aux_vars(i).endo_index, 1:sym_dset.nobs) = dset(dates(range(1) + (M_.aux_vars(i).orig_lead_lag - 1))).data(:,iy);
initial_conditions(M_.aux_vars(i).endo_index) = dset(dates(range(1) + (M_.aux_vars(i).orig_lead_lag - 1))).data(:,iy);
else
warning(['The variable auxiliary ' M_.endo_names{M_.aux_vars(i).endo_index} ' associated to the variable ' M_.endo_names{M_.aux_vars(i).orig_index} ' do not appear in the dataset']);
end
else
oo_.endo_simul(M_.aux_vars(i).endo_index, 1:sym_dset.nobs) = repmat(oo_.steady_state(M_.aux_vars(i).endo_index), 1, range.ndat + 1);
end
end
%Compute the initial path using the the steady-state
% steady-state
%for jj = 2 : (options_.periods + 2)
for jj = 2 : (range.ndat + 2)
oo_.endo_simul(:, jj) = oo_.steady_state;
end
missings = isnan(oo_.endo_simul(:,1));
if any(missings)
for jj = 1:M_.endo_nbr
if missings(jj)
oo_.endo_simul(jj,1) = oo_.steady_state(jj,1);
end
end
end
if options_.bytecode
save_options_dynatol_f = options_.dynatol.f;
options_.dynatol.f = 1e-7;
[Info, endo, exo] = bytecode('extended_path', plan, oo_.endo_simul, oo_.exo_simul, M_.params, oo_.steady_state, options_.periods);
options_.dynatol.f = save_options_dynatol_f;
if Info == 0
oo_.endo_simul = endo;
oo_.exo_simul = exo;
end
endo = endo';
endo_l = size(endo(1+M_.maximum_lag:end,:),1);
jrng = dates(plan.date(1)):dates(plan.date(1)+endo_l);
data_set = dseries(nan(endo_l, dset.vobs), plan.date(1), dset.name);
for i = 1:length(dset.name)
pos = find(strcmp(dset.name{i},plan.endo_names));
if ~isempty(pos)
data_set.(dset.name{i}) = dseries(endo(1+M_.maximum_lag:end,pos), plan.date(1), dset.name{i});
else
pos = find(strcmp(dset.name{i},plan.exo_names));
if ~isempty(pos)
data_set{dset.name{i}} = dseries(exo(1+M_.maximum_lag:end,pos), plan.date(1),dset.name{i});
end
end
end
data_set = [dset(dset.dates(1):(plan.date(1)-1)) ; data_set];
for i=1:M_.exo_nbr
pos = find(strcmp(M_.exo_names{i}, dset.name));
if isempty(pos)
data_set{M_.exo_names{i}} = dseries(exo(1+M_.maximum_lag:end,i), plan.date(1), M_.exo_names{i});
else
data_set{M_.exo_names{i}}(plan.date(1):plan.date(1)+ (size(exo, 1) - M_.maximum_lag)) = exo(1+M_.maximum_lag:end,i);
end
end
data_set = merge(dset(dset.dates(1):(plan.date(1)-1)), data_set);
return
union_names = union(data_set.name, dset.name);
dif = setdiff(union_names, data_set.name);
data_set_nobs = data_set.nobs;
for i = 1:length(dif)
data_set{dif{i}} = dseries(nan(data_set_nobs,1),plan.date(1), dif(i), dif(i));
end
dif = setdiff(union_names, dset.name);
dset_nobs = dset.nobs;
for i = 1:length(dif)
dset{dif{i}} = dseries(nan(dset_nobs,1),dset.dates(1), dif(i), dif(i));
end
data_set = [dset(dset.dates(1):(plan.date(1)-1)) ; data_set];
return
end
else
error('impossible case');
end
else
oo_.exo_simul = repmat(oo_.exo_steady_state',options_.periods+2,1);
oo_.endo_simul = repmat(oo_.steady_state, 1, options_.periods+2);
end
direct_mode = 1;
constrained_paths = plan.constrained_paths_;
constrained_vars = plan.constrained_vars_;
options_cond_fcst = plan.options_cond_fcst_;
