File: linear_perfect_foresight_problem.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (99 lines) | stat: -rw-r--r-- 3,303 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
function [residuals,JJacobian] = linear_perfect_foresight_problem(y, dynamicjacobian, Y0, YT, ...
                                                  exo_simul, params, steady_state, maximum_lag, T, ny, i_cols, ...
                                                  i_cols_J1, i_cols_1, i_cols_T, i_cols_j, i_cols_0, i_cols_J0, jendo, jexog)

% Computes the residuals and the Jacobian matrix for a linear perfect foresight problem over T periods.
%
% INPUTS
% ...
%
% OUTPUTS
% ...
%
% ALGORITHM
% ...
%
% SPECIAL REQUIREMENTS
%   None.

% Copyright (C) 2015-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.


YY = [Y0; y; YT];

residuals = zeros(T*ny,1);

z = zeros(columns(dynamicjacobian), 1);

if nargout == 2
    iJacobian = cell(T,1);
end

i_rows = 1:ny;
i_cols_J = i_cols;
offset = 0;

for it = maximum_lag+(1:T)
    z(jendo) = YY(i_cols);
    z(jexog) = transpose(exo_simul(it,:));
    residuals(i_rows) = dynamicjacobian*z;
    if nargout == 2
        if T==1 && it==maximum_lag+1
            [rows, cols, vals] = find(dynamicjacobian(:,i_cols_0));
            if size(dynamicjacobian, 1) == 1 % find() will return row vectors in this case
                rows = rows';
                cols = cols';
                vals = vals';
            end
            iJacobian{1} = [rows, i_cols_J0(cols), vals];
        elseif it == maximum_lag+1
            [rows,cols,vals] = find(dynamicjacobian(:,i_cols_1));
            if size(dynamicjacobian, 1) == 1 % find() will return row vectors in this case
                rows = rows';
                cols = cols';
                vals = vals';
            end
            iJacobian{1} = [offset+rows, i_cols_J1(cols), vals];
        elseif it == maximum_lag+T
            [rows,cols,vals] = find(dynamicjacobian(:,i_cols_T));
            if size(dynamicjacobian, 1) == 1 % find() will return row vectors in this case
                rows = rows';
                cols = cols';
                vals = vals';
            end
            iJacobian{T} = [offset+rows, i_cols_J(i_cols_T(cols)), vals];
        else
            [rows,cols,vals] = find(dynamicjacobian(:,i_cols_j));
            if size(dynamicjacobian, 1) == 1 % find() will return row vectors in this case
                rows = rows';
                cols = cols';
                vals = vals';
            end
            iJacobian{it-maximum_lag} = [offset+rows, i_cols_J(cols), vals];
            i_cols_J = i_cols_J + ny;
        end
        offset = offset + ny;
    end
    i_rows = i_rows + ny;
    i_cols = i_cols + ny;
end

if nargout == 2
    iJacobian = cat(1,iJacobian{:});
    JJacobian = sparse(iJacobian(:,1), iJacobian(:,2), iJacobian(:,3), T*ny, T*ny);
end