1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
function myoutput = posterior_sampler_core(myinputs,fblck,nblck,whoiam, ThisMatlab)
% function myoutput = posterior_sampler_core(myinputs,fblck,nblck,whoiam, ThisMatlab)
% Contains the most computationally intensive portion of code in
% posterior_sampler (the 'for xxx = fblck:nblck' loop). The branches in that 'for'
% cycle are completely independent to be suitable for parallel execution.
%
% INPUTS
% o myimput [struc] The mandatory variables for local/remote
% parallel computing obtained from posterior_sampler.m
% function.
% o fblck and nblck [integer] The Metropolis-Hastings chains.
% o whoiam [integer] In concurrent programming a modality to refer to the different threads running in parallel is needed.
% The integer whoaim is the integer that
% allows us to distinguish between them. Then it is the index number of this CPU among all CPUs in the
% cluster.
% o ThisMatlab [integer] Allows us to distinguish between the
% 'main' Matlab, the slave Matlab worker, local Matlab, remote Matlab,
% ... Then it is the index number of this slave machine in the cluster.
% OUTPUTS
% o myoutput [struc]
% If executed without parallel, this is the original output of 'for b =
% fblck:nblck'. Otherwise, it's a portion of it computed on a specific core or
% remote machine. In this case:
% record;
% irun;
% NewFile;
% OutputFileName
%
% ALGORITHM
% Portion of Posterior Sampler.
%
% SPECIAL REQUIREMENTS.
% None.
%
% PARALLEL CONTEXT
% See the comments in the posterior_sampler.m funtion.
% Copyright (C) 2006-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
if nargin<4
whoiam=0;
end
% reshape 'myinputs' for local computation.
% In order to avoid confusion in the name space, the instruction struct2local(myinputs) is replaced by:
TargetFun=myinputs.TargetFun;
ProposalFun=myinputs.ProposalFun;
xparam1=myinputs.xparam1;
mh_bounds=myinputs.mh_bounds;
last_draw=myinputs.ix2;
last_posterior=myinputs.ilogpo2;
fline=myinputs.fline;
npar=myinputs.npar;
nruns=myinputs.nruns;
NewFile=myinputs.NewFile;
MAX_nruns=myinputs.MAX_nruns;
sampler_options=myinputs.sampler_options;
d=myinputs.d;
InitSizeArray=myinputs.InitSizeArray;
record=myinputs.record;
dataset_ = myinputs.dataset_;
dataset_info = myinputs.dataset_info;
bayestopt_ = myinputs.bayestopt_;
estim_params_ = myinputs.estim_params_;
options_ = myinputs.options_;
M_ = myinputs.M_;
oo_ = myinputs.oo_;
% Necessary only for remote computing!
if whoiam
% initialize persistent variables in priordens()
priordens(xparam1,bayestopt_.pshape,bayestopt_.p6,bayestopt_.p7, bayestopt_.p3,bayestopt_.p4,1);
% initialize persistent variables in prior_draw()
prior_draw(bayestopt_,options_.prior_trunc);
end
MetropolisFolder = CheckPath('metropolis',M_.dname);
ModelName = M_.fname;
BaseName = [MetropolisFolder filesep ModelName];
save_tmp_file = sampler_options.save_tmp_file;
options_.lik_algo = 1;
OpenOldFile = ones(nblck,1);
if strcmpi(ProposalFun,'rand_multivariate_normal')
sampler_options.n = npar;
sampler_options.ProposalDensity = 'multivariate_normal_pdf';
elseif strcmpi(ProposalFun,'rand_multivariate_student')
sampler_options.n = sampler_options.student_degrees_of_freedom;
sampler_options.ProposalDensity = 'multivariate_student_pdf';
end
%
% Now I run the (nblck-fblck+1) MCMC chains
%
sampler_options.xparam1 = xparam1;
if ~isempty(d)
sampler_options.proposal_covariance_Cholesky_decomposition = d*diag(bayestopt_.jscale);
%store information for load_mh_file
record.ProposalCovariance=d;
record.ProposalScaleVec=bayestopt_.jscale;
end
block_iter=0;
for curr_block = fblck:nblck
LastSeeds=[];
block_iter=block_iter+1;
try
% This will not work if the master uses a random number generator not
% available in the slave (different Matlab version or
% Matlab/Octave cluster). Therefore the trap.