constrained_perfect_foresight = plan.constrained_perfect_foresight_;
constrained_periods = plan.constrained_date_;
if ~isempty(plan.shock_paths_)
shock_paths = plan.shock_paths_;
shock_vars = plan.shock_vars_;
shock_perfect_foresight = plan.shock_perfect_foresight_;
shock_periods = plan.shock_date_;
shocks_present = 1;
else
shocks_present = 0;
end
total_periods = plan.date;
end
if ~isfield(options_cond_fcst,'periods') || isempty(options_cond_fcst.periods)
options_cond_fcst.periods = 100;
end
options_.periods = 10;
if direct_mode == 1
n_periods = length(constrained_periods);
is_constraint = zeros(length(total_periods), n_periods);
constrained_paths_cell = constrained_paths;
clear constrained_paths;
constrained_paths = zeros(n_periods, length(total_periods));
max_periods_simulation = 0;
for i = 1:n_periods
period_i = constrained_periods{i};
%period_i
tp = total_periods(1);
if size(period_i) > 1
init_periods = period_i(1);
tp_end = period_i(end);
else
init_periods = period_i;
tp_end = period_i;
end
tp0 = tp;
while tp < init_periods
tp = tp + 1;
end
j = 0;
while tp <= tp_end
is_constraint(tp - tp0 + 1, i) = 1;
constrained_paths(i, tp - tp0 + 1) = constrained_paths_cell{i}(j + 1);
tp = tp + 1;
j = j + 1;
end
if tp - tp0 > max_periods_simulation
max_periods_simulation = tp - tp0;
end
end
n_nnz = length(sum(is_constraint,2));
if n_nnz > 0
constraint_index = cell(n_nnz,1);
for i= 1:n_nnz
constraint_index{i} = find(is_constraint(i,:));
end
end
if shocks_present
n_periods = length(shock_periods);
shock_paths_cell = shock_paths;
clear shock_paths;
shock_paths = zeros(n_periods, length(total_periods));
is_shock = zeros(length(total_periods), n_periods);
for i = 1:n_periods
period_i = shock_periods{i};
%period_i
tp = total_periods(1);
if size(period_i) > 1
init_periods = period_i(1);
tp_end = period_i(end);
else
init_periods = period_i;
tp_end = period_i;
end
tp0 = tp;
while tp < init_periods
tp = tp + 1;
end
j = 0;
while tp <= tp_end
is_shock(tp - tp0 + 1, i) = 1;
shock_paths(i, tp - tp0 + 1) = shock_paths_cell{i}(j + 1);
tp = tp + 1;
j = j + 1;
end
if tp - tp0 > max_periods_simulation
max_periods_simulation = tp - tp0;
end
end
n_nnz = length(sum(is_shock,2));
if n_nnz > 0
shock_index = cell(n_nnz, 1);
for i= 1:n_nnz
shock_index{i} = find(is_shock(i,:));
end
end
end
else
is_constraint = ones(size(constrained_paths));
end
maximum_lag = M_.maximum_lag;
ys = oo_.steady_state;
ny = size(ys,1);
xs = [oo_.exo_steady_state ; oo_.exo_det_steady_state];
nx = size(xs,1);
constrained_periods = max_periods_simulation;
n_endo_constrained = size(constrained_vars,1);
if isfield(options_cond_fcst,'controlled_varexo')
n_control_exo = size(options_cond_fcst.controlled_varexo, 1);
if n_control_exo ~= n_endo_constrained
error(['det_cond_forecast: the number of exogenous controlled variables (' int2str(n_control_exo) ') has to be equal to the number of constrained endogenous variabes (' int2str(n_endo_constrained) ')'])
end
else
