File: prior_posterior_statistics_core.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (510 lines) | stat: -rw-r--r-- 22,166 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
function myoutput=prior_posterior_statistics_core(myinputs,fpar,B,whoiam, ThisMatlab)
% PARALLEL CONTEXT
% Core functionality for prior_posterior.m function, which can be parallelized.
% See also the comment in posterior_sampler_core.m funtion.
%
% INPUTS
%   See the comment in posterior_sampler_core.m funtion.
%
% OUTPUTS
% o myoutput  [struc]
%  Contained OutputFileName_smooth;
%                          _update;
%                          _inno;
%                          _error;
%                          _filter_step_ahead;
%                          _param;
%                          _forc_mean;
%                          _forc_point;
%                          _forc_point_ME;
%                          _filter_covar;
%                          _trend_coeff;
%                          _smoothed_trend;
%                          _smoothed_constant;
%                          _state_uncert;
%
% ALGORITHM
%   Portion of prior_posterior.m function.
% This file is part of Dynare.
%
% SPECIAL REQUIREMENTS.
%   None.

% Copyright (C) 2005-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global options_ oo_ M_ bayestopt_ estim_params_

if nargin<4
    whoiam=0;
end

% Reshape 'myinputs' for local computation.
% In order to avoid confusion in the name space, the instruction struct2local(myinputs) is replaced by:

type=myinputs.type;
run_smoother=myinputs.run_smoother;
filter_covariance=myinputs.filter_covariance;
smoothed_state_uncertainty=myinputs.smoothed_state_uncertainty;
gend=myinputs.gend;
Y=myinputs.Y;
data_index=myinputs.data_index;
missing_value=myinputs.missing_value;
varobs=myinputs.varobs;
mean_varobs=myinputs.mean_varobs;
irun=myinputs.irun;
endo_nbr=myinputs.endo_nbr;
nvn=myinputs.nvn;
naK=myinputs.naK;
horizon=myinputs.horizon;
iendo=myinputs.iendo;
IdObs=myinputs.IdObs; %index of observables
if horizon
    i_last_obs=myinputs.i_last_obs;
    MAX_nforc1=myinputs.MAX_nforc1;
    MAX_nforc2=myinputs.MAX_nforc2;
    if ~isequal(M_.H,0)
        MAX_nforc_ME=myinputs.MAX_nforc_ME;
    end
end
if naK
    MAX_naK=myinputs.MAX_naK;
end
if filter_covariance
    MAX_filter_covariance=myinputs.MAX_filter_covariance;
end
if smoothed_state_uncertainty
    MAX_n_smoothed_state_uncertainty=myinputs.MAX_n_smoothed_state_uncertainty;
end

exo_nbr=myinputs.exo_nbr;
maxlag=myinputs.maxlag;
MAX_nsmoo=myinputs.MAX_nsmoo;
MAX_ninno=myinputs.MAX_ninno;
MAX_n_smoothed_constant=myinputs.MAX_n_smoothed_constant;
MAX_n_smoothed_trend=myinputs.MAX_n_smoothed_trend;
MAX_n_trend_coeff=myinputs.MAX_n_trend_coeff;
MAX_nerro = myinputs.MAX_nerro;
MAX_nruns=myinputs.MAX_nruns;
MAX_momentsno = myinputs.MAX_momentsno;
ifil=myinputs.ifil;

if ~strcmpi(type,'prior')
    x=myinputs.x;
    if strcmpi(type,'posterior')
        logpost=myinputs.logpost;
    end
end
if whoiam
    Parallel=myinputs.Parallel;
end

% DirectoryName = myinputs.DirectoryName;
if strcmpi(type,'posterior')
    DirectoryName = CheckPath('metropolis',M_.dname);
elseif strcmpi(type,'gsa')
    if options_.opt_gsa.pprior
        DirectoryName = CheckPath(['gsa',filesep,'prior'],M_.dname);
    else
        DirectoryName = CheckPath(['gsa',filesep,'mc'],M_.dname);
    end
elseif strcmpi(type,'prior')
    DirectoryName = CheckPath('prior',M_.dname);
end

