1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
|
function pruned_state_space = pruned_state_space_system(M, options, dr, indy, nlags, useautocorr, compute_derivs)
% Set up the pruned state space ABCD representation:
% z = c + A*z(-1) + B*inov
% y = ys + d + C*z(-1) + D*inov
% References:
% - Andreasen, Martin M., Jesús Fernández-Villaverde and Juan F. Rubio-Ramírez (2018):
% "The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications",
% Review of Economic Studies, Volume 85, Issue 1, Pages 1–49.
% - Mutschler, Willi (2018): "Higher-order statistics for DSGE models",
% Econometrics and Statistics, Volume 6, Pages 44-56.
% =========================================================================
% INPUTS
% M: [structure] storing the model information
% options: [structure] storing the options
% dr: [structure] storing the results from perturbation approximation
% indy: [vector] index of control variables in DR order
% nlags: [integer] number of lags in autocovariances and autocorrelations
% useautocorr: [boolean] true: compute autocorrelations
% -------------------------------------------------------------------------
% OUTPUTS
% pruned_state_space: [structure] with the following fields:
% indx: [x_nbr by 1]
% index of state variables
% indy: [y_nbr by 1]
% index of control variables
% A: [z_nbr by z_nbr]
% state space transition matrix A mapping previous states to current states
% B: [z_nbr by inov_nbr]
% state space transition matrix B mapping current inovations to current states
% c: [z_nbr by 1]
% state space transition matrix c mapping constants to current states
% C: [y_nbr by z_nbr]
% state space measurement matrix C mapping previous states to current controls
% D: [y_nbr by inov_nbr]
% state space measurement matrix D mapping current inovations to current controls
% d: [y_nbr by 1]
% state space measurement matrix d mapping constants to current controls
% Var_inov [inov_nbr by inov_nbr]
% contemporenous covariance matrix of innovations, i.e. E[inov*inov']
% Var_z [z_nbr by z_nbr]
% contemporenous covariance matrix of states z
% Var_y [y_nbr by y_nbr]
% contemporenous covariance matrix of controls y
% Var_yi [y_nbr by y_nbr by nlags]
% autocovariance matrix of controls y
% Corr_y [y_nbr by y_nbr]
% contemporenous correlation matrix of controls y
% Corr_yi [y_nbr by y_nbr by nlags]
% autocorrelation matrix of controls y
% E_y [y_nbr by 1]
% unconditional theoretical mean of control variables y
%
% if compute_derivs == 1, then the following additional fields are outputed:
% dA: [z_nbr by z_nbr by totparam_nbr]
% parameter Jacobian of A
% dB: [z_nbr by inov_nbr by totparam_nbr]
% parameter Jacobian of B
% dc: [z_nbr by totparam_nbr]
% parameter Jacobian of c
% dC: [y_nbr by z_nbr by totparam_nbr]
% parameter Jacobian of C
% dD: [y_nbr by inov_nbr by totparam_nbr]
% parameter Jacobian of D
% dd: [y_nbr by totparam_nbr]
% parameter Jacobian of d
% dVar_inov [inov_nbr by inov_nbr by totparam_nbr]
% parameter Jacobian of Var_inov
% dVar_z [z_nbr by z_nbr by totparam_nbr]
% parameter Jacobian of Var_z
% dVar_y [y_nbr by y_nbr by totparam_nbr]
% parameter Jacobian of Var_y
% dVar_yi [y_nbr by y_nbr by nlags by totparam_nbr]
% parameter Jacobian of Var_yi
% dCorr_y [y_nbr by y_nbr by totparam_nbr]
% parameter Jacobian of Corr_y
% dCorr_yi [y_nbr by y_nbr by nlags by totparam_nbr]
% parameter Jacobian of Corr_yi
% dE_y [y_nbr by totparam_nbr]
% parameter Jacobian of E_y
% -------------------------------------------------------------------------
% This function is called by
% * get_identification_jacobians.m
% * identification_numerical_objective.m
% -------------------------------------------------------------------------
% This function calls
% * allVL1.m
% * commutation.m
% * disclyap_fast.m
% * duplication.m
% * lyapunov_symm.m
% * prodmom
% * prodmom_deriv
% * Q6_plication
% * quadruplication.m
% * vec.m
% =========================================================================
% Copyright (C) 2019-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% =========================================================================
%% MAIN IDEA:
% Decompose the state vector x into first-order effects xf, second-order
% effects xs, and third-order effects xrd, i.e. x=xf+xs+xrd. Then, Dynare's
% perturbation approximation for the state vector up to third order
% (with Gaussian innovations u, i.e. no odd moments, hxxs=huus=hxus=hsss=0) is:
% x = hx*( xf(-1)+xs(-1)+xrd(-1) )
% + hu*u
% + 1/2*hxx*kron( xf(-1)+xs(-1)+xrd(-1) , xf(-1)+xs(-1)+xrd(-1) )
% + hxu*kron( xf(-1)+xs(-1)+xrd(-1) , u )
% + 1/2*huu*kron( u , u )
% + 1/2*hss*sig^2
% + 1/6*hxxx*kron( kron( xf(-1)+xs(-1)+xrd(-1) , xf(-1)+xs(-1)+xrd(-1) ) , xf(-1)+xs(-1)+xrd(-1) )
% + 1/6*huuu*kron( kron( u , u ) , u )
% + 3/6*hxxu*kron( kron( xf(-1)+xs(-1)+xrd(-1) , xf(-1)+xs(-1)+xrd(-1) ) , u )
% + 3/6*hxuu*kron( kron( xf(-1)+xs(-1)+xrd(-1) , u ) , u)
% + 3/6*hxss*( xf(-1)+xs(-1)+xrd(-1) )*sig^2
% + 3/6*huss*u*sig^2
% where:
% hx = dr.ghx(indx,:); hu = dr.ghu(indx,:);
% hxx = dr.ghxx(indx,:); hxu = dr.ghxu(indx,:); huu = dr.ghuu(indx,:); hss = dr.ghs2(indx,:);
% hxxx = dr.ghxxx(indx,:); huuu = dr.ghuuu(indx,:); hxxu = dr.ghxxu(indx,:); hxuu = dr.ghxxu(indx,:); hxss = dr.ghxss(indx,:); huss = dr.ghuss(indx,:);
% and similarly for control variables:
% y = gx*( xf(-1)+xs(-1)+xrd(-1) )
% + gu*u
% + 1/2*gxx*kron( xf(-1)+xs(-1)+xrd(-1) , xf(-1)+xs(-1)+xrd(-1) )
% + gxu*kron( xf(-1)+xs(-1)+xrd(-1) , u )
% + 1/2*guu*kron( u , u )
% + 1/2*gss*sig^2
% + 1/6*gxxx*kron( kron( xf(-1)+xs(-1)+xrd(-1) , xf(-1)+xs(-1)+xrd(-1) ) , xf(-1)+xs(-1)+xrd(-1) )
% + 1/6*guuu*kron( kron( u , u ) , u )
% + 3/6*gxxu*kron( kron( xf(-1)+xs(-1)+xrd(-1) , xf(-1)+xs(-1)+xrd(-1) ) , u )
% + 3/6*gxuu*kron( kron( xf(-1)+xs(-1)+xrd(-1) , u ) , u)
% + 3/6*gxss*( xf(-1)+xs(-1)+xrd(-1) )*sig^2
% + 3/6*guss*u*sig^2
% where:
% gx = dr.ghx(indy,:); gu = dr.ghu(indy,:);
% gxx = dr.ghxx(indy,:); gxu = dr.ghxu(indy,:); guu = dr.ghuu(indy,:); gss = dr.ghs2(indy,:);
% gxxx = dr.ghxxx(indy,:); guuu = dr.ghuuu(indy,:); gxxu = dr.ghxxu(indy,:); gxuu = dr.ghxxu(indy,:); gxss = dr.ghxss(indy,:); guss = dr.ghuss(indy,:);
%
% PRUNING means getting rid of terms higher than the approximation order, i.e.
% - involving fourth-order effects: kron(xf,xrd), kron(xs,xs), kron(xrd,xf), kron(xrd,u),
% kron(kron(xf,xf),xs), kron(kron(xf,xs),xf), kron(kron(xs,xf),xf)
% kron(kron(xf,xs),u), kron(kron(xs,xf),u)
% kron(kron(xs,u),u)
% xs*sig^2
% - involving fifth-order effects: kron(xs,xrd), kron(xrd,xs),
% kron(kron(xf,xf),xrd), kron(kron(xf,xs),xs), kron(kron(xf,xrd),xf), kron(kron(xs,xf),xs), kron(kron(xs,xs),xf), kron(kron(xrd,xf),xf)
% kron(kron(xf,xrd),u), kron(kron(xs,xs),u), kron(kron(xrd,xf),u)
% kron(kron(xrd,u),u)
% xrd*sig^2
% - involving sixth-order effects: kron(xrd,xrd),
% kron(kron(xf,xs),xrd), kron(kron(xf,xrd),xs), kron(kron(xs,xrd),xrd), kron(kron(xs,xs),xs), kron(kron(xs,xrd),xf), kron(kron(xf,xf),xs), kron(kron(xrd,xs),xf)
% kron(kron(xs,xrd),u), kron(kron(xrd,xs),u)
% - involving seventh-order effects: kron(kron(xf,xrd),xrd), kron(kron(xs,xs),xrd), kron(kron(xs,xrd),xs), kron(kron(xrd,xf),xrd), kron(kron(xrd,xs),xs), kron(kron(xrd,xrd),xf)
% kron(kron(xrd,xrd),u)
% - involving eighth-order effects: kron(kron(xs,xrd),xrd), kron(kron(xrd,xs),xrd), kron(kron(xrd,xrd),xs)
% - involving ninth-order effects: kron(kron(xrd,xrd),xrd)
% Note that u is treated as a first-order effect and the perturbation parameter sig as a variable.