error('det_cond_forecast: to run a deterministic conditional forecast you have to specified the exogenous variables controlled using the option controlled_varexo in forecast command');
end
% if n_endo_constrained == 0
% options_.ep.use_bytecode = options_.bytecode;
% data_set = extended_path(initial_conditions, max_periods_simulation);
% end
if length(varargin) >= 1
controlled_varexo = options_cond_fcst.controlled_varexo;
else
exo_names = M_.exo_names;
controlled_varexo = zeros(1,n_control_exo);
for i = 1:nx
for j=1:n_control_exo
if strcmp(exo_names{i}, deblank(options_cond_fcst.controlled_varexo(j,:)))
controlled_varexo(j) = i;
end
end
end
end
%todo check if zero => error message
save_options_initval_file = options_.initval_file;
options_.initval_file = '__';
[pos_constrained_pf, ~] = find(constrained_perfect_foresight);
indx_endo_solve_pf = constrained_vars(pos_constrained_pf);
if isempty(indx_endo_solve_pf)
pf = 0;
else
pf = length(indx_endo_solve_pf);
end
indx_endo_solve_surprise = setdiff(constrained_vars, indx_endo_solve_pf);
if isempty(indx_endo_solve_surprise)
surprise = 0;
else
surprise = length(indx_endo_solve_surprise);
end
eps = options_.solve_tolf;
maxit = options_.simul.maxit;
past_val = 0;
save_options_periods = options_.periods;
options_.periods = options_cond_fcst.periods;
save_options_dynatol_f = options_.dynatol.f;
options_.dynatol.f = 1e-8;
eps1 = 1e-7;%1e-4;
exo = zeros(maximum_lag + options_cond_fcst.periods, nx);
endo = zeros(maximum_lag + options_cond_fcst.periods, ny);
endo(1,:) = oo_.steady_state';
% if all the endogenous paths are perfectly anticipated we do not need to
% implement the extended path
if pf && ~surprise
time_index_constraint = maximum_lag + 1:maximum_lag + constrained_periods;
second_system_size = pf * constrained_periods;
J = zeros(second_system_size,second_system_size);
r = zeros(second_system_size,1);
indx_endo = zeros(second_system_size,1);
col_count = 1;
for j = 1:length(constrained_vars)
indx_endo(col_count : col_count + constrained_periods - 1) = constrained_vars(j) + (time_index_constraint - 1) * ny;
col_count = col_count + constrained_periods;
end
oo_=make_ex_(M_,options_,oo_);
oo_=make_y_(M_,options_,oo_);
it = 1;
convg = 0;
normra = 1e+50;
while ~convg && it <= maxit
disp('---------------------------------------------------------------------------------------------');
disp(['iteration ' int2str(it)]);
not_achieved = 1;
alpha = 1;
while not_achieved
simul();
result = sum(sum(isfinite(oo_.endo_simul(:,time_index_constraint)))) == ny * constrained_periods;
if result
y = oo_.endo_simul(constrained_vars, time_index_constraint);
ys = oo_.endo_simul(indx_endo);
col_count = 1;
for j = 1:length(constrained_vars)
y = oo_.endo_simul(constrained_vars(j), time_index_constraint);
r(col_count:col_count+constrained_periods - 1) = (y - constrained_paths(j,1:constrained_periods))';
col_count = col_count + constrained_periods;
end
normr = norm(r, 1);
end
if (~oo_.deterministic_simulation.status || ~result || normr > normra) && it > 1