RemoteFlag = 0;
if whoiam
    if Parallel(ThisMatlab).Local==0
        RemoteFlag =1;
    end
    ifil=ifil(:,whoiam);
    prct0={0,whoiam,Parallel(ThisMatlab)};
else
    prct0=0;
end
h = dyn_waitbar(prct0,['Taking ',type,' subdraws...']);

if RemoteFlag==1
    OutputFileName_smooth = {};
    OutputFileName_update = {};
    OutputFileName_inno = {};
    OutputFileName_error = {};
    OutputFileName_filter_step_ahead = {};
    OutputFileName_param = {};
    OutputFileName_forc_mean = {};
    OutputFileName_forc_point = {};
    OutputFileName_forc_point_ME = {};
    OutputFileName_filter_covar ={};
    OutputFileName_trend_coeff = {};
    OutputFileName_smoothed_trend = {};
    OutputFileName_smoothed_constant = {};
    % OutputFileName_moments = {};
end

%initialize arrays
if run_smoother
    stock_smooth=NaN(endo_nbr,gend,MAX_nsmoo);
    stock_update=NaN(endo_nbr,gend,MAX_nsmoo);
    stock_innov=NaN(M_.exo_nbr,gend,MAX_ninno);
    stock_smoothed_constant=NaN(endo_nbr,gend,MAX_n_smoothed_constant);
    stock_smoothed_trend=NaN(endo_nbr,gend,MAX_n_smoothed_trend);
    stock_trend_coeff = zeros(endo_nbr,MAX_n_trend_coeff);
    if horizon
        stock_forcst_mean= NaN(endo_nbr,horizon,MAX_nforc1);
        stock_forcst_point = NaN(endo_nbr,horizon,MAX_nforc2);
        if ~isequal(M_.H,0)
            stock_forcst_point_ME = NaN(length(varobs),horizon,MAX_nforc_ME);
        end
    end
end
if nvn
    stock_error = NaN(length(varobs),gend,MAX_nerro);
end
if naK
    stock_filter_step_ahead =NaN(length(options_.filter_step_ahead),endo_nbr,gend+max(options_.filter_step_ahead),MAX_naK);
end
stock_param = NaN(MAX_nruns,size(myinputs.x,2));
stock_logpo = NaN(MAX_nruns,1);
stock_ys = NaN(MAX_nruns,endo_nbr);
if filter_covariance
    stock_filter_covariance = zeros(endo_nbr,endo_nbr,gend+1,MAX_filter_covariance);
end
if smoothed_state_uncertainty
    stock_smoothed_uncert = zeros(endo_nbr,endo_nbr,gend,MAX_n_smoothed_state_uncertainty);
end

for b=fpar:B
    if strcmpi(type,'prior')

        [deep, logpo] = GetOneDraw(type,M_,estim_params_,oo_,options_,bayestopt_);

    else
        deep = x(b,:);
        if strcmpi(type,'posterior')
            logpo = logpost(b);
        else
            logpo = evaluate_posterior_kernel(deep',M_,estim_params_,oo_,options_,bayestopt_);
        end
    end
    M_ = set_all_parameters(deep,estim_params_,M_);

    if run_smoother
        [dr,info,M_,options_,oo_] =compute_decision_rules(M_,options_,oo_);
        [alphahat,etahat,epsilonhat,alphatilde,SteadyState,trend_coeff,aK,~,~,P,~,~,trend_addition,state_uncertainty,M_,oo_,options_,bayestopt_] = ...
            DsgeSmoother(deep,gend,Y,data_index,missing_value,M_,oo_,options_,bayestopt_,estim_params_);