%
% SUMMARY OF LAW OF MOTIONS: Set up the law of motions for the individual effects, but keep only effects of same order
% Notation: I_n=eye(n) and K_m_n=commutation(m,n)
%
% First-order effects: keep xf and u
% xf = hx*xf(-1) + hu*u
% Note that we
%
% Second-order effects: keep xs, kron(xf,xf), kron(u,u), kron(xf,u), and sig^2
% xs = hx*xs(-1) + 1/2*hxx*kron(xf(-1),xf(-1)) + 1/2*huu*(kron(u,u)-Sigma_e(:)+Sigma_e(:)) + hxu*kron(xf(-1),u) + 1/2*hss*sig^2%
%
% Third-order effects: keep xrd, kron(xf,xs), kron(xs,xf), kron(xs,u), kron(kron(xf,xf),xf), kron(kron(u,u),u), kron(kron(xf,xf),u), kron(kron(xf,u),u), xf*sig^2, u*sig^2
% xrd = hx*xrd(-1) + 1/2*hxx*(kron(xf(-1),xs(-1))+kron(xs(-1),xf(-1))) + hxu*kron(xs(-1),u) + 1/6*hxxx*kron(xf(-1),kron(xf(-1),xf(-1))) + 1/6*huuu*kron(u,kron(u,u)) + 3/6*hxxu*kron(xf(-1),kron(xf(-1),u)) + 3/6*hxuu*kron(xf(-1),kron(u,u)) + 3/6*hxss*xf(-1)*sig^2 + 3/6*huss*u*sig^2
% Simplified (due to symmetry in hxx):
% xrd = hx*xrd(-1) + hxx*(kron(xf(-1),xs(-1)) + hxu*kron(xs(-1),u) + 1/6*hxxx*kron(xf(-1),kron(xf(-1),xf(-1))) + 1/6*huuu*kron(u,kron(u,u)) + 3/6*hxxu*kron(xf(-1),kron(xf(-1),u)) + 3/6*hxuu*kron(xf(-1),kron(u,u)) + 3/6*hxss*xf(-1)*sig^2 + 3/6*huss*u*sig^2%
%
% Auxiliary equation kron(xf,xf) to set up the VAR(1) pruned state space system
% kron(xf,xf) = kron(hx,hx)*kron(xf(-1),xf(-1)) + kron(hu,hu)*(kron(u,u)-Sigma_e(:)+Sigma_e(:)) + kron(hx,u)*kron(xf(-1),u) + kron(u,hx)*kron(u,xf(-1))
% Simplified using commutation matrix:
% kron(xf,xf) = kron(hx,hx)*kron(xf(-1),xf(-1)) + (I_xx+K_x_x)*kron(hx,hu)*kron(xf(-1),u) + kron(hu,hu)*kron(u,u)
%
% Auxiliary equation kron(xf,xs) to set up the VAR(1) pruned state space system
% kron(xf,xs) = kron(hx,hx)*kron(xf(-1),xs(-1)) + kron(hu,hx)*kron(u,xs(-1))
% + kron(hx,1/2*hxx)*kron(kron(xf(-1),xf(-1)),xf(-1)) + kron(hu,1/2*hxx)*kron(kron(u,xf(-1)),xf(-1))
% + kron(hx,1/2*huu)*kron(kron(xf(-1),u),u) + kron(hu,1/2*huu)*kron(kron(u,u),u)
% + kron(hx,hxu)*kron(kron(xf(-1),xf(-1)),u) + kron(hu,hxu)*kron(kron(u,xf(-1)),u)
% + kron(hx,1/2*hss)*xf(-1)*sig^2 + kron(hu,1/2*hss)*u*sig^2
% Simplified using commutation matrix:
% kron(xf,xs) = kron(hx,hx)*kron(xf(-1),xs(-1))
% + K_x_x*kron(hx,hu)*kron(xs(-1),u)
% + kron(hx,1/2*hxx)*kron(kron(xf(-1),xf(-1)),xf(-1))
% + ( kron(hx,hxu) + K_x_x*kron(1/2*hxx,hu) )*kron(kron(xf(-1),xf(-1)),u)
% + ( kron(hx,1/2*huu) + K_x_x*kron(hxu,hu) )*kron(kron(xf(-1),u),u)
% + kron(hu,1/2*huu)*kron(kron(u,u),u)
% + kron(hx,1/2*hss)*xf(-1)*sig^2
% + kron(hu,1/2*hss)*u*sig^2
%
% Auxiliary equation kron(kron(xf,xf),xf) to set up the VAR(1) pruned state space system
% kron(kron(xf,xf),xf) = kron(kron(hx,hx),hx)*kron(kron(xf(-1),xf(-1)),xf(-1))
% + kron(kron(hx,hu),hx)*kron(kron(xf(-1),u),xf(-1))
% + kron(kron(hx,hx),hu)*kron(kron(xf(-1),xf(-1)),u)
% + kron(kron(hx,hu),hu)*kron(kron(xf(-1),u),u)
% + kron(kron(hu,hx),hx)*kron(kron(u,xf(-1)),xf(-1))
% + kron(kron(hu,hu),hx)*kron(kron(u,u),xf(-1))
% + kron(kron(hu,hx),hu)*kron(kron(u,xf(-1)),u)
% + kron(kron(hu,hu),hu)*kron(kron(u,u),u)
% Simplified using commutation matrix:
% kron(kron(xf,xf),xf) = kron(kron(hx,hx),hx)*kron(kron(xf(-1),xf(-1)),xf(-1))
% + ( kron(kron(hx,hx),hu) + K_xx_x*kron(hx,(I_xx+K_x_x)*kron(hx,hu)) )*kron(kron(xf(-1),xf(-1)),u)
% + ( kron((I_xx+K_x_x)*kron(hx,hu),hu) + K_xx_x*kron(kron(hx,hu),hu) )*kron(kron(xf(-1),u),u)
% + kron(kron(hu,hu),hu)*kron(kron(u,u),u)
%
% Law of motion for control variables y (either VAROBS variables or if no VAROBS statement is given then for all endogenous variables)
% y = steady_state(y)
% + gx*( xf(-1)+xs(-1)+xrd(-1) )
% + gu*u
% + 1/2*gxx*kron(xf(-1),xf(-1)) + gxx*kron(xf(-1),xs(-1))
% + gxu*kron(xf(-1),u) + gxu*kron(xs(-1),u)
% + 1/2*guu*(kron(u,u)-Sigma_e+Sigma_e)
% + 1/2*gss*sig^2
% + 1/6*gxxx*kron(kron(xf(-1),xf(-1)),xf(-1))
% + 1/6*guuu*kron(kron(u,u),u)
% + 3/6*gxxu*kron(kron(xf(-1),xf(-1),u)
% + 3/6*gxuu*kron(kron(xf(-1),u),u)
% + 3/6*gxss*xf(-1)*sig^2
% + 3/6*guss*u*sig^2
%
% See code below how z and inov are defined at first, second, and third order,
% and how to set up A, B, C, D and compute unconditional first and second moments of inov, z and y
%% Auxiliary indices and objects
order = options.order;
if isempty(options.qz_criterium)
% set default value for qz_criterium: if there are no unit roots one can use 1.0
% If they are possible, you may have have multiple unit roots and the accuracy
% decreases when computing the eigenvalues in lyapunov_symm. Hence, we normally use 1+1e-6
% Note that unit roots are only possible at first-order, at higher order we set it to 1
options.qz_criterium = 1+1e-6;
end
indx = [M.nstatic+(1:M.nspred) M.endo_nbr+(1:size(dr.ghx,2)-M.nspred)]';
if isempty(indy)
indy = (1:M.endo_nbr)'; %by default select all variables in DR order
end
u_nbr = M.exo_nbr;
x_nbr = length(indx);
y_nbr = length(indy);
Yss = dr.ys(dr.order_var);
hx = dr.ghx(indx,:);
gx = dr.ghx(indy,:);
hu = dr.ghu(indx,:);
gu = dr.ghu(indy,:);
E_uu = M.Sigma_e; %this is E[u*u']
if compute_derivs
stderrparam_nbr = length(dr.derivs.indpstderr);
corrparam_nbr = size(dr.derivs.indpcorr,1);
modparam_nbr = length(dr.derivs.indpmodel);
totparam_nbr = stderrparam_nbr+corrparam_nbr+modparam_nbr;
dYss = dr.derivs.dYss;
dhx = dr.derivs.dghx(indx,:,:);
dgx = dr.derivs.dghx(indy,:,:);
dhu = dr.derivs.dghu(indx,:,:);
dgu = dr.derivs.dghu(indy,:,:);
dE_uu = dr.derivs.dSigma_e;
end
% first-order approximation indices for extended state vector z and extended innovations vector inov
id_z1_xf = (1:x_nbr);
id_inov1_u = (1:u_nbr);
if order > 1
% second-order approximation indices for extended state vector z and extended innovations vector inov
id_z2_xs = id_z1_xf(end) + (1:x_nbr);
id_z3_xf_xf = id_z2_xs(end) + (1:x_nbr*x_nbr);
id_inov2_u_u = id_inov1_u(end) + (1:u_nbr*u_nbr);
id_inov3_xf_u = id_inov2_u_u(end) + (1:x_nbr*u_nbr);
hxx = dr.ghxx(indx,:);
gxx = dr.ghxx(indy,:);
hxu = dr.ghxu(indx,:);
gxu = dr.ghxu(indy,:);
huu = dr.ghuu(indx,:);
guu = dr.ghuu(indy,:);
hss = dr.ghs2(indx,:);
gss = dr.ghs2(indy,:);
if compute_derivs
dhxx = dr.derivs.dghxx(indx,:,:);
dgxx = dr.derivs.dghxx(indy,:,:);
dhxu = dr.derivs.dghxu(indx,:,:);
dgxu = dr.derivs.dghxu(indy,:,:);
dhuu = dr.derivs.dghuu(indx,:,:);
dguu = dr.derivs.dghuu(indy,:,:);
dhss = dr.derivs.dghs2(indx,:);
dgss = dr.derivs.dghs2(indy,:);
end
end
if order > 2
% third-order approximation indices for extended state vector z and extended innovations vector inov
id_z4_xrd = id_z3_xf_xf(end) + (1:x_nbr);