not_achieved = 1;
alpha = alpha / 2;
col_count = 1;
for j = controlled_varexo'
oo_.exo_simul(time_index_constraint,j) = (old_exo(:,j) + alpha * D_exo(col_count: (col_count + constrained_periods - 1)));
col_count = col_count + constrained_periods;
end
disp(['Divergence in Newton: reducing the path length alpha=' num2str(alpha)]);
oo_.endo_simul = repmat(oo_.steady_state, 1, options_cond_fcst.periods + 2);
else
not_achieved = 0;
end
end
per = 30;
z = oo_.endo_simul(:, 1 : per + 2 );
zx = oo_.exo_simul(1: per + 2,:);
g1 = spalloc(M_.endo_nbr * (per ), M_.endo_nbr * (per ), 3* M_.endo_nbr * per );
g1_x = spalloc(M_.endo_nbr * (per ), M_.exo_nbr, M_.endo_nbr * (per )* M_.exo_nbr );
lag_indx = find(M_.lead_lag_incidence(1,:));
cur_indx = M_.endo_nbr + find(M_.lead_lag_incidence(2,:));
lead_indx = 2 * M_.endo_nbr + find(M_.lead_lag_incidence(3,:));
cum_l1 = 0;
cum_index_d_y_x = [];
indx_x = [];
for k = 1 : per
if k == 1
if (isfield(M_,'block_structure'))
data1 = M_.block_structure.block;
Size = length(M_.block_structure.block);
else
data1 = M_;
Size = 1;
end
data1 = M_;
if (options_.bytecode)
[chck, zz, data1]= bytecode('dynamic','evaluate', z, zx, M_.params, oo_.steady_state, k, data1);
else
[zz, g1b] = feval([M_.fname '.dynamic'], z', zx, M_.params, oo_.steady_state, k);
data1.g1_x = g1b(:,end - M_.exo_nbr + 1:end);
data1.g1 = g1b(:,1 : end - M_.exo_nbr);
chck = 0;
end
mexErrCheck('bytecode', chck);
end
if k == 1
g1(1:M_.endo_nbr,-M_.endo_nbr + [cur_indx lead_indx]) = data1.g1(:,M_.nspred + 1:end);
elseif k == per
g1(M_.endo_nbr * (k - 1) + 1 :M_.endo_nbr * k,M_.endo_nbr * (k -2) + [lag_indx cur_indx]) = data1.g1(:,1:M_.nspred + M_.endo_nbr);
else
g1(M_.endo_nbr * (k - 1) + 1 :M_.endo_nbr * k, M_.endo_nbr * (k -2) + [lag_indx cur_indx lead_indx]) = data1.g1;
end
l2 = 1;
pf_c = 1;
if k <= constrained_periods
for l = constraint_index{k}
l1 = controlled_varexo(l);
g1_x(M_.endo_nbr * (k - 1) + 1:M_.endo_nbr * k,1 + cum_l1) = data1.g1_x(:,l1);
if k == 1
indx_x(l2) = l ;
l2 = l2 + 1;
for ii = 2:constrained_periods
indx_x(l2) = length(controlled_varexo) + pf * (ii - 2) + constraint_index{k + ii - 1}(pf_c);
l2 = l2 + 1;
end
pf_c = pf_c + 1;
cum_index_d_y_x = [cum_index_d_y_x; constrained_vars(l)];
else
cum_index_d_y_x = [cum_index_d_y_x; constrained_vars(l) + (k - 1) * M_.endo_nbr];
end
cum_l1 = cum_l1 + length(l1);
end
end
end
d_y_x = - g1 \ g1_x;
cum_l1 = 0;
count_col = 1;
cum_index_J = 1:length(cum_index_d_y_x(indx_x));
J= zeros(length(cum_index_J));
for j1 = 1:length(controlled_varexo)
cum_l1 = 0;
for k = 1:(constrained_periods)
l1 = constraint_index{k};
l1 = find(constrained_perfect_foresight(l1) | (k == 1));
if constraint_index{k}( j1)
J(cum_index_J,count_col) = d_y_x(cum_index_d_y_x(indx_x),indx_x(count_col));
count_col = count_col + 1;
end
cum_l1 = cum_l1 + length(l1);
end
cum_l1 = cum_l1 + length(constrained_vars(j1));
end
% col_count = 1;
% for j = controlled_varexo'
% for time = time_index_constraint
% saved = oo_.exo_simul(time,j);
