1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
function perfect_foresight_solver()
% Computes deterministic simulations
%
% INPUTS
% None
%
% OUTPUTS
% none
%
% ALGORITHM
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 1996-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global M_ options_ oo_
check_input_arguments(options_, M_, oo_);
if isempty(options_.scalv) || options_.scalv == 0
options_.scalv = oo_.steady_state;
end
periods = options_.periods;
options_.scalv= 1;
if options_.debug
model_static = str2func([M_.fname,'.static']);
for ii=1:size(oo_.exo_simul,1)
[residual(:,ii)] = model_static(oo_.steady_state, oo_.exo_simul(ii,:),M_.params);
end
problematic_periods=find(any(isinf(residual)) | any(isnan(residual)))-M_.maximum_endo_lag;
if ~isempty(problematic_periods)
period_string=num2str(problematic_periods(1));
for ii=2:length(problematic_periods)
period_string=[period_string, ', ', num2str(problematic_periods(ii))];
end
fprintf('\n\nWARNING: Value for the exogenous variable(s) in period(s) %s inconsistent with the static model.\n',period_string);
fprintf('WARNING: Check for division by 0.\n')
end
end
initperiods = 1:M_.maximum_lag;
lastperiods = (M_.maximum_lag+periods+1):(M_.maximum_lag+periods+M_.maximum_lead);
oo_ = perfect_foresight_solver_core(M_,options_,oo_);
% If simulation failed try homotopy.
if ~oo_.deterministic_simulation.status && ~options_.no_homotopy
if ~options_.noprint
fprintf('\nSimulation of the perfect foresight model failed!')
fprintf('Switching to a homotopy method...\n')
end
if ~M_.maximum_lag
disp('Homotopy not implemented for purely forward models!')
disp('Failed to solve the model!')
disp('Return with empty oo_.endo_simul.')
oo_.endo_simul = [];
return
end
if ~M_.maximum_lead
disp('Homotopy not implemented for purely backward models!')
disp('Failed to solve the model!')
disp('Return with empty oo_.endo_simul.')
oo_.endo_simul = [];
return
end
% Disable warnings if homotopy
warning_old_state = warning;
warning off all
% Do not print anything
oldverbositylevel = options_.verbosity;
options_.verbosity = 0;
% Set initial paths for the endogenous and exogenous variables.
endoinit = repmat(oo_.steady_state, 1,M_.maximum_lag+periods+M_.maximum_lead);
exoinit = repmat(oo_.exo_steady_state',M_.maximum_lag+periods+M_.maximum_lead,1);
% Copy the current paths for the exogenous and endogenous variables.
exosim = oo_.exo_simul;
endosim = oo_.endo_simul;
current_weight = 0; % Current weight of target point in convex combination.
step = .5; % Set default step size.
success_counter = 0;
iteration = 0;
if ~options_.noprint
fprintf('Iter. \t | Lambda \t | status \t | Max. residual\n')
fprintf('++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n')
end
while (step > options_.dynatol.x)
if ~isequal(step,1)
options_.verbosity = 0;
end
iteration = iteration+1;
new_weight = current_weight + step; % Try this weight, and see if it succeeds
if new_weight >= 1
new_weight = 1; % Don't go beyond target point
step = new_weight - current_weight;
end
% Compute convex combination for exo path and initial/terminal endo conditions
% But take care of not overwriting the computed part of oo_.endo_simul
oo_.exo_simul = exosim*new_weight + exoinit*(1-new_weight);
oo_.endo_simul(:,[initperiods, lastperiods]) = new_weight*endosim(:,[initperiods, lastperiods])+(1-new_weight)*endoinit(:,[initperiods, lastperiods]);
% Detect Nans or complex numbers in the solution.
path_with_nans = any(any(isnan(oo_.endo_simul)));
path_with_cplx = any(any(~isreal(oo_.endo_simul)));
if isequal(iteration, 1)
% First iteration, same initial guess as in the first call to perfect_foresight_solver_core routine.
oo_.endo_simul(:,M_.maximum_lag+1:end-M_.maximum_lead) = endoinit(:,1:periods);
elseif path_with_nans || path_with_cplx
% If solver failed with NaNs or complex number, use previous solution as an initial guess.
oo_.endo_simul(:,M_.maximum_lag+1:end-M_.maximum_lead) = saved_endo_simul(:,1+M_.maximum_lag:end-M_.maximum_lead);
end
% Make a copy of the paths.
saved_endo_simul = oo_.endo_simul;
% Solve for the paths of the endogenous variables.
[oo_,me] = perfect_foresight_solver_core(M_,options_,oo_);
if oo_.deterministic_simulation.status == 1
current_weight = new_weight;
if current_weight >= 1
if ~options_.noprint
fprintf('%i \t | %1.5f \t | %s \t | %e\n', iteration, new_weight, 'succeeded', me)
end
break
end
success_counter = success_counter + 1;
if success_counter >= 3
success_counter = 0;
step = step * 2;
end
if ~options_.noprint
fprintf('%i \t | %1.5f \t | %s \t | %e\n', iteration, new_weight, 'succeeded', me)
end
else
% If solver failed, then go back.
oo_.endo_simul = saved_endo_simul;
success_counter = 0;
step = step / 2;
if ~options_.noprint
if isreal(me)
fprintf('%i \t | %1.5f \t | %s \t | %e\n', iteration, new_weight, 'failed', me)
else
fprintf('%i \t | %1.5f \t | %s \t | %s\n', iteration, new_weight, 'failed', 'Complex')
end
end
end
end
if ~options_.noprint
fprintf('++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n\n')
end
options_.verbosity = oldverbositylevel;
warning(warning_old_state);
end
if ~isreal(oo_.endo_simul(:)) % cannot happen with bytecode or the perfect_foresight_problem DLL
ny = size(oo_.endo_simul, 1)
if M_.maximum_lag > 0
y0 = real(oo_.endo_simul(:, M_.maximum_lag));
else
y0 = NaN(ny, 1);
end
if M_.maximum_lead > 0
yT = real(oo_.endo_simul(:, M_.maximum_lag+periods+1));
else
yT = NaN(ny, 1);
end
yy = real(oo_.endo_simul(:,M_.maximum_lag+(1:periods)));
residuals = perfect_foresight_problem(yy(:), y0, yT, oo_.exo_simul, M_.params, oo_.steady_state, periods, M_, options_);
if max(abs(residuals))< options_.dynatol.f
oo_.deterministic_simulation.status = 1;
oo_.endo_simul=real(oo_.endo_simul);
else
oo_.deterministic_simulation.status = 0;
disp('Simulation terminated with imaginary parts in the residuals or endogenous variables.')
end
end
if oo_.deterministic_simulation.status == 1
if ~options_.noprint
fprintf('Perfect foresight solution found.\n\n')
end
else
fprintf('Failed to solve perfect foresight model\n\n')
end
dyn2vec(M_, oo_, options_);
if ~isdates(options_.initial_period) && isnan(options_.initial_period)
initial_period = dates(1,1);
else
initial_period = options_.initial_period;
end
ts = dseries(transpose(oo_.endo_simul), initial_period, M_.endo_names);
assignin('base', 'Simulated_time_series', ts);
if oo_.deterministic_simulation.status
oo_.gui.ran_perfect_foresight = true;
end
|