id_z5_xf_xs = id_z4_xrd(end) + (1:x_nbr*x_nbr);
id_z6_xf_xf_xf = id_z5_xf_xs(end) + (1:x_nbr*x_nbr*x_nbr);
id_inov4_xs_u = id_inov3_xf_u(end) + (1:x_nbr*u_nbr);
id_inov5_xf_xf_u = id_inov4_xs_u(end) + (1:x_nbr*x_nbr*u_nbr);
id_inov6_xf_u_u = id_inov5_xf_xf_u(end) + (1:x_nbr*u_nbr*u_nbr);
id_inov7_u_u_u = id_inov6_xf_u_u(end) + (1:u_nbr*u_nbr*u_nbr);
hxxx = dr.ghxxx(indx,:);
gxxx = dr.ghxxx(indy,:);
hxxu = dr.ghxxu(indx,:);
gxxu = dr.ghxxu(indy,:);
hxuu = dr.ghxuu(indx,:);
gxuu = dr.ghxuu(indy,:);
huuu = dr.ghuuu(indx,:);
guuu = dr.ghuuu(indy,:);
hxss = dr.ghxss(indx,:);
gxss = dr.ghxss(indy,:);
huss = dr.ghuss(indx,:);
guss = dr.ghuss(indy,:);
if compute_derivs
dhxxx = dr.derivs.dghxxx(indx,:,:);
dgxxx = dr.derivs.dghxxx(indy,:,:);
dhxxu = dr.derivs.dghxxu(indx,:,:);
dgxxu = dr.derivs.dghxxu(indy,:,:);
dhxuu = dr.derivs.dghxuu(indx,:,:);
dgxuu = dr.derivs.dghxuu(indy,:,:);
dhuuu = dr.derivs.dghuuu(indx,:,:);
dguuu = dr.derivs.dghuuu(indy,:,:);
dhxss = dr.derivs.dghxss(indx,:,:);
dgxss = dr.derivs.dghxss(indy,:,:);
dhuss = dr.derivs.dghuss(indx,:,:);
dguss = dr.derivs.dghuss(indy,:,:);
end
end
%% First-order state space system
% Auxiliary state vector z is defined by: z = [xf]
% Auxiliary innovations vector inov is defined by: inov = [u]
z_nbr = x_nbr;
inov_nbr = M.exo_nbr;
A = hx;
B = hu;
c = zeros(x_nbr,1);
C = gx;
D = gu;
d = zeros(y_nbr,1);
Varinov = E_uu;
E_inovzlag1 = zeros(inov_nbr,z_nbr); %at first-order E[inov*z(-1)'] = 0
Om_z = B*Varinov*B';
E_xf = zeros(x_nbr,1);
lyapunov_symm_method = 1; %method=1 to initialize persistent variables
[Var_z,Schur_u] = lyapunov_symm(A, Om_z,... %at first-order this algorithm is well established and also used in th_autocovariances.m
options.lyapunov_fixed_point_tol, options.qz_criterium, options.lyapunov_complex_threshold,...
lyapunov_symm_method,...
options.debug); %we use Schur_u to take care of (possible) nonstationary VAROBS variables in moment computations
%find stationary vars
stationary_vars = (1:y_nbr)';
if ~isempty(Schur_u)
%base this only on first order, because if first-order is stable so are the higher-order pruned systems
x = abs(gx*Schur_u);
stationary_vars = find(all(x < options.Schur_vec_tol,2));
end
if compute_derivs == 1
dA = dhx;
dB = dhu;
dc = zeros(x_nbr,totparam_nbr);
dC = dgx;
dD = dgu;
dd = zeros(y_nbr,totparam_nbr);
dVarinov = dE_uu;
dE_xf = zeros(x_nbr,totparam_nbr);
dE_inovzlag1 = zeros(z_nbr,inov_nbr,totparam_nbr);
dVar_z = zeros(z_nbr,z_nbr,totparam_nbr);
lyapunov_symm_method = 2;%to spare a lot of computing time while not repeating Schur every time
for jp1 = 1:totparam_nbr
if jp1 <= stderrparam_nbr+corrparam_nbr
dOm_z_jp1 = B*dVarinov(:,:,jp1)*B';
dVar_z(:,:,jp1) = lyapunov_symm(A, dOm_z_jp1,...
options.lyapunov_fixed_point_tol,options.qz_criterium,options.lyapunov_complex_threshold,...
lyapunov_symm_method,...
options.debug);
else
dOm_z_jp1 = dB(:,:,jp1)*Varinov*B' + B*Varinov*dB(:,:,jp1)';
dVar_z(:,:,jp1) = lyapunov_symm(A, dA(:,:,jp1)*Var_z*A' + A*Var_z*dA(:,:,jp1)' + dOm_z_jp1,...
options.lyapunov_fixed_point_tol,options.qz_criterium,options.lyapunov_complex_threshold,...
lyapunov_symm_method,...
options.debug);
end
end
end
if order > 1
options.qz_criterium = 1; %pruned state space has no unit roots
% Some common and useful objects for order > 1
E_xfxf = Var_z;
if compute_derivs
dE_xfxf = dVar_z;
end
hx_hx = kron(hx,hx);
hx_hu = kron(hx,hu);
hu_hu = kron(hu,hu);
I_xx = eye(x_nbr^2);
K_x_x = commutation(x_nbr,x_nbr,1);
invIx_hx = (eye(x_nbr)-hx)\eye(x_nbr);
%Compute unique fourth order product moments of u, i.e. unique(E[kron(kron(kron(u,u),u),u)],'stable')
u_nbr4 = u_nbr*(u_nbr+1)/2*(u_nbr+2)/3*(u_nbr+3)/4;
QPu = quadruplication(u_nbr);
COMBOS4 = flipud(allVL1(u_nbr, 4)); %all possible (unique) combinations of powers that sum up to four
E_u_u_u_u = zeros(u_nbr4,1); %only unique entries
if compute_derivs && (stderrparam_nbr+corrparam_nbr>0)
dE_u_u_u_u = zeros(u_nbr4,stderrparam_nbr+corrparam_nbr);
end
for j4 = 1:size(COMBOS4,1)
if compute_derivs && (stderrparam_nbr+corrparam_nbr>0)
[E_u_u_u_u(j4), dE_u_u_u_u(j4,:)] = prodmom_deriv(E_uu, 1:u_nbr, COMBOS4(j4,:), dE_uu(:,:,1:(stderrparam_nbr+corrparam_nbr)), dr.derivs.dCorrelation_matrix(:,:,1:(stderrparam_nbr+corrparam_nbr)));
else
E_u_u_u_u(j4) = prodmom(E_uu, 1:u_nbr, COMBOS4(j4,:));
end
end
E_xfxf_uu = kron(E_xfxf,E_uu');
%% Second-order pruned state space system
% Auxiliary state vector z is defined by: z = [xf;xs;kron(xf,xf)]
% Auxiliary innovations vector inov is defined by: inov = [u;kron(u,u)-E_uu(:);kron(xf,u)]
z_nbr = x_nbr + x_nbr + x_nbr^2;
inov_nbr = u_nbr + u_nbr^2 + x_nbr*u_nbr;
A = zeros(z_nbr, z_nbr);
A(id_z1_xf , id_z1_xf ) = hx;
A(id_z2_xs , id_z2_xs ) = hx;
A(id_z2_xs , id_z3_xf_xf) = 1/2*hxx;
A(id_z3_xf_xf , id_z3_xf_xf) = hx_hx;
B = zeros(z_nbr, inov_nbr);
B(id_z1_xf , id_inov1_u ) = hu;
B(id_z2_xs , id_inov2_u_u ) = 1/2*huu;
B(id_z2_xs , id_inov3_xf_u) = hxu;
B(id_z3_xf_xf , id_inov2_u_u ) = hu_hu;
B(id_z3_xf_xf , id_inov3_xf_u) = (I_xx+K_x_x)*hx_hu;
c = zeros(z_nbr, 1);
c(id_z2_xs , 1) = 1/2*hss + 1/2*huu*E_uu(:);
c(id_z3_xf_xf , 1) = hu_hu*E_uu(:);
C = zeros(y_nbr, z_nbr);
C(: , id_z1_xf ) = gx;
C(: , id_z2_xs ) = gx;
C(: , id_z3_xf_xf) = 1/2*gxx;
D = zeros(y_nbr, inov_nbr);
D(: , id_inov1_u ) = gu;
D(: , id_inov2_u_u ) = 1/2*guu;
D(: , id_inov3_xf_u) = gxu;
d = 1/2*gss + 1/2*guu*E_uu(:);
Varinov = zeros(inov_nbr,inov_nbr);
Varinov(id_inov1_u , id_inov1_u) = E_uu;
%Varinov(id_inov1_u , id_inov2_u_u ) = zeros(u_nbr,u_nbr^2);
%Varinov(id_inov1_u , id_inov3_xf_u) = zeros(u_nbr,x_nbr*u_nbr);
%Varinov(id_inov2_u_u , id_inov1_u ) = zeros(u_nbr^2,u_nbr);
Varinov(id_inov2_u_u , id_inov2_u_u ) = reshape(QPu*E_u_u_u_u,u_nbr^2,u_nbr^2)-E_uu(:)*E_uu(:)';
%Varinov(id_inov2_u_u , id_inov3_xf_u) = zeros(u_nbr^2,x_nbr*u_nbr);
%Varinov(id_inov3_xf_u , id_inov1_u ) = zeros(x_nbr*u_nbr,u_nbr);
%Varinov(id_inov3_xf_u , id_inov2_u_u ) = zeros(x_nbr*u_nbr,u_nbr^2);
Varinov(id_inov3_xf_u , id_inov3_xf_u) = E_xfxf_uu;
E_xs = invIx_hx*(1/2*hxx*E_xfxf(:) + c(id_z2_xs,1));
E_inovzlag1 = zeros(inov_nbr,z_nbr); %at second-order E[z(-1)*inov'] = 0
Om_z = B*Varinov*transpose(B);
lyapunov_symm_method = 1; %method=1 to initialize persistent variables (if errorflag)
[Var_z, errorflag] = disclyap_fast(A,Om_z,options.lyapunov_doubling_tol);
if errorflag %use Schur-based method
fprintf('PRUNED_STATE_SPACE_SYSTEM: error flag in disclyap_fast at order=2, use lyapunov_symm\n');
Var_z = lyapunov_symm(A,Om_z,...
