File: perfect_foresight_simulation.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (189 lines) | stat: -rw-r--r-- 6,804 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
function info = perfect_foresight_simulation(compute_linear_solution,steady_state)
% Performs deterministic simulations with lead or lag on one period
%
% INPUTS
%   endo_simul                  [double]     n*T matrix, where n is the number of endogenous variables.
%   exo_simul                   [double]     q*T matrix, where q is the number of shocks.
%   compute_linear_solution     [integer]    scalar equal to zero or one.
%
% OUTPUTS
%   none
%
% ALGORITHM
%   Laffargue, Boucekkine, Juillard (LBJ)
%   see Juillard (1996) Dynare: A program for the resolution and
%   simulation of dynamic models with forward variables through the use
%   of a relaxation algorithm. CEPREMAP. Couverture Orange. 9602.
%
% SPECIAL REQUIREMENTS
%   None.

% Copyright (C) 2009-2015 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global M_ options_ it_ oo_

persistent lead_lag_incidence dynamic_model ny nyp nyf nrs nrc iyf iyp isp is isf isf1 iz icf ghx iflag

if ~nargin && isempty(iflag)% Initialization of the persistent variables.
    lead_lag_incidence = M_.lead_lag_incidence;
    dynamic_model = [M_.fname '.dynamic'];
    ny   = size(oo_.endo_simul,1);
    nyp  = nnz(lead_lag_incidence(1,:));% number of lagged variables.
    nyf  = nnz(lead_lag_incidence(3,:));% number of leaded variables.
    nrs  = ny+nyp+nyf+1;
    nrc  = nyf+1;
    iyf  = find(lead_lag_incidence(3,:)>0);% indices for leaded variables.
    iyp  = find(lead_lag_incidence(1,:)>0);% indices for lagged variables.
    isp  = 1:nyp;
    is   = (nyp+1):(nyp+ny); % Indices for contemporaneaous variables.
    isf  = iyf+nyp;
    isf1 = (nyp+ny+1):(nyf+nyp+ny+1);
    iz   = 1:(ny+nyp+nyf);
    icf  = 1:size(iyf,2);
    info = [];
    iflag = 1;
    return
end

initial_endo_simul = oo_.endo_simul;

warning_old_state = warning;
warning off all

if nargin<1
    compute_linear_solution = 0;
else
    if nargin<2
        error('The steady state (second input argument) is missing!');
    end
end

if ~isstruct(compute_linear_solution) && compute_linear_solution
    [dr,info,M_,options_,oo_] = resol(0,M_,options_,oo_);
elseif isstruct(compute_linear_solution)
    dr = compute_linear_solution;
    compute_linear_solution = 1;
end

if compute_linear_solution
    ghx(dr.order_var,:) = dr.ghx;
    ghx = ghx(iyf,:);
end

periods = options_.periods;

stop    = 0 ;
it_init = M_.maximum_lag+1;

info.convergence = 1;
info.time  = 0;
info.error = 0;
info.iterations.time  = zeros(options_.simul.maxit,1);
info.iterations.error = info.iterations.time;

last_line = options_.simul.maxit;
error_growth = 0;

h1 = clock;
for iter = 1:options_.simul.maxit
    h2 = clock;
    if options_.terminal_condition
        c = zeros(ny*(periods+1),nrc);
    else
        c = zeros(ny*periods,nrc);
    end
    it_ = it_init;
    z = [ oo_.endo_simul(iyp,it_-1) ; oo_.endo_simul(:,it_) ; oo_.endo_simul(iyf,it_+1) ];
    [d1,jacobian] = feval(dynamic_model,z,oo_.exo_simul, M_.params, it_);
    jacobian = [jacobian(:,iz) , -d1];
    ic = 1:ny;
    icp = iyp;
    c(ic,:) = jacobian(:,is)\jacobian(:,isf1) ;
    for it_ = it_init+(1:periods-1-(options_.terminal_condition==2))
        z = [ oo_.endo_simul(iyp,it_-1) ; oo_.endo_simul(:,it_) ; oo_.endo_simul(iyf,it_+1)];
        [d1,jacobian] = feval(dynamic_model,z,oo_.exo_simul, M_.params, it_);
        jacobian = [jacobian(:,iz) , -d1];
        jacobian(:,[isf nrs]) = jacobian(:,[isf nrs])-jacobian(:,isp)*c(icp,:);
        ic = ic + ny;
        icp = icp + ny;
        c(ic,:) = jacobian(:,is)\jacobian(:,isf1);
    end
    if options_.terminal_condition
        if options_.terminal_condition==1% Terminal condition is Y_{T} = Y_{T+1}
            s = eye(ny);
            s(:,isf) = s(:,isf)+c(ic,1:nyf);
            ic = ic + ny;
            c(ic,nrc) = s\c(ic,nrc);
        else% Terminal condition is Y_{T+1}-Y^{\star} = TransitionMatrix*(Y_{T}-Y^{\star})
            it_ = it_+1;
            z = [ oo_.endo_simul(iyp,it_-1) ; oo_.endo_simul(:,it_) ; oo_.endo_simul(iyf,it_+1) ] ;
            [d1,jacobian] = feval(dynamic_model,z,oo_.exo_simul, M_.params, it_);
            jacobian = [jacobian(:,iz) -d1];
            jacobian(:,[isf nrs]) = jacobian(:,[isf nrs])-jacobian(:,isp)*c(icp,:) ;
            ic = ic + ny;
            icp = icp + ny;
            s = jacobian(:,is);
            s(:,iyp) = s(:,iyp)+jacobian(:,isf)*ghx;
            c (ic,:) = s\jacobian(:,isf1);
        end
        c = bksup0(c,ny,nrc,iyf,icf,periods);
        c = reshape(c,ny,periods+1);
        oo_.endo_simul(:,it_init+(0:periods)) = oo_.endo_simul(:,it_init+(0:periods))+options_.slowc*c;
    else% Terminal condition is Y_{T}=Y^{\star}
        c = bksup0(c,ny,nrc,iyf,icf,periods);
        c = reshape(c,ny,periods);
        oo_.endo_simul(:,it_init+(0:periods-1)) = oo_.endo_simul(:,it_init+(0:periods-1))+options_.slowc*c;
    end
    err = max(max(abs(c)));
    info.iterations.time(iter)  = etime(clock,h2);
    info.iterations.error(iter) = err;
    if iter>1
        error_growth = error_growth + (info.iterations.error(iter)>info.iterations.error(iter-1));
    end
    if isnan(err) || error_growth>3
        last_line = iter;
        break
    end
    if err < options_.dynatol.f
        stop = 1;
        info.time  = etime(clock,h1);
        info.error = err;
        info.iterations.time = info.iterations.time(1:iter);
        info.iterations.error  = info.iterations.error(1:iter);
        break
    end
end

if stop && options_.terminal_condition==2
    % Compute the distance to the deterministic steady state (for the subset of endogenous variables with a non zero
    % steady state) at the last perdiod.
    idx = find(abs(oo_.steady_state)>0);
    distance_to_steady_state = abs(((oo_.endo_simul(idx,end)-oo_.steady_state(idx))./oo_.steady_state(idx)))*100;
    disp(['(max) Distance to steady state at the end is (in percentage):' num2str(max(distance_to_steady_state))])
end

if ~stop
    info.time  = etime(clock,h1);
    info.error = err;
    info.convergence = 0;
    info.iterations.time  = info.iterations.time(1:last_line);
    info.iterations.error = info.iterations.error(1:last_line);
    oo_.endo_simul = initial_endo_simul;
end

warning(warning_old_state);