1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
function posterior_sampler(TargetFun,ProposalFun,xparam1,sampler_options,mh_bounds,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,oo_)
% function posterior_sampler(TargetFun,ProposalFun,xparam1,sampler_options,mh_bounds,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,oo_)
% Random Walk Metropolis-Hastings algorithm.
%
% INPUTS
% o TargetFun [char] string specifying the name of the objective
% function (posterior kernel).
% o ProposalFun [char] string specifying the name of the proposal
% density
% o xparam1 [double] (p*1) vector of parameters to be estimated (initial values).
% o sampler_options structure
% .invhess [double] (p*p) matrix, posterior covariance matrix (at the mode).
% o mh_bounds [double] (p*2) matrix defining lower and upper bounds for the parameters.
% o dataset_ data structure
% o dataset_info dataset info structure
% o options_ options structure
% o M_ model structure
% o estim_params_ estimated parameters structure
% o bayestopt_ estimation options structure
% o oo_ outputs structure
%
% SPECIAL REQUIREMENTS
% None.
%
% PARALLEL CONTEXT
% The most computationally intensive part of this function may be executed
% in parallel. The code suitable to be executed in
% parallel on multi core or cluster machine (in general a 'for' cycle)
% has been removed from this function and been placed in the posterior_sampler_core.m funtion.
%
% The DYNARE parallel packages comprise a i) set of pairs of Matlab functions that can be executed in
% parallel and called name_function.m and name_function_core.m and ii) a second set of functions used
% to manage the parallel computations.
%
% This function was the first function to be parallelized. Later, other
% functions have been parallelized using the same methodology.
% Then the comments write here can be used for all the other pairs of
% parallel functions and also for management functions.
% Copyright (C) 2006-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
vv = sampler_options.invhess;
% Initialization of the sampler
[ ix2, ilogpo2, ModelName, MetropolisFolder, fblck, fline, npar, nblck, nruns, NewFile, MAX_nruns, d, bayestopt_] = ...
posterior_sampler_initialization(TargetFun, xparam1, vv, mh_bounds,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,oo_);
InitSizeArray = min([repmat(MAX_nruns,nblck,1) fline+nruns-1],[],2);
% Load last mh history file
load_last_mh_history_file(MetropolisFolder, ModelName);
% Only for test parallel results!!!
% To check the equivalence between parallel and serial computation!
% First run in serial mode, and then comment the follow line.
% save('recordSerial.mat','-struct', 'record');
% For parallel runs after serial runs with the abobe line active.
% TempRecord=load('recordSerial.mat');
% record.Seeds=TempRecord.Seeds;
% Snapshot of the current state of computing. It necessary for the parallel
% execution (i.e. to execute in a corretct way a portion of code remotely or
% on many cores). The mandatory variables for local/remote parallel
% computing are stored in the localVars struct.
localVars = struct('TargetFun', TargetFun, ...
'ProposalFun', ProposalFun, ...
'xparam1', xparam1, ...
'vv', vv, ...
'sampler_options', sampler_options, ...
'mh_bounds', mh_bounds, ...
'ix2', ix2, ...
'ilogpo2', ilogpo2, ...
'ModelName', ModelName, ...
'fline', fline, ...
'npar', npar, ...
'nruns', nruns, ...
'NewFile', NewFile, ...
'MAX_nruns', MAX_nruns, ...
'd', d, ...
'InitSizeArray',InitSizeArray, ...
'record', record, ...
'dataset_', dataset_, ...
'dataset_info', dataset_info, ...
'options_', options_, ...
'M_',M_, ...
'bayestopt_', bayestopt_, ...
'estim_params_', estim_params_, ...
'oo_', oo_,...