options.lyapunov_fixed_point_tol,options.qz_criterium,options.lyapunov_complex_threshold,...
lyapunov_symm_method,...
options.debug);
lyapunov_symm_method = 2; %in the following we can reuse persistent variables
end
% Make sure some stuff is zero due to Gaussianity
Var_z(id_z1_xf , id_z2_xs ) = zeros(x_nbr,x_nbr);
Var_z(id_z1_xf , id_z3_xf_xf) = zeros(x_nbr,x_nbr^2);
Var_z(id_z2_xs , id_z1_xf ) = zeros(x_nbr,x_nbr);
Var_z(id_z3_xf_xf , id_z1_xf ) = zeros(x_nbr^2,x_nbr);
if compute_derivs
dA = zeros(z_nbr,z_nbr,totparam_nbr);
dB = zeros(z_nbr,inov_nbr,totparam_nbr);
dc = zeros(z_nbr,totparam_nbr);
dC = zeros(y_nbr,z_nbr,totparam_nbr);
dD = zeros(y_nbr,inov_nbr,totparam_nbr);
dd = zeros(y_nbr,totparam_nbr);
dVarinov = zeros(inov_nbr,inov_nbr,totparam_nbr);
dE_xs = zeros(x_nbr,totparam_nbr);
dE_inovzlag1 = zeros(inov_nbr,z_nbr,totparam_nbr);
dVar_z = zeros(z_nbr,z_nbr,totparam_nbr);
for jp2 = 1:totparam_nbr
if jp2 <= (stderrparam_nbr+corrparam_nbr)
dE_uu_jp2 = dE_uu(:,:,jp2);
dE_u_u_u_u_jp2 = QPu*dE_u_u_u_u(:,jp2);
else
dE_uu_jp2 = zeros(u_nbr,u_nbr);
dE_u_u_u_u_jp2 = zeros(u_nbr^4,1);
end
dhx_jp2 = dhx(:,:,jp2);
dhu_jp2 = dhu(:,:,jp2);
dhxx_jp2 = dhxx(:,:,jp2);
dhxu_jp2 = dhxu(:,:,jp2);
dhuu_jp2 = dhuu(:,:,jp2);
dhss_jp2 = dhss(:,jp2);
dgx_jp2 = dgx(:,:,jp2);
dgu_jp2 = dgu(:,:,jp2);
dgxx_jp2 = dgxx(:,:,jp2);
dgxu_jp2 = dgxu(:,:,jp2);
dguu_jp2 = dguu(:,:,jp2);
dgss_jp2 = dgss(:,jp2);
dhx_hx_jp2 = kron(dhx_jp2,hx) + kron(hx,dhx_jp2);
dhu_hu_jp2 = kron(dhu_jp2,hu) + kron(hu,dhu_jp2);
dhx_hu_jp2 = kron(dhx_jp2,hu) + kron(hx,dhu_jp2);
dE_xfxf_jp2 = dE_xfxf(:,:,jp2);
dE_xfxf_uu_jp2 = kron(dE_xfxf_jp2,E_uu) + kron(E_xfxf,dE_uu_jp2);
dA(id_z1_xf , id_z1_xf , jp2) = dhx_jp2;
dA(id_z2_xs , id_z2_xs , jp2) = dhx_jp2;
dA(id_z2_xs , id_z3_xf_xf , jp2) = 1/2*dhxx_jp2;
dA(id_z3_xf_xf , id_z3_xf_xf , jp2) = dhx_hx_jp2;
dB(id_z1_xf , id_inov1_u , jp2) = dhu_jp2;
dB(id_z2_xs , id_inov2_u_u , jp2) = 1/2*dhuu_jp2;
dB(id_z2_xs , id_inov3_xf_u , jp2) = dhxu_jp2;
dB(id_z3_xf_xf , id_inov2_u_u , jp2) = dhu_hu_jp2;
dB(id_z3_xf_xf , id_inov3_xf_u , jp2) = (I_xx+K_x_x)*dhx_hu_jp2;
dc(id_z2_xs , jp2) = 1/2*dhss_jp2 + 1/2*dhuu_jp2*E_uu(:) + 1/2*huu*dE_uu_jp2(:);
dc(id_z3_xf_xf , jp2) = dhu_hu_jp2*E_uu(:) + hu_hu*dE_uu_jp2(:);
dC(: , id_z1_xf , jp2) = dgx_jp2;
dC(: , id_z2_xs , jp2) = dgx_jp2;
dC(: , id_z3_xf_xf , jp2) = 1/2*dgxx_jp2;
dD(: , id_inov1_u , jp2) = dgu_jp2;
dD(: , id_inov2_u_u , jp2) = 1/2*dguu_jp2;
dD(: , id_inov3_xf_u , jp2) = dgxu_jp2;
dd(:,jp2) = 1/2*dgss_jp2 + 1/2*guu*dE_uu_jp2(:) + 1/2*dguu_jp2*E_uu(:);
dVarinov(id_inov1_u , id_inov1_u , jp2) = dE_uu_jp2;
dVarinov(id_inov2_u_u , id_inov2_u_u , jp2) = reshape(dE_u_u_u_u_jp2,u_nbr^2,u_nbr^2) - dE_uu_jp2(:)*E_uu(:)' - E_uu(:)*dE_uu_jp2(:)';
dVarinov(id_inov3_xf_u , id_inov3_xf_u , jp2) = dE_xfxf_uu_jp2;
dE_xs(:,jp2) = invIx_hx*( dhx_jp2*E_xs + 1/2*dhxx_jp2*E_xfxf(:) + 1/2*hxx*dE_xfxf_jp2(:) + dc(id_z2_xs,jp2) );
dOm_z_jp2 = dB(:,:,jp2)*Varinov*B' + B*dVarinov(:,:,jp2)*B' + B*Varinov*dB(:,:,jp2)';
[dVar_z(:,:,jp2), errorflag] = disclyap_fast(A, dA(:,:,jp2)*Var_z*A' + A*Var_z*dA(:,:,jp2)' + dOm_z_jp2, options.lyapunov_doubling_tol);
if errorflag
dVar_z(:,:,jp2) = lyapunov_symm(A, dA(:,:,jp2)*Var_z*A' + A*Var_z*dA(:,:,jp2)' + dOm_z_jp2,...
options.lyapunov_fixed_point_tol,options.qz_criterium,options.lyapunov_complex_threshold,...
lyapunov_symm_method,...