%
% Set the random number generator type (the seed is useless but needed by the function)
if ~isoctave
set_dynare_seed(options_.DynareRandomStreams.algo, options_.DynareRandomStreams.seed);
else
set_dynare_seed(options_.DynareRandomStreams.seed+curr_block);
end
% Set the state of the RNG
set_dynare_random_generator_state(record.InitialSeeds(curr_block).Unifor, record.InitialSeeds(curr_block).Normal);
catch
% If the state set by master is incompatible with the slave, we only reseed
set_dynare_seed(options_.DynareRandomStreams.seed+curr_block);
end
mh_recover_flag=0;
if (options_.load_mh_file~=0) && (fline(curr_block)>1) && OpenOldFile(curr_block) %load previous draws and likelihood
load([BaseName '_mh' int2str(NewFile(curr_block)) '_blck' int2str(curr_block) '.mat'])
x2 = [x2;zeros(InitSizeArray(curr_block)-fline(curr_block)+1,npar)];
logpo2 = [logpo2;zeros(InitSizeArray(curr_block)-fline(curr_block)+1,1)];
OpenOldFile(curr_block) = 0;
else
if options_.mh_recover && exist([BaseName '_mh_tmp_blck' int2str(curr_block) '.mat'],'file')==2
load([BaseName '_mh_tmp_blck' int2str(curr_block) '.mat']);
draw_iter = size(neval_this_chain,2)+1;
draw_index_current_file = draw_iter;
feval_this_chain = sum(sum(neval_this_chain));
feval_this_file = sum(sum(neval_this_chain));
if feval_this_chain>draw_iter-1
% non Metropolis type of sampler
accepted_draws_this_chain = draw_iter-1;
accepted_draws_this_file = draw_iter-1;
else
accepted_draws_this_chain = 0;
accepted_draws_this_file = 0;
end
mh_recover_flag=1;
set_dynare_random_generator_state(LastSeeds.(['file' int2str(NewFile(curr_block))]).Unifor, LastSeeds.(['file' int2str(NewFile(curr_block))]).Normal);
last_draw(curr_block,:)=x2(draw_iter-1,:);
last_posterior(curr_block)=logpo2(draw_iter-1);
else
x2 = zeros(InitSizeArray(curr_block),npar);
logpo2 = zeros(InitSizeArray(curr_block),1);
end
end
%Prepare waiting bars
if whoiam
refresh_rate = sampler_options.parallel_bar_refresh_rate;
bar_title = sampler_options.parallel_bar_title;
prc0=(curr_block-fblck)/(nblck-fblck+1)*(isoctave || options_.console_mode);
hh = dyn_waitbar({prc0,whoiam,options_.parallel(ThisMatlab)},[bar_title ' (' int2str(curr_block) '/' int2str(options_.mh_nblck) ')...']);
else
refresh_rate = sampler_options.serial_bar_refresh_rate;
bar_title = sampler_options.serial_bar_title;
hh = dyn_waitbar(0,[bar_title ' (' int2str(curr_block) '/' int2str(options_.mh_nblck) ')...']);
set(hh,'Name',bar_title);
end
if mh_recover_flag==0
accepted_draws_this_chain = 0;
accepted_draws_this_file = 0;
feval_this_chain = 0;
feval_this_file = 0;
draw_iter = 1;
draw_index_current_file = fline(curr_block); %get location of first draw in current block
end
sampler_options.curr_block = curr_block;
while draw_iter <= nruns(curr_block)
[par, logpost, accepted, neval] = posterior_sampler_iteration(TargetFun, last_draw(curr_block,:), last_posterior(curr_block), sampler_options,dataset_,dataset_info,options_,M_,estim_params_,bayestopt_,mh_bounds,oo_);
x2(draw_index_current_file,:) = par;
last_draw(curr_block,:) = par;
logpo2(draw_index_current_file) = logpost;
last_posterior(curr_block) = logpost;
neval_this_chain(:, draw_iter) = neval;
feval_this_chain = feval_this_chain + sum(neval);
feval_this_file = feval_this_file + sum(neval);
accepted_draws_this_chain = accepted_draws_this_chain + accepted;
accepted_draws_this_file = accepted_draws_this_file + accepted;
prtfrc = draw_iter/nruns(curr_block);
if mod(draw_iter, refresh_rate)==0
if accepted_draws_this_chain/draw_iter==1 && sum(neval)>1
dyn_waitbar(prtfrc,hh,[bar_title ' (' int2str(curr_block) '/' int2str(options_.mh_nblck) ') ' sprintf('Function eval per draw %4.3f', feval_this_chain/draw_iter)]);
