File: posterior_sampler_core.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (283 lines) | stat: -rw-r--r-- 13,737 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
function myoutput = posterior_sampler_core(myinputs,fblck,nblck,whoiam, ThisMatlab)
% function myoutput = posterior_sampler_core(myinputs,fblck,nblck,whoiam, ThisMatlab)
% Contains the most computationally intensive portion of code in
% posterior_sampler (the 'for xxx = fblck:nblck' loop). The branches in  that 'for'
% cycle are completely independent to be suitable for parallel execution.
%
% INPUTS
%   o myimput            [struc]     The mandatory variables for local/remote
%                                    parallel computing obtained from posterior_sampler.m
%                                    function.
%   o fblck and nblck    [integer]   The Metropolis-Hastings chains.
%   o whoiam             [integer]   In concurrent programming a modality to refer to the different threads running in parallel is needed.
%                                    The integer whoaim is the integer that
%                                    allows us to distinguish between them. Then it is the index number of this CPU among all CPUs in the
%                                    cluster.
%   o ThisMatlab         [integer]   Allows us to distinguish between the
%                                    'main' Matlab, the slave Matlab worker, local Matlab, remote Matlab,
%                                     ... Then it is the index number of this slave machine in the cluster.
% OUTPUTS
%   o myoutput  [struc]
%               If executed without parallel, this is the original output of 'for b =
%               fblck:nblck'. Otherwise, it's a portion of it computed on a specific core or
%               remote machine. In this case:
%                               record;
%                               irun;
%                               NewFile;
%                               OutputFileName
%
% ALGORITHM
%   Portion of Posterior Sampler.
%
% SPECIAL REQUIREMENTS.
%   None.
%
% PARALLEL CONTEXT
% See the comments in the posterior_sampler.m funtion.


% Copyright (C) 2006-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

if nargin<4
    whoiam=0;
end

% reshape 'myinputs' for local computation.
% In order to avoid confusion in the name space, the instruction struct2local(myinputs) is replaced by:

TargetFun=myinputs.TargetFun;
ProposalFun=myinputs.ProposalFun;
xparam1=myinputs.xparam1;
mh_bounds=myinputs.mh_bounds;
last_draw=myinputs.ix2;
last_posterior=myinputs.ilogpo2;
fline=myinputs.fline;
npar=myinputs.npar;
nruns=myinputs.nruns;
NewFile=myinputs.NewFile;
MAX_nruns=myinputs.MAX_nruns;
sampler_options=myinputs.sampler_options;
d=myinputs.d;
InitSizeArray=myinputs.InitSizeArray;
record=myinputs.record;
dataset_ = myinputs.dataset_;
dataset_info = myinputs.dataset_info;
bayestopt_ = myinputs.bayestopt_;
estim_params_ = myinputs.estim_params_;
options_ = myinputs.options_;
M_ = myinputs.M_;
oo_ = myinputs.oo_;
% Necessary only for remote computing!
if whoiam
    % initialize persistent variables in priordens()
    priordens(xparam1,bayestopt_.pshape,bayestopt_.p6,bayestopt_.p7, bayestopt_.p3,bayestopt_.p4,1);
    % initialize persistent variables in prior_draw()
    prior_draw(bayestopt_,options_.prior_trunc);
end

MetropolisFolder = CheckPath('metropolis',M_.dname);
ModelName = M_.fname;
BaseName = [MetropolisFolder filesep ModelName];
save_tmp_file = sampler_options.save_tmp_file;

options_.lik_algo = 1;
OpenOldFile = ones(nblck,1);
if strcmpi(ProposalFun,'rand_multivariate_normal')
    sampler_options.n = npar;
    sampler_options.ProposalDensity = 'multivariate_normal_pdf';
elseif strcmpi(ProposalFun,'rand_multivariate_student')
    sampler_options.n = sampler_options.student_degrees_of_freedom;
    sampler_options.ProposalDensity = 'multivariate_student_pdf';
end

%
% Now I run the (nblck-fblck+1) MCMC chains
%

sampler_options.xparam1 = xparam1;
if ~isempty(d)
    sampler_options.proposal_covariance_Cholesky_decomposition = d*diag(bayestopt_.jscale);
    %store information for load_mh_file
    record.ProposalCovariance=d;
    record.ProposalScaleVec=bayestopt_.jscale;
end

block_iter=0;