options.debug);
if lyapunov_symm_method == 1
lyapunov_symm_method = 2; %now we can reuse persistent schur
end
end
% Make sure some stuff is zero due to Gaussianity
dVar_z(id_z1_xf , id_z2_xs , jp2) = zeros(x_nbr,x_nbr);
dVar_z(id_z1_xf , id_z3_xf_xf , jp2) = zeros(x_nbr,x_nbr^2);
dVar_z(id_z2_xs , id_z1_xf , jp2) = zeros(x_nbr,x_nbr);
dVar_z(id_z3_xf_xf , id_z1_xf , jp2) = zeros(x_nbr^2,x_nbr);
end
end
if order > 2
% Some common and useful objects for order > 2
K_u_xx = commutation(u_nbr,x_nbr^2,1);
K_u_ux = commutation(u_nbr,u_nbr*x_nbr,1);
hx_hss2 = kron(hx,1/2*hss);
hu_hss2 = kron(hu,1/2*hss);
hx_hxx2 = kron(hx,1/2*hxx);
hxx2_hu = kron(1/2*hxx,hu);
hx_hxu = kron(hx,hxu);
hxu_hu = kron(hxu,hu);
hx_huu2 = kron(hx,1/2*huu);
hu_huu2 = kron(hu,1/2*huu);
hx_hx_hx = kron(hx,hx_hx);
hx_hx_hu = kron(hx_hx,hu);
hu_hx_hx = kron(hu,hx_hx);
hu_hu_hu = kron(hu_hu,hu);
hx_hu_hu = kron(hx,hu_hu);
hu_hx_hu = kron(hu,hx_hu);
invIxx_hx_hx = (eye(x_nbr^2)-hx_hx)\eye(x_nbr^2);
% Reuse second-order results
%E_xfxf = Var_z(id_z1_xf, id_z1_xf ); %this is E[xf*xf'], we already have that
%E_xfxs = Var_z(id_z1_xf, id_z2_xs ); %this is E[xf*xs']=0 due to gaussianity
%E_xfxf_xf = Var_z(id_z1_xf, id_z3_xf_xf ); %this is E[xf*kron(xf_xf)']=0 due to gaussianity
%E_xsxf = Var_z(id_z2_xs, id_z1_xf ); %this is E[xs*xf']=0 due to gaussianity
E_xsxs = Var_z(id_z2_xs, id_z2_xs ) + E_xs*transpose(E_xs); %this is E[xs*xs']
E_xsxf_xf = Var_z(id_z2_xs, id_z3_xf_xf ) + E_xs*E_xfxf(:)'; %this is E[xs*kron(xf,xf)']
%E_xf_xfxf = Var_z(id_z3_xf_xf, id_z1_xf ); %this is E[kron(xf,xf)*xf']=0 due to gaussianity
E_xf_xfxs = Var_z(id_z3_xf_xf, id_z2_xs ) + E_xfxf(:)*E_xs'; %this is E[kron(xf,xf)*xs']
E_xf_xfxf_xf = Var_z(id_z3_xf_xf, id_z3_xf_xf) + E_xfxf(:)*E_xfxf(:)'; %this is E[kron(xf,xf)*kron(xf,xf)']
E_xrdxf = reshape(invIxx_hx_hx*vec(...
hxx*reshape( commutation(x_nbr^2,x_nbr,1)*E_xf_xfxs(:), x_nbr^2,x_nbr)*hx'...
+ hxu*kron(E_xs,E_uu)*hu'...
+ 1/6*hxxx*reshape(E_xf_xfxf_xf,x_nbr^3,x_nbr)*hx'...
+ 1/6*huuu*reshape(QPu*E_u_u_u_u,u_nbr^3,u_nbr)*hu'...
+ 3/6*hxxu*kron(E_xfxf(:),E_uu)*hu'...
+ 3/6*hxuu*kron(E_xfxf,E_uu(:))*hx'...
+ 3/6*hxss*E_xfxf*hx'...
+ 3/6*huss*E_uu*hu'...
),...
x_nbr,x_nbr); %this is E[xrd*xf']
if compute_derivs
dE_xsxs = zeros(x_nbr,x_nbr,totparam_nbr);
dE_xsxf_xf = zeros(x_nbr,x_nbr^2,totparam_nbr);
dE_xf_xfxs = zeros(x_nbr^2,x_nbr,totparam_nbr);
dE_xf_xfxf_xf = zeros(x_nbr^2,x_nbr^2,totparam_nbr);
dE_xrdxf = zeros(x_nbr,x_nbr,totparam_nbr);
for jp2 = 1:totparam_nbr
if jp2 < (stderrparam_nbr+corrparam_nbr)
dE_u_u_u_u_jp2 = QPu*dE_u_u_u_u(:,jp2);
else
dE_u_u_u_u_jp2 = zeros(u_nbr^4,1);
end
dE_xsxs(:,:,jp2) = dVar_z(id_z2_xs , id_z2_xs , jp2) + dE_xs(:,jp2)*transpose(E_xs) + E_xs*transpose(dE_xs(:,jp2));
dE_xsxf_xf(:,:,jp2) = dVar_z(id_z2_xs , id_z3_xf_xf , jp2) + dE_xs(:,jp2)*E_xfxf(:)' + E_xs*vec(dE_xfxf(:,:,jp2))';
dE_xf_xfxs(:,:,jp2) = dVar_z(id_z3_xf_xf , id_z2_xs , jp2) + vec(dE_xfxf(:,:,jp2))*E_xs' + E_xfxf(:)*dE_xs(:,jp2)';
dE_xf_xfxf_xf(:,:,jp2) = dVar_z(id_z3_xf_xf , id_z3_xf_xf , jp2) + vec(dE_xfxf(:,:,jp2))*E_xfxf(:)' + E_xfxf(:)*vec(dE_xfxf(:,:,jp2))';
dE_xrdxf(:,:,jp2) = reshape(invIxx_hx_hx*vec(...
dhx(:,:,jp2)*E_xrdxf*hx' + hx*E_xrdxf*dhx(:,:,jp2)'...
+ dhxx(:,:,jp2)*reshape( commutation(x_nbr^2,x_nbr,1)*E_xf_xfxs(:), x_nbr^2,x_nbr)*hx' + hxx*reshape( commutation(x_nbr^2,x_nbr,1)*vec(dE_xf_xfxs(:,:,jp2)), x_nbr^2,x_nbr)*hx' + hxx*reshape( commutation(x_nbr^2,x_nbr,1)*E_xf_xfxs(:), x_nbr^2,x_nbr)*dhx(:,:,jp2)'...
+ dhxu(:,:,jp2)*kron(E_xs,E_uu)*hu' + hxu*kron(dE_xs(:,jp2),E_uu)*hu' + hxu*kron(E_xs,dE_uu(:,:,jp2))*hu' + hxu*kron(E_xs,E_uu)*dhu(:,:,jp2)'...
+ 1/6*dhxxx(:,:,jp2)*reshape(E_xf_xfxf_xf,x_nbr^3,x_nbr)*hx' + 1/6*hxxx*reshape(dE_xf_xfxf_xf(:,:,jp2),x_nbr^3,x_nbr)*hx' + 1/6*hxxx*reshape(E_xf_xfxf_xf,x_nbr^3,x_nbr)*dhx(:,:,jp2)'...
+ 1/6*dhuuu(:,:,jp2)*reshape(QPu*E_u_u_u_u,u_nbr^3,u_nbr)*hu' + 1/6*huuu*reshape(dE_u_u_u_u_jp2,u_nbr^3,u_nbr)*hu' + 1/6*huuu*reshape(QPu*E_u_u_u_u,u_nbr^3,u_nbr)*dhu(:,:,jp2)'...
+ 3/6*dhxxu(:,:,jp2)*kron(E_xfxf(:),E_uu)*hu' + 3/6*hxxu*kron(vec(dE_xfxf(:,:,jp2)),E_uu)*hu' + 3/6*hxxu*kron(E_xfxf(:),dE_uu(:,:,jp2))*hu' + 3/6*hxxu*kron(E_xfxf(:),E_uu)*dhu(:,:,jp2)'...
+ 3/6*dhxuu(:,:,jp2)*kron(E_xfxf,E_uu(:))*hx' + 3/6*hxuu*kron(dE_xfxf(:,:,jp2),E_uu(:))*hx' + 3/6*hxuu*kron(E_xfxf,vec(dE_uu(:,:,jp2)))*hx' + 3/6*hxuu*kron(E_xfxf,E_uu(:))*dhx(:,:,jp2)'...
+ 3/6*dhxss(:,:,jp2)*E_xfxf*hx' + 3/6*hxss*dE_xfxf(:,:,jp2)*hx' + 3/6*hxss*E_xfxf*dhx(:,:,jp2)'...
+ 3/6*dhuss(:,:,jp2)*E_uu*hu' + 3/6*huss*dE_uu(:,:,jp2)*hu' + 3/6*huss*E_uu*dhu(:,:,jp2)'...