        stock_trend_coeff(options_.varobs_id,irun(9))=trend_coeff;
        stock_smoothed_trend(IdObs,:,irun(11))=trend_addition;
        if options_.loglinear %reads values from smoother results, which are in dr-order and put them into declaration order
            constant_part=repmat(log(SteadyState(dr.order_var)),1,gend);
            stock_smooth(dr.order_var,:,irun(1)) = alphahat(1:endo_nbr,:)+ ...
                constant_part;
            stock_update(dr.order_var,:,irun(1)) = alphatilde(1:endo_nbr,:)+ ...
                constant_part;
        else
            constant_part=repmat(SteadyState(dr.order_var),1,gend);
            stock_smooth(dr.order_var,:,irun(1)) = alphahat(1:endo_nbr,:)+ ...
                constant_part;
            stock_update(dr.order_var,:,irun(1)) = alphatilde(1:endo_nbr,:)+ ...
                constant_part;
        end
        stock_smoothed_constant(dr.order_var,:,irun(10))=constant_part;
        %% Compute constant for observables
        if options_.prefilter == 1 %as mean is taken after log transformation, no distinction is needed here
            constant_part=repmat(mean_varobs',1,gend);
        elseif options_.prefilter == 0 && options_.loglinear %logged steady state must be used
            constant_part=repmat(log(SteadyState(IdObs)),1,gend);
        elseif options_.prefilter == 0 && ~options_.loglinear %unlogged steady state must be used
            constant_part=repmat(SteadyState(IdObs),1,gend);
        end
        %add trend to observables
        if options_.prefilter
            %do correction for prefiltering for observed variables
            if options_.loglinear
                mean_correction=-repmat(log(SteadyState(IdObs)),1,gend)+constant_part;
            else
                mean_correction=-repmat(SteadyState(IdObs),1,gend)+constant_part;
            end
            stock_smoothed_constant(IdObs,:,irun(10))=stock_smoothed_constant(IdObs,:,irun(10))+mean_correction;
            %smoothed variables are E_T(y_t) so no trend shift is required
            stock_smooth(IdObs,:,irun(1))=stock_smooth(IdObs,:,irun(1))+trend_addition+mean_correction;
            %updated variables are E_t(y_t) so no trend shift is required
            stock_update(IdObs,:,irun(1))=stock_update(IdObs,:,irun(1))+trend_addition+mean_correction;
        else
            stock_smooth(IdObs,:,irun(1))=stock_smooth(IdObs,:,irun(1))+trend_addition;
            stock_update(IdObs,:,irun(1))=stock_update(IdObs,:,irun(1))+trend_addition;
        end
        stock_innov(:,:,irun(2))  = etahat;
        if nvn
            stock_error(:,:,irun(3))  = epsilonhat;
        end
        if naK
            %filtered variable E_t(y_t+k) requires to shift trend by k periods
            %write variables into declaration order
            if options_.loglinear %reads values from smoother results, which are in dr-order and put them into declaration order
                constant_part=repmat(log(SteadyState(dr.order_var))',[length(options_.filter_step_ahead),1,gend+max(options_.filter_step_ahead)]);
            else
                constant_part=repmat(SteadyState(dr.order_var)',[length(options_.filter_step_ahead),1,gend+max(options_.filter_step_ahead)]);
            end
            stock_filter_step_ahead(:,dr.order_var,:,irun(4)) = aK(options_.filter_step_ahead,1:endo_nbr,:) + constant_part;
            %now add trend to observables
            for ii=1:length(options_.filter_step_ahead)
                if options_.prefilter
                    zdim = size(stock_filter_step_ahead(ii,IdObs,:,irun(4)));
                    squeezed = reshape(stock_filter_step_ahead(ii,IdObs,:,irun(4)), [zdim(2:end) 1]);
                    stock_filter_step_ahead(ii,IdObs,:,irun(4)) = squeezed ...
                        +repmat(mean_correction(:,1),1,gend+max(options_.filter_step_ahead)) ... %constant correction
                        +[trend_addition repmat(trend_addition(:,end),1,max(options_.filter_step_ahead))+trend_coeff*[1:max(options_.filter_step_ahead)]]; %trend
                else
                    zdim = size(stock_filter_step_ahead(ii,IdObs,:,irun(4)));
                    squeezed = reshape(stock_filter_step_ahead(ii,IdObs,:,irun(4)), [zdim(2:end) 1]);
                    stock_filter_step_ahead(ii,IdObs,:,irun(4)) = squeezed ...
                        +[trend_addition repmat(trend_addition(:,end),1,max(options_.filter_step_ahead))+trend_coeff*[1:max(options_.filter_step_ahead)]]; %trend
                end
            end
        end
        if horizon
            yyyy = alphahat(iendo,i_last_obs);
            yf = forcst2a(yyyy,dr,zeros(horizon,exo_nbr));
            if options_.prefilter
                % add mean
                yf(:,IdObs) = yf(:,IdObs)+repmat(mean_varobs, ...
                                                 horizon+maxlag,1);
                % add trend, taking into account that last point of sample is still included in forecasts and only cut off later
                yf(:,IdObs) = yf(:,IdObs)+((options_.first_obs-1)+gend+[1-maxlag:horizon]')*trend_coeff'-...
                    repmat(mean(trend_coeff*[options_.first_obs:options_.first_obs+gend-1],2)',length(1-maxlag:horizon),1); %center trend
            else
                % add trend, taking into account that last point of sample is still included in forecasts and only cut off later
                yf(:,IdObs) = yf(:,IdObs)+((options_.first_obs-1)+gend+[1-maxlag:horizon]')*trend_coeff';
            end
            if options_.loglinear
                yf = yf+repmat(log(SteadyState'),horizon+maxlag,1);
            else
                yf = yf+repmat(SteadyState',horizon+maxlag,1);
            end
            yf1 = forcst2(yyyy,horizon,dr,1);
            if options_.prefilter == 1
                % add mean
                yf1(:,IdObs,:) = yf1(:,IdObs,:)+ ...
                    repmat(mean_varobs,[horizon+maxlag,1,1]);
                % add trend, taking into account that last point of sample is still included in forecasts and only cut off later
                yf1(:,IdObs) = yf1(:,IdObs)+((options_.first_obs-1)+gend+[1-maxlag:horizon]')*trend_coeff'-...
                    repmat(mean(trend_coeff*[options_.first_obs:options_.first_obs+gend-1],2)',length(1-maxlag:horizon),1); %center trend
            else
                % add trend, taking into account that last point of sample is still included in forecasts and only cut off later
                yf1(:,IdObs,:) = yf1(:,IdObs,:)+repmat(((options_.first_obs-1)+gend+[1-maxlag:horizon]')* ...
                                                       trend_coeff',[1,1,1]);
            end
            if options_.loglinear
                yf1 = yf1 + repmat(log(SteadyState'),[horizon+maxlag,1,1]);
            else
                yf1 = yf1 + repmat(SteadyState',[horizon+maxlag,1,1]);
            end