for curr_block = fblck:nblck
    LastSeeds=[];
    block_iter=block_iter+1;
    try
        % This will not work if the master uses a random number generator not
        % available in the slave (different Matlab version or
        % Matlab/Octave cluster). Therefore the trap.
        %
        % Set the random number generator type (the seed is useless but needed by the function)
        if ~isoctave
            set_dynare_seed(options_.DynareRandomStreams.algo, options_.DynareRandomStreams.seed);
        else
            set_dynare_seed(options_.DynareRandomStreams.seed+curr_block);
        end
        % Set the state of the RNG
        set_dynare_random_generator_state(record.InitialSeeds(curr_block).Unifor, record.InitialSeeds(curr_block).Normal);
    catch
        % If the state set by master is incompatible with the slave, we only reseed
        set_dynare_seed(options_.DynareRandomStreams.seed+curr_block);
    end
    mh_recover_flag=0;
    if (options_.load_mh_file~=0) && (fline(curr_block)>1) && OpenOldFile(curr_block) %load previous draws and likelihood
        load([BaseName '_mh' int2str(NewFile(curr_block)) '_blck' int2str(curr_block) '.mat'])
        x2 = [x2;zeros(InitSizeArray(curr_block)-fline(curr_block)+1,npar)];
        logpo2 = [logpo2;zeros(InitSizeArray(curr_block)-fline(curr_block)+1,1)];
        OpenOldFile(curr_block) = 0;
    else
        if options_.mh_recover && exist([BaseName '_mh_tmp_blck' int2str(curr_block) '.mat'],'file')==2
            load([BaseName '_mh_tmp_blck' int2str(curr_block) '.mat']);
            draw_iter = size(neval_this_chain,2)+1;
            draw_index_current_file = draw_iter;
            feval_this_chain = sum(sum(neval_this_chain));
            feval_this_file = sum(sum(neval_this_chain));
            if feval_this_chain>draw_iter-1
                % non Metropolis type of sampler
                accepted_draws_this_chain = draw_iter-1;
                accepted_draws_this_file = draw_iter-1;
            else
                accepted_draws_this_chain = 0;
                accepted_draws_this_file = 0;
            end
            mh_recover_flag=1;
            set_dynare_random_generator_state(LastSeeds.(['file' int2str(NewFile(curr_block))]).Unifor, LastSeeds.(['file' int2str(NewFile(curr_block))]).Normal);
            last_draw(curr_block,:)=x2(draw_iter-1,:);
            last_posterior(curr_block)=logpo2(draw_iter-1);

        else

            x2 = zeros(InitSizeArray(curr_block),npar);
            logpo2 = zeros(InitSizeArray(curr_block),1);
        end
    end
    %Prepare waiting bars
    if whoiam
        refresh_rate = sampler_options.parallel_bar_refresh_rate;
        bar_title = sampler_options.parallel_bar_title;
        prc0=(curr_block-fblck)/(nblck-fblck+1)*(isoctave || options_.console_mode);
        hh = dyn_waitbar({prc0,whoiam,options_.parallel(ThisMatlab)},[bar_title ' (' int2str(curr_block) '/' int2str(options_.mh_nblck) ')...']);
    else
        refresh_rate = sampler_options.serial_bar_refresh_rate;
        bar_title = sampler_options.serial_bar_title;
        hh = dyn_waitbar(0,[bar_title ' (' int2str(curr_block) '/' int2str(options_.mh_nblck) ')...']);
        set(hh,'Name',bar_title);
    end
    if mh_recover_flag==0
        accepted_draws_this_chain = 0;
        accepted_draws_this_file = 0;
        feval_this_chain = 0;
        feval_this_file = 0;
        draw_iter = 1;
        draw_index_current_file = fline(curr_block); %get location of first draw in current block
    end
    sampler_options.curr_block = curr_block;
    while draw_iter <= nruns(curr_block)

        [par, logpost, accepted, neval] = posterior_sampler_iteration(TargetFun, last_draw(curr_block,:), last_posterior(curr_block), sampler_options,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,mh_bounds,oo_);

        x2(draw_index_current_file,:) = par;
        last_draw(curr_block,:) = par;
        logpo2(draw_index_current_file) = logpost;
        last_posterior(curr_block) = logpost;
        neval_this_chain(:, draw_iter) = neval;
        feval_this_chain = feval_this_chain + sum(neval);
        feval_this_file = feval_this_file + sum(neval);
        accepted_draws_this_chain = accepted_draws_this_chain + accepted;
        accepted_draws_this_file = accepted_draws_this_file + accepted;