% oo_.exo_simul(time,j) = oo_.exo_simul(time,j) + eps1;
% simul();
% J1(:,col_count) = (oo_.endo_simul(indx_endo) - ys) / eps1;
% oo_.exo_simul(time,j) = saved;
% col_count = col_count + 1;
% end
% end
% J1
% sdfmlksdf;
disp(['iteration ' int2str(it) ' error = ' num2str(normr)]);
if normr <= eps
convg = 1;
disp('convergence achieved');
else
% Newton update on exogenous shocks
old_exo = oo_.exo_simul(time_index_constraint,:);
D_exo = - J \ r;
col_count = 1;
%constrained_periods
for j = controlled_varexo'
oo_.exo_simul(time_index_constraint,j) = oo_.exo_simul(time_index_constraint,j) + D_exo(col_count: (col_count + constrained_periods - 1));
col_count = col_count + constrained_periods - 1;
end
end
it = it + 1;
normra = normr;
end
endo = oo_.endo_simul';
exo = oo_.exo_simul;
else
for t = 1:constrained_periods
if direct_mode && ~isempty(is_constraint)
[pos_constrained_pf, ~] = find(constrained_perfect_foresight .* is_constraint(t, :)');
indx_endo_solve_pf = constrained_vars(pos_constrained_pf);
if isempty(indx_endo_solve_pf)
pf = 0;
else
pf = length(indx_endo_solve_pf);
end
[pos_constrained_surprise, ~] = find((1-constrained_perfect_foresight) .* is_constraint(t, :)');
indx_endo_solve_surprise = constrained_vars(pos_constrained_surprise);
if isempty(indx_endo_solve_surprise)
surprise = 0;
else
surprise = length(indx_endo_solve_surprise);
end
end
if direct_mode && ~isempty(is_shock)
[pos_shock_pf, ~] = find(shock_perfect_foresight .* is_shock(t, :)');
indx_endo_solve_pf = shock_vars(pos_shock_pf);
if isempty(indx_endo_solve_pf)
b_pf = 0;
else
b_pf = length(indx_endo_solve_pf);
end
[pos_shock_surprise, ~] = find((1-shock_perfect_foresight) .* is_shock(t, :)');
indx_endo_solve_surprise = shock_vars(pos_shock_surprise);
if isempty(indx_endo_solve_surprise)
b_surprise = 0;
else
b_surprise = length(indx_endo_solve_surprise);
end
end
disp('===============================================================================================');
disp(['t=' int2str(t) ' conditional (surprise=' int2str(surprise) ' perfect foresight=' int2str(pf) ') unconditional (surprise=' int2str(b_surprise) ' perfect foresight=' int2str(b_pf) ')']);
disp('===============================================================================================');
if t == 1
oo_=make_ex_(M_,options_,oo_);
if maximum_lag > 0
exo_init = oo_.exo_simul;
else
exo_init = zeros(size(oo_.exo_simul));
end
oo_=make_y_(M_,options_,oo_);
end
%exo_init
oo_.exo_simul = exo_init;
oo_.endo_simul(:,1) = initial_conditions;
time_index_constraint = maximum_lag + 1:maximum_lag + constrained_periods - t + 1;
if direct_mode
nb_shocks = length(plan.shock_vars_);
if nb_shocks > 0
shock_index_t = shock_index{t};
shock_vars_t = shock_vars(shock_index_t);
for shock_indx = shock_index_t
if shock_perfect_foresight(shock_indx)
oo_.exo_simul(time_index_constraint,shock_vars_t(shock_indx)) = shock_paths(shock_indx,t:constrained_periods);
else
oo_.exo_simul(maximum_lag + 1,shock_vars_t(shock_indx)) = shock_paths(shock_indx,t);
end
end
end