else
dyn_waitbar(prtfrc,hh,[bar_title ' (' int2str(curr_block) '/' int2str(options_.mh_nblck) ') ' sprintf('Current acceptance ratio %4.3f', accepted_draws_this_chain/draw_iter)]);
end
if save_tmp_file
[LastSeeds.(['file' int2str(NewFile(curr_block))]).Unifor, LastSeeds.(['file' int2str(NewFile(curr_block))]).Normal] = get_dynare_random_generator_state();
save([BaseName '_mh_tmp_blck' int2str(curr_block) '.mat'],'x2','logpo2','LastSeeds','neval_this_chain','accepted_draws_this_chain','accepted_draws_this_file','feval_this_chain','feval_this_file');
end
end
if (draw_index_current_file == InitSizeArray(curr_block)) || (draw_iter == nruns(curr_block)) % Now I save the simulations, either because the current file is full or the chain is done
[LastSeeds.(['file' int2str(NewFile(curr_block))]).Unifor, LastSeeds.(['file' int2str(NewFile(curr_block))]).Normal] = get_dynare_random_generator_state();
if save_tmp_file
delete([BaseName '_mh_tmp_blck' int2str(curr_block) '.mat']);
end
save([BaseName '_mh' int2str(NewFile(curr_block)) '_blck' int2str(curr_block) '.mat'],'x2','logpo2','LastSeeds','accepted_draws_this_chain','accepted_draws_this_file','feval_this_chain','feval_this_file');
fidlog = fopen([MetropolisFolder '/metropolis.log'],'a');
fprintf(fidlog,['\n']);
fprintf(fidlog,['%% Mh' int2str(NewFile(curr_block)) 'Blck' int2str(curr_block) ' (' datestr(now,0) ')\n']);
fprintf(fidlog,' \n');
fprintf(fidlog,[' Number of simulations.: ' int2str(length(logpo2)) '\n']);
fprintf(fidlog,[' Acceptance ratio......: ' num2str(accepted_draws_this_file/length(logpo2)) '\n']);
fprintf(fidlog,[' Feval per iteration...: ' num2str(feval_this_file/length(logpo2)) '\n']);
fprintf(fidlog,[' Posterior mean........:\n']);
for i=1:length(x2(1,:))
fprintf(fidlog,[' params:' int2str(i) ': ' num2str(mean(x2(:,i))) '\n']);
end
fprintf(fidlog,[' log2po:' num2str(mean(logpo2)) '\n']);
fprintf(fidlog,[' Minimum value.........:\n']);
for i=1:length(x2(1,:))
fprintf(fidlog,[' params:' int2str(i) ': ' num2str(min(x2(:,i))) '\n']);
end
fprintf(fidlog,[' log2po:' num2str(min(logpo2)) '\n']);
fprintf(fidlog,[' Maximum value.........:\n']);
for i=1:length(x2(1,:))
fprintf(fidlog,[' params:' int2str(i) ': ' num2str(max(x2(:,i))) '\n']);
end
fprintf(fidlog,[' log2po:' num2str(max(logpo2)) '\n']);
fprintf(fidlog,' \n');
fclose(fidlog);
accepted_draws_this_file = 0;
feval_this_file = 0;
if draw_iter == nruns(curr_block) % I record the last draw...
record.LastParameters(curr_block,:) = x2(end,:);
record.LastLogPost(curr_block) = logpo2(end);
end
% size of next file in chain curr_block
InitSizeArray(curr_block) = min(nruns(curr_block)-draw_iter,MAX_nruns);
% initialization of next file if necessary
if InitSizeArray(curr_block)
x2 = zeros(InitSizeArray(curr_block),npar);
logpo2 = zeros(InitSizeArray(curr_block),1);
NewFile(curr_block) = NewFile(curr_block) + 1;
draw_index_current_file = 0;
end
end
draw_iter=draw_iter+1;
draw_index_current_file = draw_index_current_file + 1;
end % End of the simulations for one mh-block.
dyn_waitbar_close(hh);
if nruns(curr_block)
record.AcceptanceRatio(curr_block) = accepted_draws_this_chain/(draw_iter-1);
record.FunctionEvalPerIteration(curr_block) = feval_this_chain/(draw_iter-1);
[record.LastSeeds(curr_block).Unifor, record.LastSeeds(curr_block).Normal] = get_dynare_random_generator_state();
end
OutputFileName(block_iter,:) = {[MetropolisFolder,filesep], [ModelName '_mh*_blck' int2str(curr_block) '.mat']};
end % End of the loop over the mh-blocks.
myoutput.record = record;
myoutput.irun = draw_index_current_file;
myoutput.NewFile = NewFile;
myoutput.OutputFileName = OutputFileName;
|