), x_nbr, x_nbr);
end
end
% Compute unique sixth-order product moments of u, i.e. unique(E[kron(kron(kron(kron(kron(u,u),u),u),u),u)],'stable')
u_nbr6 = u_nbr*(u_nbr+1)/2*(u_nbr+2)/3*(u_nbr+3)/4*(u_nbr+4)/5*(u_nbr+5)/6;
Q6Pu = Q6_plication(u_nbr);
COMBOS6 = flipud(allVL1(u_nbr, 6)); %all possible (unique) combinations of powers that sum up to six
E_u_u_u_u_u_u = zeros(u_nbr6,1); %only unique entries
if compute_derivs && (stderrparam_nbr+corrparam_nbr>0)
dE_u_u_u_u_u_u = zeros(u_nbr6,stderrparam_nbr+corrparam_nbr);
end
for j6 = 1:size(COMBOS6,1)
if compute_derivs && (stderrparam_nbr+corrparam_nbr>0)
[E_u_u_u_u_u_u(j6), dE_u_u_u_u_u_u(j6,:)] = prodmom_deriv(E_uu, 1:u_nbr, COMBOS6(j6,:), dE_uu(:,:,1:(stderrparam_nbr+corrparam_nbr)), dr.derivs.dCorrelation_matrix(:,:,1:(stderrparam_nbr+corrparam_nbr)));
else
E_u_u_u_u_u_u(j6) = prodmom(E_uu, 1:u_nbr, COMBOS6(j6,:));
end
end
%% Third-order pruned state space system
% Auxiliary state vector z is defined by: z = [xf; xs; kron(xf,xf); xrd; kron(xf,xs); kron(kron(xf,xf),xf)]
% Auxiliary innovations vector inov is defined by: inov = [u; kron(u,u)-E_uu(:); kron(xf,u); kron(xs,u); kron(kron(xf,xf),u); kron(kron(xf,u),u); kron(kron(u,u),u))]
z_nbr = x_nbr + x_nbr + x_nbr^2 + x_nbr + x_nbr^2 + x_nbr^3;
inov_nbr = u_nbr + u_nbr^2 + x_nbr*u_nbr + x_nbr*u_nbr + x_nbr^2*u_nbr + x_nbr*u_nbr^2 + u_nbr^3;
A = zeros(z_nbr,z_nbr);
A(id_z1_xf , id_z1_xf ) = hx;
A(id_z2_xs , id_z2_xs ) = hx;
A(id_z2_xs , id_z3_xf_xf ) = 1/2*hxx;
A(id_z3_xf_xf , id_z3_xf_xf ) = hx_hx;
A(id_z4_xrd , id_z1_xf ) = 3/6*hxss;
A(id_z4_xrd , id_z4_xrd ) = hx;
A(id_z4_xrd , id_z5_xf_xs ) = hxx;
A(id_z4_xrd , id_z6_xf_xf_xf) = 1/6*hxxx;
A(id_z5_xf_xs , id_z1_xf ) = hx_hss2;
A(id_z5_xf_xs , id_z5_xf_xs ) = hx_hx;
A(id_z5_xf_xs , id_z6_xf_xf_xf) = hx_hxx2;
A(id_z6_xf_xf_xf , id_z6_xf_xf_xf) = hx_hx_hx;
B = zeros(z_nbr,inov_nbr);
B(id_z1_xf , id_inov1_u ) = hu;
B(id_z2_xs , id_inov2_u_u ) = 1/2*huu;
B(id_z2_xs , id_inov3_xf_u ) = hxu;
B(id_z3_xf_xf , id_inov2_u_u ) = hu_hu;
B(id_z3_xf_xf , id_inov3_xf_u ) = (I_xx+K_x_x)*hx_hu;
B(id_z4_xrd , id_inov1_u ) = 3/6*huss;
B(id_z4_xrd , id_inov4_xs_u ) = hxu;
B(id_z4_xrd , id_inov5_xf_xf_u) = 3/6*hxxu;
B(id_z4_xrd , id_inov6_xf_u_u ) = 3/6*hxuu;
B(id_z4_xrd , id_inov7_u_u_u ) = 1/6*huuu;
B(id_z5_xf_xs , id_inov1_u ) = hu_hss2;
B(id_z5_xf_xs , id_inov4_xs_u ) = K_x_x*hx_hu;
B(id_z5_xf_xs , id_inov5_xf_xf_u) = hx_hxu + K_x_x*hxx2_hu;
B(id_z5_xf_xs , id_inov6_xf_u_u ) = hx_huu2 + K_x_x*hxu_hu;
B(id_z5_xf_xs , id_inov7_u_u_u ) = hu_huu2;
B(id_z6_xf_xf_xf , id_inov5_xf_xf_u) = hx_hx_hu + kron(hx,K_x_x*hx_hu) + hu_hx_hx*K_u_xx;
B(id_z6_xf_xf_xf , id_inov6_xf_u_u ) = hx_hu_hu + hu_hx_hu*K_u_ux + kron(hu,K_x_x*hx_hu)*K_u_ux;
B(id_z6_xf_xf_xf , id_inov7_u_u_u ) = hu_hu_hu;
c = zeros(z_nbr, 1);
c(id_z2_xs , 1) = 1/2*hss + 1/2*huu*E_uu(:);
c(id_z3_xf_xf , 1) = hu_hu*E_uu(:);
C = zeros(y_nbr,z_nbr);
C(: , id_z1_xf ) = gx + 3/6*gxss;
C(: , id_z2_xs ) = gx;
C(: , id_z3_xf_xf ) = 1/2*gxx;
C(: , id_z4_xrd ) = gx;
C(: , id_z5_xf_xs ) = gxx;
C(: , id_z6_xf_xf_xf) = 1/6*gxxx;
D = zeros(y_nbr,inov_nbr);
D(: , id_inov1_u ) = gu + 3/6*guss;
D(: , id_inov2_u_u ) = 1/2*guu;
D(: , id_inov3_xf_u ) = gxu;
D(: , id_inov4_xs_u ) = gxu;
D(: , id_inov5_xf_xf_u) = 3/6*gxxu;
D(: , id_inov6_xf_u_u) = 3/6*gxuu;
D(: , id_inov7_u_u_u ) = 1/6*guuu;
d = 1/2*gss + 1/2*guu*E_uu(:);
Varinov = zeros(inov_nbr,inov_nbr);
Varinov(id_inov1_u , id_inov1_u ) = E_uu;
%Varinov(id_inov1_u , id_inov2_u_u ) = zeros(u_nbr,u_nbr^2);
%Varinov(id_inov1_u , id_inov3_xf_u ) = zeros(u_nbr,x_nbr*u_nbr);
Varinov(id_inov1_u , id_inov4_xs_u ) = kron(E_xs',E_uu);
Varinov(id_inov1_u , id_inov5_xf_xf_u) = kron(E_xfxf(:)',E_uu);
%Varinov(id_inov1_u , id_inov6_xf_u_u ) = zeros(u_nbr,x_nbr*u_nbr^2);
Varinov(id_inov1_u , id_inov7_u_u_u ) = reshape(QPu*E_u_u_u_u,u_nbr,u_nbr^3);
%Varinov(id_inov2_u_u , id_inov1_u ) = zeros(u_nbr^2,u_nbr);
Varinov(id_inov2_u_u , id_inov2_u_u ) = reshape(QPu*E_u_u_u_u,u_nbr^2,u_nbr^2)-E_uu(:)*E_uu(:)';
%Varinov(id_inov2_u_u , id_inov3_xf_u ) = zeros(u_nbr^2,x_nbr*u_nbr);
%Varinov(id_inov2_u_u , id_inov4_xs_u ) = zeros(u_nbr^2,x_nbr*u_nbr);
%Varinov(id_inov2_u_u , id_inov5_xf_xf_u) = zeros(u_nbr^2,x_nbr^2,u_nbr);
%Varinov(id_inov2_u_u , id_inov6_xf_u_u ) = zeros(u_nbr^2,x_nbr*u_nbr^2);
%Varinov(id_inov2_u_u , id_inov7_u_u_u ) = zeros(u_nbr^2,u_nbr^3);
%Varinov(id_inov3_xf_u , id_inov1_u ) = zeros(x_nbr*u_nbr,u_nbr);
%Varinov(id_inov3_xf_u , id_inov2_u_u ) = zeros(x_nbr*u_nbr,u_nbr^2);
Varinov(id_inov3_xf_u , id_inov3_xf_u ) = E_xfxf_uu;
%Varinov(id_inov3_xf_u , id_inov4_xs_u ) = zeros(x_nbr*u_nbr,x_nbr*u_nbr);
%Varinov(id_inov3_xf_u , id_inov5_xf_xf_u) = zeros(x_nbr*u_nbr,x_nbr^2*u_nbr);
%Varinov(id_inov3_xf_u , id_inov6_xf_u_u ) = zeros(x_nbr*u_nbr,x_nbr*u_nbr^2);
%Varinov(id_inov3_xf_u , id_inov7_u_u_u ) = zeros(x_nbr*u_nbr,u_nbr^3);
Varinov(id_inov4_xs_u , id_inov1_u ) = kron(E_xs,E_uu);
%Varinov(id_inov4_xs_u , id_inov2_u_u ) = zeros(x_nbr*u_nbr,u_nbr^2);