end
%Compute the initial path using the first order solution around the
% steady-state
oo_.endo_simul(:, 1) = oo_.endo_simul(:, 1) - oo_.steady_state;
for jj = 2 : (options_.periods + 2)
oo_.endo_simul(:,jj) = oo_.dr.ghx(oo_.dr.inv_order_var,:) * oo_.endo_simul(oo_.dr.state_var, jj-1) + oo_.dr.ghu * oo_.exo_simul(jj,:)';
end
for jj = 1 : (options_.periods + 2)
oo_.endo_simul(:,jj) = oo_.steady_state + oo_.endo_simul(:,jj);
end
constraint_index_t = constraint_index{t};
controlled_varexo_t = controlled_varexo(constraint_index_t);
constrained_vars_t = constrained_vars(constraint_index_t);
second_system_size = surprise + pf * (constrained_periods - t + 1);
indx_endo = zeros(second_system_size,1);
col_count = 1;
for j = 1:length(constrained_vars_t)
if constrained_perfect_foresight(j)
indx_endo(col_count : col_count + constrained_periods - t) = constrained_vars(j) + (time_index_constraint - 1) * ny;
col_count = col_count + constrained_periods - t + 1;
else
indx_endo(col_count) = constrained_vars(j) + maximum_lag * ny;
col_count = col_count + 1;
end
end
r = zeros(second_system_size,1);
convg = 0;
it = 1;
while ~convg && it <= maxit
disp('-----------------------------------------------------------------------------------------------');
disp(['iteration ' int2str(it) ' time ' int2str(t)]);
not_achieved = 1;
alpha = 1;
while not_achieved
perfect_foresight_setup;
perfect_foresight_solver;
result = sum(sum(isfinite(oo_.endo_simul(:,time_index_constraint)))) == ny * length(time_index_constraint);
if (~oo_.deterministic_simulation.status || ~result) && it > 1
not_achieved = 1;
alpha = alpha / 2;
col_count = 1;
for j1 = constraint_index_t
j = controlled_varexo(j1);
if constrained_perfect_foresight(j1)
oo_.exo_simul(time_index_constraint,j) = (old_exo(time_index_constraint,j) + alpha * D_exo(col_count: col_count + constrained_periods - t));
col_count = col_count + constrained_periods - t + 1;
else
oo_.exo_simul(maximum_lag + 1,j) = old_exo(maximum_lag + 1,j) + alpha * D_exo(col_count);
col_count = col_count + 1;
end
end
disp(['Divergence in Newton: reducing the path length alpha=' num2str(alpha) ' result=' num2str(result) ' sum(sum)=' num2str(sum(sum(isfinite(oo_.endo_simul(:,time_index_constraint))))) ' ny * length(time_index_constraint)=' num2str(ny * length(time_index_constraint)) ' oo_.deterministic_simulation.status=' num2str(oo_.deterministic_simulation.status)]);
oo_.endo_simul = [initial_conditions repmat(oo_.steady_state, 1, options_cond_fcst.periods + 1)];
else
not_achieved = 0;
end
end
if t==constrained_periods
ycc = oo_.endo_simul;
end
yc = oo_.endo_simul(:,maximum_lag + 1);
ys = oo_.endo_simul(indx_endo);
col_count = 1;
for j = constraint_index_t
if constrained_perfect_foresight(j)
y = oo_.endo_simul(constrained_vars(j), time_index_constraint);
r(col_count:col_count+constrained_periods - t) = (y - constrained_paths(j,t:constrained_periods))';
col_count = col_count + constrained_periods - t + 1;
else
y = yc(constrained_vars(j));