        prtfrc = draw_iter/nruns(curr_block);
        if mod(draw_iter, refresh_rate)==0
            if accepted_draws_this_chain/draw_iter==1 && sum(neval)>1
                dyn_waitbar(prtfrc,hh,[bar_title ' (' int2str(curr_block) '/' int2str(options_.mh_nblck) ') ' sprintf('Function eval per draw %4.3f', feval_this_chain/draw_iter)]);
            else
                dyn_waitbar(prtfrc,hh,[bar_title ' (' int2str(curr_block) '/' int2str(options_.mh_nblck) ') ' sprintf('Current acceptance ratio %4.3f', accepted_draws_this_chain/draw_iter)]);
            end
            if save_tmp_file
                [LastSeeds.(['file' int2str(NewFile(curr_block))]).Unifor, LastSeeds.(['file' int2str(NewFile(curr_block))]).Normal] = get_dynare_random_generator_state();
                save([BaseName '_mh_tmp_blck' int2str(curr_block) '.mat'],'x2','logpo2','LastSeeds','neval_this_chain','accepted_draws_this_chain','accepted_draws_this_file','feval_this_chain','feval_this_file');
            end
        end
        if (draw_index_current_file == InitSizeArray(curr_block)) || (draw_iter == nruns(curr_block)) % Now I save the simulations, either because the current file is full or the chain is done
            [LastSeeds.(['file' int2str(NewFile(curr_block))]).Unifor, LastSeeds.(['file' int2str(NewFile(curr_block))]).Normal] = get_dynare_random_generator_state();
            if save_tmp_file
                delete([BaseName '_mh_tmp_blck' int2str(curr_block) '.mat']);
            end
            save([BaseName '_mh' int2str(NewFile(curr_block)) '_blck' int2str(curr_block) '.mat'],'x2','logpo2','LastSeeds','accepted_draws_this_chain','accepted_draws_this_file','feval_this_chain','feval_this_file');
            fidlog = fopen([MetropolisFolder '/metropolis.log'],'a');
            fprintf(fidlog,['\n']);
            fprintf(fidlog,['%% Mh' int2str(NewFile(curr_block)) 'Blck' int2str(curr_block) ' (' datestr(now,0) ')\n']);
            fprintf(fidlog,' \n');
            fprintf(fidlog,['  Number of simulations.: ' int2str(length(logpo2)) '\n']);
            fprintf(fidlog,['  Acceptance ratio......: ' num2str(accepted_draws_this_file/length(logpo2)) '\n']);
            fprintf(fidlog,['  Feval per iteration...: ' num2str(feval_this_file/length(logpo2)) '\n']);
            fprintf(fidlog,['  Posterior mean........:\n']);
            for i=1:length(x2(1,:))
                fprintf(fidlog,['    params:' int2str(i) ': ' num2str(mean(x2(:,i))) '\n']);
            end
            fprintf(fidlog,['    log2po:' num2str(mean(logpo2)) '\n']);
            fprintf(fidlog,['  Minimum value.........:\n']);
            for i=1:length(x2(1,:))
                fprintf(fidlog,['    params:' int2str(i) ': ' num2str(min(x2(:,i))) '\n']);
            end
            fprintf(fidlog,['    log2po:' num2str(min(logpo2)) '\n']);
            fprintf(fidlog,['  Maximum value.........:\n']);
            for i=1:length(x2(1,:))
                fprintf(fidlog,['    params:' int2str(i) ': ' num2str(max(x2(:,i))) '\n']);
            end
            fprintf(fidlog,['    log2po:' num2str(max(logpo2)) '\n']);
            fprintf(fidlog,' \n');
            fclose(fidlog);
            accepted_draws_this_file = 0;
            feval_this_file = 0;
            if draw_iter == nruns(curr_block) % I record the last draw...
                record.LastParameters(curr_block,:) = x2(end,:);
                record.LastLogPost(curr_block) = logpo2(end);
            end
            % size of next file in chain curr_block
            InitSizeArray(curr_block) = min(nruns(curr_block)-draw_iter,MAX_nruns);
            % initialization of next file if necessary
            if InitSizeArray(curr_block)
                x2 = zeros(InitSizeArray(curr_block),npar);
                logpo2 = zeros(InitSizeArray(curr_block),1);
                NewFile(curr_block) = NewFile(curr_block) + 1;
                draw_index_current_file = 0;
            end
        end
        draw_iter=draw_iter+1;
        draw_index_current_file = draw_index_current_file + 1;
    end % End of the simulations for one mh-block.
    dyn_waitbar_close(hh);
    if nruns(curr_block)
        record.AcceptanceRatio(curr_block) = accepted_draws_this_chain/(draw_iter-1);
        record.FunctionEvalPerIteration(curr_block) = feval_this_chain/(draw_iter-1);
        [record.LastSeeds(curr_block).Unifor, record.LastSeeds(curr_block).Normal] = get_dynare_random_generator_state();
    end
    OutputFileName(block_iter,:) = {[MetropolisFolder,filesep], [ModelName '_mh*_blck' int2str(curr_block) '.mat']};
end % End of the loop over the mh-blocks.


myoutput.record = record;
myoutput.irun = draw_index_current_file;
myoutput.NewFile = NewFile;
myoutput.OutputFileName = OutputFileName;