%Varinov(id_inov4_xs_u , id_inov3_xf_u ) = zeros(x_nbr*u_nbr,x_nbr*u_nbr);
Varinov(id_inov4_xs_u , id_inov4_xs_u ) = kron(E_xsxs,E_uu);
Varinov(id_inov4_xs_u , id_inov5_xf_xf_u) = kron(E_xsxf_xf, E_uu);
%Varinov(id_inov4_xs_u , id_inov6_xf_u_u ) = zeros(x_nbr*u_nbr,x_nbr*u_nbr^2);
Varinov(id_inov4_xs_u , id_inov7_u_u_u ) = kron(E_xs,reshape(QPu*E_u_u_u_u,u_nbr,u_nbr^3));
Varinov(id_inov5_xf_xf_u , id_inov1_u ) = kron(E_xfxf(:),E_uu);
%Varinov(id_inov5_xf_xf_u , id_inov2_u_u ) = zeros(x_nbr^2*u_nbr,u_nbr^2);
%Varinov(id_inov5_xf_xf_u , id_inov3_xf_u ) = zeros(x_nbr^2*u_nbr,x_nbr*u_nbr);
Varinov(id_inov5_xf_xf_u , id_inov4_xs_u ) = kron(E_xf_xfxs,E_uu);
Varinov(id_inov5_xf_xf_u , id_inov5_xf_xf_u) = kron(E_xf_xfxf_xf,E_uu);
%Varinov(id_inov5_xf_xf_u , id_inov6_xf_u_u ) = zeros(x_nbr^2*u_nbr,x_nbr*u_nbr^2);
Varinov(id_inov5_xf_xf_u , id_inov7_u_u_u ) = kron(E_xfxf(:),reshape(QPu*E_u_u_u_u,u_nbr,u_nbr^3));
%Varinov(id_inov6_xf_u_u , id_inov1_u ) = zeros(x_nbr*u_nbr^2,u_nbr);
%Varinov(id_inov6_xf_u_u , id_inov2_u_u ) = zeros(x_nbr*u_nbr^2,u_nbr^2);
%Varinov(id_inov6_xf_u_u , id_inov3_xf_u ) = zeros(x_nbr*u_nbr^2,x_nbr*u_nbr);
%Varinov(id_inov6_xf_u_u , id_inov4_xs_u ) = zeros(x_nbr*u_nbr^2,x_nbr*u_nbr);
%Varinov(id_inov6_xf_u_u , id_inov5_xf_xf_u) = zeros(x_nbr*u_nbr^2,x_nbr^2*u_nbr);
Varinov(id_inov6_xf_u_u , id_inov6_xf_u_u ) = kron(E_xfxf,reshape(QPu*E_u_u_u_u,u_nbr^2,u_nbr^2));
%Varinov(id_inov6_xf_u_u , id_inov7_u_u_u ) = zeros(x_nbr*u_nbr^2,u_nbr^3);
Varinov(id_inov7_u_u_u , id_inov1_u ) = reshape(QPu*E_u_u_u_u,u_nbr^3,u_nbr);
%Varinov(id_inov7_u_u_u , id_inov2_u_u ) = zeros(u_nbr^3,u_nbr^2);
%Varinov(id_inov7_u_u_u , id_inov3_xf_u ) = zeros(u_nbr^3,x_nbr*u_nbr);
Varinov(id_inov7_u_u_u , id_inov4_xs_u ) = kron(E_xs',reshape(QPu*E_u_u_u_u,u_nbr^3,u_nbr));
Varinov(id_inov7_u_u_u , id_inov5_xf_xf_u) = kron(transpose(E_xfxf(:)),reshape(QPu*E_u_u_u_u,u_nbr^3,u_nbr));
%Varinov(id_inov7_u_u_u , id_inov6_xf_u_u ) = zeros(u_nbr^3,x_nbr*u_nbr^2);
Varinov(id_inov7_u_u_u , id_inov7_u_u_u ) = reshape(Q6Pu*E_u_u_u_u_u_u,u_nbr^3,u_nbr^3);
E_xrd = zeros(x_nbr,1);%due to gaussianity
E_inovzlag1 = zeros(inov_nbr,z_nbr); % Attention: E[inov*z(-1)'] is not equal to zero for a third-order approximation due to kron(kron(xf(-1),u),u)
E_inovzlag1(id_inov6_xf_u_u , id_z1_xf ) = kron(E_xfxf,E_uu(:));
E_inovzlag1(id_inov6_xf_u_u , id_z4_xrd ) = kron(E_xrdxf',E_uu(:));
E_inovzlag1(id_inov6_xf_u_u , id_z5_xf_xs ) = kron(reshape(commutation(x_nbr^2,x_nbr)*vec(E_xsxf_xf),x_nbr,x_nbr^2),vec(E_uu)) ;
E_inovzlag1(id_inov6_xf_u_u , id_z6_xf_xf_xf ) = kron(reshape(E_xf_xfxf_xf,x_nbr,x_nbr^3),E_uu(:));
Binovzlag1A= B*E_inovzlag1*transpose(A);
Om_z = B*Varinov*transpose(B) + Binovzlag1A + transpose(Binovzlag1A);
lyapunov_symm_method = 1; %method=1 to initialize persistent variables
[Var_z, errorflag] = disclyap_fast(A,Om_z,options.lyapunov_doubling_tol);
if errorflag %use Schur-based method
fprintf('PRUNED_STATE_SPACE_SYSTEM: error flag in disclyap_fast at order=3, use lyapunov_symm\n');
Var_z = lyapunov_symm(A,Om_z,...
options.lyapunov_fixed_point_tol,options.qz_criterium,options.lyapunov_complex_threshold,...
lyapunov_symm_method,...
options.debug);
lyapunov_symm_method = 2; %we can now make use of persistent variables from shur
end
%make sure some stuff is zero due to Gaussianity
Var_z(id_z1_xf , id_z2_xs) = zeros(x_nbr,x_nbr);
Var_z(id_z1_xf , id_z3_xf_xf) = zeros(x_nbr,x_nbr^2);
Var_z(id_z2_xs , id_z1_xf) = zeros(x_nbr,x_nbr);
Var_z(id_z2_xs , id_z4_xrd) = zeros(x_nbr,x_nbr);
Var_z(id_z2_xs , id_z5_xf_xs) = zeros(x_nbr,x_nbr^2);
Var_z(id_z2_xs , id_z6_xf_xf_xf) = zeros(x_nbr,x_nbr^3);
Var_z(id_z3_xf_xf , id_z1_xf) = zeros(x_nbr^2,x_nbr);
Var_z(id_z3_xf_xf , id_z4_xrd) = zeros(x_nbr^2,x_nbr);
Var_z(id_z3_xf_xf , id_z5_xf_xs) = zeros(x_nbr^2,x_nbr^2);
Var_z(id_z3_xf_xf , id_z6_xf_xf_xf) = zeros(x_nbr^2,x_nbr^3);
Var_z(id_z4_xrd , id_z2_xs) = zeros(x_nbr,x_nbr);
Var_z(id_z4_xrd , id_z3_xf_xf) = zeros(x_nbr,x_nbr^2);
Var_z(id_z5_xf_xs , id_z2_xs) = zeros(x_nbr^2,x_nbr);
Var_z(id_z5_xf_xs , id_z3_xf_xf) = zeros(x_nbr^2,x_nbr^2);
Var_z(id_z6_xf_xf_xf , id_z2_xs) = zeros(x_nbr^3,x_nbr);
Var_z(id_z6_xf_xf_xf , id_z3_xf_xf) = zeros(x_nbr^3,x_nbr^2);
if compute_derivs
dA = zeros(z_nbr,z_nbr,totparam_nbr);
dB = zeros(z_nbr,inov_nbr,totparam_nbr);
dc = zeros(z_nbr,totparam_nbr);
dC = zeros(y_nbr,z_nbr,totparam_nbr);
dD = zeros(y_nbr,inov_nbr,totparam_nbr);
dd = zeros(y_nbr,totparam_nbr);
dVarinov = zeros(inov_nbr,inov_nbr,totparam_nbr);
dE_xrd = zeros(x_nbr,totparam_nbr);
dE_inovzlag1 = zeros(inov_nbr,z_nbr,totparam_nbr);
dVar_z = zeros(z_nbr,z_nbr,totparam_nbr);
for jp3 = 1:totparam_nbr
if jp3 <= (stderrparam_nbr+corrparam_nbr)
dE_uu_jp3 = dE_uu(:,:,jp3);
dE_u_u_u_u_jp3 = QPu*dE_u_u_u_u(:,jp3);
dE_u_u_u_u_u_u_jp3 = Q6Pu*dE_u_u_u_u_u_u(:,jp3);
else
dE_uu_jp3 = zeros(u_nbr,u_nbr);
dE_u_u_u_u_jp3 = zeros(u_nbr^4,1);
dE_u_u_u_u_u_u_jp3 = zeros(u_nbr^6,1);
end
dhx_jp3 = dhx(:,:,jp3);
dhu_jp3 = dhu(:,:,jp3);
dhxx_jp3 = dhxx(:,:,jp3);