r(col_count) = y - constrained_paths(j,t);
col_count = col_count + 1;
end
end
disp('computation of derivatives w.r. to exogenous shocks');
per = 30;
z = oo_.endo_simul(:, 1 : per + 2 );
zx = oo_.exo_simul(1: per + 2,:);
g1 = spalloc(M_.endo_nbr * (per ), M_.endo_nbr * (per ), 3* M_.endo_nbr * per );
g1_x = spalloc(M_.endo_nbr * (per ), M_.exo_nbr, M_.endo_nbr * (per )* M_.exo_nbr );
lag_indx = find(M_.lead_lag_incidence(1,:));
cur_indx = M_.endo_nbr + find(M_.lead_lag_incidence(2,:));
lead_indx = 2 * M_.endo_nbr + find(M_.lead_lag_incidence(3,:));
cum_l1 = 0;
%indx_x = zeros(length(constraint_index_t)* constrained_periods, 1);
cum_index_d_y_x = [];
indx_x = [];
for k = 1 : per
if k == 1
if (isfield(M_,'block_structure'))
data1 = M_.block_structure.block;
Size = length(M_.block_structure.block);
else
data1 = M_;
Size = 1;
end
data1 = M_;
if (options_.bytecode)
[chck, zz, data1]= bytecode('dynamic','evaluate', z, zx, M_.params, oo_.steady_state, k, data1);
else
[zz, g1b] = feval([M_.fname '.dynamic'], z', zx, M_.params, oo_.steady_state, k);
data1.g1_x = g1b(:,end - M_.exo_nbr + 1:end);
data1.g1 = g1b(:,1 : end - M_.exo_nbr);
chck = 0;
end
mexErrCheck('bytecode', chck);
end
if k == 1
g1(1:M_.endo_nbr,-M_.endo_nbr + [cur_indx lead_indx]) = data1.g1(:,M_.nspred + 1:end);
elseif k == per
g1(M_.endo_nbr * (k - 1) + 1 :M_.endo_nbr * k,M_.endo_nbr * (k -2) + [lag_indx cur_indx]) = data1.g1(:,1:M_.nspred + M_.endo_nbr);
else
g1(M_.endo_nbr * (k - 1) + 1 :M_.endo_nbr * k, M_.endo_nbr * (k -2) + [lag_indx cur_indx lead_indx]) = data1.g1;
end
l2 = 1;
pf_c = 1;
if t + k - 1 <= constrained_periods
for l = constraint_index{t + k - 1}
l1 = controlled_varexo(l);
if (k == 1) || ((k > 1) && constrained_perfect_foresight(l))
g1_x(M_.endo_nbr * (k - 1) + 1:M_.endo_nbr * k,1 + cum_l1) = data1.g1_x(:,l1);
if k == 1
if constrained_perfect_foresight(l)
indx_x(l2) = l ;
l2 = l2 + 1;
for ii = 2:constrained_periods - t + 1
indx_x(l2) = length(controlled_varexo) + pf * (ii - 2) + constraint_index{k + ii - 1}(pf_c);
l2 = l2 + 1;
end
pf_c = pf_c + 1;
else
indx_x(l2) = l;
l2 = l2 + 1;
end
cum_index_d_y_x = [cum_index_d_y_x; constrained_vars_t(l)];
else
cum_index_d_y_x = [cum_index_d_y_x; constrained_vars_t(l) + (k - 1) * M_.endo_nbr];
end
cum_l1 = cum_l1 + length(l1);
end
end
end
end
d_y_x = - g1 \ g1_x;
cum_l1 = 0;
count_col = 1;
cum_index_J = 1:length(cum_index_d_y_x(indx_x));
J= zeros(length(cum_index_J));
for j1 = constraint_index_t
if constrained_perfect_foresight(j1)
cum_l1 = 0;
for k = 1:(constrained_periods - t + 1)
l1 = constraint_index{k};
l1 = find(constrained_perfect_foresight(l1) | (k == 1));
if constraint_index{k}( j1)
J(cum_index_J,count_col) = d_y_x(cum_index_d_y_x(indx_x),indx_x(count_col));
count_col = count_col + 1;
end
cum_l1 = cum_l1 + length(l1);
end
else
J(cum_index_J,count_col) = d_y_x(cum_index_d_y_x(indx_x),indx_x(count_col));
count_col = count_col + 1;
end
cum_l1 = cum_l1 + length(constrained_vars_t(j1));
end
% % Numerical computation of the derivatives in the second systme