            stock_forcst_mean(:,:,irun(6)) = yf(maxlag+1:end,:)';
            stock_forcst_point(:,:,irun(7)) = yf1(maxlag+1:end,:)';
            if ~isequal(M_.H,0)
                ME_shocks=zeros(length(varobs),horizon);
                i_exo_var = setdiff([1:length(varobs)],find(diag(M_.H) == 0));
                nxs = length(i_exo_var);
                chol_H = chol(M_.H(i_exo_var,i_exo_var));
                if ~isempty(M_.H)
                    ME_shocks(i_exo_var,:) = chol_H*randn(nxs,horizon);
                end
                stock_forcst_point_ME(:,:,irun(12)) = yf1(maxlag+1:end,IdObs)'+ME_shocks;
            end
        end
        if filter_covariance
            stock_filter_covariance(dr.order_var,dr.order_var,:,irun(8)) = P;
        end
        if smoothed_state_uncertainty
            stock_smoothed_uncert(dr.order_var,dr.order_var,:,irun(13)) = state_uncertainty;
        end
    else
        [T,R,SteadyState,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_);
    end
    stock_param(irun(5),:) = deep;
    stock_logpo(irun(5),1) = logpo;
    stock_ys(irun(5),:) = SteadyState';


    irun = irun +  ones(13,1);


    if run_smoother && (irun(1) > MAX_nsmoo || b == B)
        stock = stock_smooth(:,:,1:irun(1)-1);
        ifil(1) = ifil(1) + 1;
        save([DirectoryName '/' M_.fname '_smooth' int2str(ifil(1)) '.mat'],'stock');

        stock = stock_update(:,:,1:irun(1)-1);
        save([DirectoryName '/' M_.fname '_update' int2str(ifil(1)) '.mat'],'stock');
        if RemoteFlag==1
            OutputFileName_smooth = [OutputFileName_smooth; {[DirectoryName filesep], [M_.fname '_smooth' int2str(ifil(1)) '.mat']}];
            OutputFileName_update = [OutputFileName_update; {[DirectoryName filesep], [M_.fname '_update' int2str(ifil(1)) '.mat']}];
        end
        irun(1) = 1;
    end