'varargin',[]);
if strcmp(sampler_options.posterior_sampling_method,'tailored_random_block_metropolis_hastings')
localVars.options_.silent_optimizer=1; %locally set optimizer to silent mode
if ~isempty(sampler_options.optim_opt)
localVars.options_.optim_opt=sampler_options.optim_opt; %locally set options for optimizer
end
end
% User doesn't want to use parallel computing, or wants to compute a
% single chain compute sequentially.
if isnumeric(options_.parallel) || (~isempty(fblck) && (nblck-fblck)==0)
fout = posterior_sampler_core(localVars, fblck, nblck, 0);
record = fout.record;
% Parallel in Local or remote machine.
else
% Global variables for parallel routines.
globalVars = struct();
% which files have to be copied to run remotely
NamFileInput(1,:) = {'',[ModelName '.static.m']};
NamFileInput(2,:) = {'',[ModelName '.dynamic.m']};
if M_.set_auxiliary_variables
NamFileInput(3,:) = {'',[M_.fname '.set_auxiliary_variables.m']};
end
if options_.steadystate_flag
if options_.steadystate_flag == 1
NamFileInput(length(NamFileInput)+1,:)={'',[M_.fname '_steadystate.m']};
else
NamFileInput(length(NamFileInput)+1,:)={'',[M_.fname '.steadystate.m']};
end
end
if (options_.load_mh_file~=0) && any(fline>1)
NamFileInput(length(NamFileInput)+1,:)={[M_.dname '/metropolis/'],[ModelName '_mh' int2str(NewFile(1)) '_blck*.mat']};
end
% from where to get back results
% NamFileOutput(1,:) = {[M_.dname,'/metropolis/'],'*.*'};
if options_.mh_recover && isempty(fblck)
% here we just need to retrieve the output of the completed remote jobs
fblck=1;
options_.parallel_info.parallel_recover = 1;
end
[fout, nBlockPerCPU, totCPU] = masterParallel(options_.parallel, fblck, nblck,NamFileInput,'posterior_sampler_core', localVars, globalVars, options_.parallel_info);
for j=1:totCPU
offset = sum(nBlockPerCPU(1:j-1))+fblck-1;
record.LastLogPost(offset+1:sum(nBlockPerCPU(1:j)))=fout(j).record.LastLogPost(offset+1:sum(nBlockPerCPU(1:j)));
record.LastParameters(offset+1:sum(nBlockPerCPU(1:j)),:)=fout(j).record.LastParameters(offset+1:sum(nBlockPerCPU(1:j)),:);
record.AcceptanceRatio(offset+1:sum(nBlockPerCPU(1:j)))=fout(j).record.AcceptanceRatio(offset+1:sum(nBlockPerCPU(1:j)));
record.FunctionEvalPerIteration(offset+1:sum(nBlockPerCPU(1:j)))=fout(j).record.FunctionEvalPerIteration(offset+1:sum(nBlockPerCPU(1:j)));
record.LastSeeds(offset+1:sum(nBlockPerCPU(1:j)))=fout(j).record.LastSeeds(offset+1:sum(nBlockPerCPU(1:j)));
end
options_.parallel_info.parallel_recover = 0;
end
irun = fout(1).irun;
NewFile = fout(1).NewFile;
record.MCMCConcludedSuccessfully = 1; %set indicator for successful run
update_last_mh_history_file(MetropolisFolder, ModelName, record);
% Provide diagnostic output
skipline()
disp(['Estimation::mcmc: Number of mh files: ' int2str(NewFile(1)) ' per block.'])
disp(['Estimation::mcmc: Total number of generated files: ' int2str(NewFile(1)*nblck) '.'])
disp(['Estimation::mcmc: Total number of iterations: ' int2str((NewFile(1)-1)*MAX_nruns+irun-1) '.'])
disp(['Estimation::mcmc: Current acceptance ratio per chain: '])
for i=1:nblck
if i<10
disp([' Chain ' num2str(i) ': ' num2str(100*record.AcceptanceRatio(i)) '%'])
else
disp([' Chain ' num2str(i) ': ' num2str(100*record.AcceptanceRatio(i)) '%'])
end
end
if max(record.FunctionEvalPerIteration)>1
disp(['Estimation::mcmc: Current function evaluations per iteration: '])
for i=1:nblck
if i<10
disp([' Chain ' num2str(i) ': ' num2str(record.FunctionEvalPerIteration(i))])
else
disp([' Chain ' num2str(i) ': ' num2str(record.FunctionEvalPerIteration(i))])
end
end
end
|