% J1 = [];
% col_count = 1;
% for j = constraint_index_t
% j_pos = controlled_varexo(j);
% if constrained_perfect_foresight(j)
% for time = time_index_constraint
% saved = oo_.exo_simul(time,j_pos);
% oo_.exo_simul(time,j_pos) = oo_.exo_simul(time,j_pos) + eps1;
% simul();
% J1(:,col_count) = (oo_.endo_simul(indx_endo) - ys) / eps1;
% oo_.exo_simul(time,j_pos) = saved;
% col_count = col_count + 1;
% end
% else
% saved = oo_.exo_simul(maximum_lag+1,j_pos);
% oo_.exo_simul(maximum_lag+1,j_pos) = oo_.exo_simul(maximum_lag+1,j_pos) + eps1;
% simul();
% % indx_endo
% J1(:,col_count) = (oo_.endo_simul(indx_endo) - ys) / eps1;
% % J(:,col_count) = (oo_.endo_simul((pp - 1) * M_.endo_nbr + 1: pp * M_.endo_nbr) - ys) / eps1;
% oo_.exo_simul(maximum_lag+1,j_pos) = saved;
% col_count = col_count + 1;
% end
% end
% disp('J1');
% disp(full(J1));
% sdfmlk;
normr = norm(r, 1);
disp(['iteration ' int2str(it) ' error = ' num2str(normr) ' at time ' int2str(t)]);
if normr <= eps
convg = 1;
disp('convergence achieved');
else
% Newton update on exogenous shocks
try
D_exo = - J \ r;
catch
[V, D] = eig(full(J));
ev = diag(D);
[ev abs(ev)]
z_root = find(abs(ev) < 1e-4);
z_root
disp(V(:,z_root));
end
old_exo = oo_.exo_simul;
col_count = 1;
for j = constraint_index_t
j_pos=controlled_varexo(j);
if constrained_perfect_foresight(j)
oo_.exo_simul(time_index_constraint,j_pos) = (oo_.exo_simul(time_index_constraint,j_pos) + D_exo(col_count:(col_count + constrained_periods - t) ));
col_count = col_count + constrained_periods - t + 1;
else
oo_.exo_simul(maximum_lag + 1,j_pos) = oo_.exo_simul(maximum_lag + 1,j_pos) + D_exo(col_count);
col_count = col_count + 1;
end
end
end
it = it + 1;
end
if ~convg
error(['convergence not achived at time ' int2str(t) ' after ' int2str(it) ' iterations']);
end
for j = constraint_index_t
j_pos=controlled_varexo(j);
if constrained_perfect_foresight(j)
% in case of mixed surprise and perfect foresight on the
% endogenous path, at each date all the exogenous paths have to be
% stored. The paths are stacked in exo.
for time = time_index_constraint;
exo(past_val + time,j_pos) = oo_.exo_simul(time,j_pos);
end
else
exo(maximum_lag + t,j_pos) = oo_.exo_simul(maximum_lag + 1,j_pos);
end
end
past_val = past_val + length(time_index_constraint);
if t < constrained_periods
endo(maximum_lag + t,:) = yc;
else
endo(maximum_lag + t :maximum_lag + options_cond_fcst.periods ,:) = ycc(:,maximum_lag + 1:maximum_lag + options_cond_fcst.periods - constrained_periods + 1)';
end
initial_conditions = yc;
if maximum_lag > 0
exo_init(1,:) = exo(maximum_lag + t,:);
end
end
end
options_.periods = save_options_periods;
options_.dynatol.f = save_options_dynatol_f;
options_.initval_file = save_options_initval_file;
options_.verbosity = verbosity;
oo_.endo_simul = endo';
oo_.exo_simul = exo;
if direct_mode
data_set = dseries([endo(2:end,1:M_.orig_endo_nbr) exo(2:end,:)], total_periods(1), {plan.endo_names{:} plan.exo_names{:}}, {plan.endo_names{:} plan.exo_names{:}});
end
|