    if run_smoother && (irun(2) > MAX_ninno || b == B)
        stock = stock_innov(:,:,1:irun(2)-1);
        ifil(2) = ifil(2) + 1;
        save([DirectoryName '/' M_.fname '_inno' int2str(ifil(2)) '.mat'],'stock');
        if RemoteFlag==1
            OutputFileName_inno = [OutputFileName_inno; {[DirectoryName filesep], [M_.fname '_inno' int2str(ifil(2)) '.mat']}];
        end
        irun(2) = 1;
    end

    if run_smoother && nvn && (irun(3) > MAX_nerro || b == B)
        stock = stock_error(:,:,1:irun(3)-1);
        ifil(3) = ifil(3) + 1;
        save([DirectoryName '/' M_.fname '_error' int2str(ifil(3)) '.mat'],'stock');
        if RemoteFlag==1
            OutputFileName_error = [OutputFileName_error; {[DirectoryName filesep], [M_.fname '_error' int2str(ifil(3)) '.mat']}];
        end
        irun(3) = 1;
    end

    if run_smoother && naK && (irun(4) > MAX_naK || b == B)
        stock = stock_filter_step_ahead(:,:,:,1:irun(4)-1);
        ifil(4) = ifil(4) + 1;
        save([DirectoryName '/' M_.fname '_filter_step_ahead' int2str(ifil(4)) '.mat'],'stock');
        if RemoteFlag==1
            OutputFileName_filter_step_ahead = [OutputFileName_filter_step_ahead; {[DirectoryName filesep], [M_.fname '_filter_step_ahead' int2str(ifil(4)) '.mat']}];
        end
        irun(4) = 1;
    end

    if irun(5) > MAX_nruns || b == B
        stock = stock_param(1:irun(5)-1,:);
        stock_logpo = stock_logpo(1:irun(5)-1);
        stock_ys = stock_ys(1:irun(5)-1,:);
        ifil(5) = ifil(5) + 1;
        save([DirectoryName '/' M_.fname '_param' int2str(ifil(5)) '.mat'],'stock','stock_logpo','stock_ys');
        if RemoteFlag==1
            OutputFileName_param = [OutputFileName_param; {[DirectoryName filesep], [M_.fname '_param' int2str(ifil(5)) '.mat']}];
        end
        irun(5) = 1;
    end

    if run_smoother && horizon && (irun(6) > MAX_nforc1 || b == B)
        stock = stock_forcst_mean(:,:,1:irun(6)-1);
        ifil(6) = ifil(6) + 1;
        save([DirectoryName '/' M_.fname '_forc_mean' int2str(ifil(6)) '.mat'],'stock');
        if RemoteFlag==1
            OutputFileName_forc_mean = [OutputFileName_forc_mean; {[DirectoryName filesep], [M_.fname '_forc_mean' int2str(ifil(6)) '.mat']}];
        end
        irun(6) = 1;
    end

    if run_smoother && horizon && (irun(7) > MAX_nforc2 ||  b == B)
        stock = stock_forcst_point(:,:,1:irun(7)-1);
        ifil(7) = ifil(7) + 1;
        save([DirectoryName '/' M_.fname '_forc_point' int2str(ifil(7)) '.mat'],'stock');
        if RemoteFlag==1
            OutputFileName_forc_point = [OutputFileName_forc_point; {[DirectoryName filesep], [M_.fname '_forc_point' int2str(ifil(7)) '.mat']}];
        end
        irun(7) = 1;
    end

    if run_smoother && filter_covariance && (irun(8) > MAX_filter_covariance || b == B)
        stock = stock_filter_covariance(:,:,:,1:irun(8)-1);
        ifil(8) = ifil(8) + 1;
        save([DirectoryName '/' M_.fname '_filter_covar' int2str(ifil(8)) '.mat'],'stock');
        if RemoteFlag==1
            OutputFileName_filter_covar = [OutputFileName_filter_covar; {[DirectoryName filesep], [M_.fname '_filter_covar' int2str(ifil(8)) '.mat']}];
        end
        irun(8) = 1;
    end

    irun_index=9;
    if run_smoother && (irun(irun_index) > MAX_n_trend_coeff || b == B)
        stock = stock_trend_coeff(:,1:irun(irun_index)-1);
        ifil(irun_index) = ifil(irun_index) + 1;
        save([DirectoryName '/' M_.fname '_trend_coeff' int2str(ifil(irun_index)) '.mat'],'stock');
        if RemoteFlag==1
            OutputFileName_trend_coeff = [OutputFileName_trend_coeff; {[DirectoryName filesep], [M_.fname '_trend_coeff' int2str(ifil(irun_index)) '.mat']}];
        end
        irun(irun_index) = 1;
    end

    irun_index=10;
    if run_smoother && (irun(irun_index) > MAX_n_smoothed_constant || b == B)
        stock = stock_smoothed_constant(:,:,1:irun(irun_index)-1);
        ifil(irun_index) = ifil(irun_index) + 1;
        save([DirectoryName '/' M_.fname '_smoothed_constant' int2str(ifil(irun_index)) '.mat'],'stock');
        if RemoteFlag==1
            OutputFileName_smoothed_constant = [OutputFileName_smoothed_constant; {[DirectoryName filesep], [M_.fname '_smoothed_constant' int2str(ifil(irun_index)) '.mat']}];
        end
        irun(irun_index) = 1;
    end

    irun_index=11;
    if run_smoother && (irun(irun_index) > MAX_n_smoothed_trend || b == B)
        stock = stock_smoothed_trend(:,:,1:irun(irun_index)-1);
        ifil(irun_index) = ifil(irun_index) + 1;
        save([DirectoryName '/' M_.fname '_smoothed_trend' int2str(ifil(irun_index)) '.mat'],'stock');
        if RemoteFlag==1
            OutputFileName_smoothed_trend = [OutputFileName_smoothed_trend; {[DirectoryName filesep], [M_.fname '_smoothed_trend' int2str(ifil(irun_index)) '.mat']}];
        end
        irun(irun_index) = 1;
    end

    irun_index=12;
    if run_smoother && horizon && ~isequal(M_.H,0) && (irun(irun_index) > MAX_nforc_ME ||  b == B)
        stock = stock_forcst_point_ME(:,:,1:irun(irun_index)-1);
        ifil(irun_index) = ifil(irun_index) + 1;
        save([DirectoryName '/' M_.fname '_forc_point_ME' int2str(ifil(irun_index)) '.mat'],'stock');
        if RemoteFlag==1
            OutputFileName_forc_point_ME = [OutputFileName_forc_point_ME; {[DirectoryName filesep], [M_.fname '_forc_point_ME' int2str(ifil(irun_index)) '.mat']}];
        end
        irun(irun_index) = 1;
    end

    irun_index=13;
    if run_smoother && smoothed_state_uncertainty && (irun(irun_index) > MAX_n_smoothed_state_uncertainty || b == B)
        stock = stock_smoothed_uncert(:,:,:,1:irun(irun_index)-1);
        ifil(irun_index) = ifil(irun_index) + 1;
        save([DirectoryName '/' M_.fname '_state_uncert' int2str(ifil(irun_index)) '.mat'],'stock');
        if RemoteFlag==1
            OutputFileName_state_uncert = [OutputFileName_state_uncert; {[DirectoryName filesep], [M_.fname '_state_uncert' int2str(ifil(irun_index)) '.mat']}];
        end
        irun(irun_index) = 1;
    end

    dyn_waitbar((b-fpar+1)/(B-fpar+1),h);
end

myoutput.ifil=ifil;
if RemoteFlag==1
    myoutput.OutputFileName = [OutputFileName_smooth;
                        OutputFileName_update;
                        OutputFileName_inno;
                        OutputFileName_error;
                        OutputFileName_filter_step_ahead;
                        OutputFileName_param;
                        OutputFileName_forc_mean;
                        OutputFileName_forc_point;
                        OutputFileName_forc_point_ME;
                        OutputFileName_filter_covar;
                        OutputFileName_trend_coeff;
                        OutputFileName_smoothed_trend;
                        OutputFileName_smoothed_constant;
                        OutputFileName_state_uncert];
end

dyn_waitbar_close(h);