dhxu_jp3 = dhxu(:,:,jp3);
dhuu_jp3 = dhuu(:,:,jp3);
dhss_jp3 = dhss(:,jp3);
dhxxx_jp3 = dhxxx(:,:,jp3);
dhxxu_jp3 = dhxxu(:,:,jp3);
dhxuu_jp3 = dhxuu(:,:,jp3);
dhuuu_jp3 = dhuuu(:,:,jp3);
dhxss_jp3 = dhxss(:,:,jp3);
dhuss_jp3 = dhuss(:,:,jp3);
dgx_jp3 = dgx(:,:,jp3);
dgu_jp3 = dgu(:,:,jp3);
dgxx_jp3 = dgxx(:,:,jp3);
dgxu_jp3 = dgxu(:,:,jp3);
dguu_jp3 = dguu(:,:,jp3);
dgss_jp3 = dgss(:,jp3);
dgxxx_jp3 = dgxxx(:,:,jp3);
dgxxu_jp3 = dgxxu(:,:,jp3);
dgxuu_jp3 = dgxuu(:,:,jp3);
dguuu_jp3 = dguuu(:,:,jp3);
dgxss_jp3 = dgxss(:,:,jp3);
dguss_jp3 = dguss(:,:,jp3);
dhx_hx_jp3 = kron(dhx_jp3,hx) + kron(hx,dhx_jp3);
dhx_hu_jp3 = kron(dhx_jp3,hu) + kron(hx,dhu_jp3);
dhu_hu_jp3 = kron(dhu_jp3,hu) + kron(hu,dhu_jp3);
dhx_hss2_jp3 = kron(dhx_jp3,1/2*hss) + kron(hx,1/2*dhss_jp3);
dhu_hss2_jp3 = kron(dhu_jp3,1/2*hss) + kron(hu,1/2*dhss_jp3);
dhx_hxx2_jp3 = kron(dhx_jp3,1/2*hxx) + kron(hx,1/2*dhxx_jp3);
dhxx2_hu_jp3 = kron(1/2*dhxx_jp3,hu) + kron(1/2*hxx,dhu_jp3);
dhx_hxu_jp3 = kron(dhx_jp3,hxu) + kron(hx,dhxu_jp3);
dhxu_hu_jp3 = kron(dhxu_jp3,hu) + kron(hxu,dhu_jp3);
dhx_huu2_jp3 = kron(dhx_jp3,1/2*huu) + kron(hx,1/2*dhuu_jp3);
dhu_huu2_jp3 = kron(dhu_jp3,1/2*huu) + kron(hu,1/2*dhuu_jp3);
dhx_hx_hx_jp3 = kron(dhx_jp3,hx_hx) + kron(hx,dhx_hx_jp3);
dhx_hx_hu_jp3 = kron(dhx_hx_jp3,hu) + kron(hx_hx,dhu_jp3);
dhu_hx_hx_jp3 = kron(dhu_jp3,hx_hx) + kron(hu,dhx_hx_jp3);
dhu_hu_hu_jp3 = kron(dhu_hu_jp3,hu) + kron(hu_hu,dhu_jp3);
dhx_hu_hu_jp3 = kron(dhx_jp3,hu_hu) + kron(hx,dhu_hu_jp3);
dhu_hx_hu_jp3 = kron(dhu_jp3,hx_hu) + kron(hu,dhx_hu_jp3);
dE_xs_jp3 = dE_xs(:,jp3);
dE_xfxf_jp3 = dE_xfxf(:,:,jp3);
dE_xsxs_jp3 = dE_xsxs(:,:,jp3);
dE_xsxf_xf_jp3 = dE_xsxf_xf(:,:,jp3);
dE_xfxf_uu_jp3 = kron(dE_xfxf_jp3,E_uu) + kron(E_xfxf,dE_uu_jp3);
dE_xf_xfxs_jp3 = dE_xf_xfxs(:,:,jp3);
dE_xf_xfxf_xf_jp3 = dE_xf_xfxf_xf(:,:,jp3);
dE_xrdxf_jp3 = dE_xrdxf(:,:,jp3);
dA(id_z1_xf , id_z1_xf , jp3) = dhx_jp3;
dA(id_z2_xs , id_z2_xs , jp3) = dhx_jp3;
dA(id_z2_xs , id_z3_xf_xf , jp3) = 1/2*dhxx_jp3;
dA(id_z3_xf_xf , id_z3_xf_xf , jp3) = dhx_hx_jp3;
dA(id_z4_xrd , id_z1_xf , jp3) = 3/6*dhxss_jp3;
dA(id_z4_xrd , id_z4_xrd , jp3) = dhx_jp3;
dA(id_z4_xrd , id_z5_xf_xs , jp3) = dhxx_jp3;
dA(id_z4_xrd , id_z6_xf_xf_xf , jp3) = 1/6*dhxxx_jp3;
dA(id_z5_xf_xs , id_z1_xf , jp3) = dhx_hss2_jp3;
dA(id_z5_xf_xs , id_z5_xf_xs , jp3) = dhx_hx_jp3;
dA(id_z5_xf_xs , id_z6_xf_xf_xf , jp3) = dhx_hxx2_jp3;
dA(id_z6_xf_xf_xf , id_z6_xf_xf_xf , jp3) = dhx_hx_hx_jp3;
dB(id_z1_xf , id_inov1_u , jp3) = dhu_jp3;
dB(id_z2_xs , id_inov2_u_u , jp3) = 1/2*dhuu_jp3;
dB(id_z2_xs , id_inov3_xf_u , jp3) = dhxu_jp3;
dB(id_z3_xf_xf , id_inov2_u_u , jp3) = dhu_hu_jp3;
dB(id_z3_xf_xf , id_inov3_xf_u , jp3) = (I_xx+K_x_x)*dhx_hu_jp3;
dB(id_z4_xrd , id_inov1_u , jp3) = 3/6*dhuss_jp3;
dB(id_z4_xrd , id_inov4_xs_u , jp3) = dhxu_jp3;
dB(id_z4_xrd , id_inov5_xf_xf_u , jp3) = 3/6*dhxxu_jp3;
dB(id_z4_xrd , id_inov6_xf_u_u , jp3) = 3/6*dhxuu_jp3;
dB(id_z4_xrd , id_inov7_u_u_u , jp3) = 1/6*dhuuu_jp3;
dB(id_z5_xf_xs , id_inov1_u , jp3) = dhu_hss2_jp3;
dB(id_z5_xf_xs , id_inov4_xs_u , jp3) = K_x_x*dhx_hu_jp3;
dB(id_z5_xf_xs , id_inov5_xf_xf_u , jp3) = dhx_hxu_jp3 + K_x_x*dhxx2_hu_jp3;
dB(id_z5_xf_xs , id_inov6_xf_u_u , jp3) = dhx_huu2_jp3 + K_x_x*dhxu_hu_jp3;
dB(id_z5_xf_xs , id_inov7_u_u_u , jp3) = dhu_huu2_jp3;
dB(id_z6_xf_xf_xf , id_inov5_xf_xf_u , jp3) = dhx_hx_hu_jp3 + kron(dhx_jp3,K_x_x*hx_hu) + kron(hx,K_x_x*dhx_hu_jp3) + dhu_hx_hx_jp3*K_u_xx;
dB(id_z6_xf_xf_xf , id_inov6_xf_u_u , jp3) = dhx_hu_hu_jp3 + dhu_hx_hu_jp3*K_u_ux + kron(dhu_jp3,K_x_x*hx_hu)*K_u_ux + kron(hu,K_x_x*dhx_hu_jp3)*K_u_ux;
dB(id_z6_xf_xf_xf , id_inov7_u_u_u , jp3) = dhu_hu_hu_jp3;
dc(id_z2_xs , jp3) = 1/2*dhss_jp3 + 1/2*dhuu_jp3*E_uu(:) + 1/2*huu*dE_uu_jp3(:);
dc(id_z3_xf_xf , jp3) = dhu_hu_jp3*E_uu(:) + hu_hu*dE_uu_jp3(:);
dC(: , id_z1_xf , jp3) = dgx_jp3 + 3/6*dgxss_jp3;
dC(: , id_z2_xs , jp3) = dgx_jp3;
dC(: , id_z3_xf_xf , jp3) = 1/2*dgxx_jp3;
dC(: , id_z4_xrd , jp3) = dgx_jp3;
dC(: , id_z5_xf_xs , jp3) = dgxx_jp3;
dC(: , id_z6_xf_xf_xf , jp3) = 1/6*dgxxx_jp3;
dD(: , id_inov1_u , jp3) = dgu_jp3 + 3/6*dguss_jp3;
dD(: , id_inov2_u_u , jp3) = 1/2*dguu_jp3;
dD(: , id_inov3_xf_u , jp3) = dgxu_jp3;
dD(: , id_inov4_xs_u , jp3) = dgxu_jp3;
dD(: , id_inov5_xf_xf_u , jp3) = 3/6*dgxxu_jp3;
dD(: , id_inov6_xf_u_u , jp3) = 3/6*dgxuu_jp3;
dD(: , id_inov7_u_u_u , jp3) = 1/6*dguuu_jp3;
dd(:,jp3) = 1/2*dgss_jp3 + 1/2*dguu_jp3*E_uu(:) + 1/2*guu*dE_uu_jp3(:);
dVarinov(id_inov1_u , id_inov1_u , jp3) = dE_uu_jp3;
dVarinov(id_inov1_u , id_inov4_xs_u , jp3) = kron(dE_xs_jp3',E_uu) + kron(E_xs',dE_uu_jp3);
dVarinov(id_inov1_u , id_inov5_xf_xf_u , jp3) = kron(dE_xfxf_jp3(:)',E_uu) + kron(E_xfxf(:)',dE_uu_jp3);
dVarinov(id_inov1_u , id_inov7_u_u_u , jp3) = reshape(dE_u_u_u_u_jp3,u_nbr,u_nbr^3);
dVarinov(id_inov2_u_u , id_inov2_u_u , jp3) = reshape(dE_u_u_u_u_jp3,u_nbr^2,u_nbr^2) - dE_uu_jp3(:)*E_uu(:)' - E_uu(:)*dE_uu_jp3(:)';
dVarinov(id_inov3_xf_u , id_inov3_xf_u , jp3) = dE_xfxf_uu_jp3;
dVarinov(id_inov4_xs_u , id_inov1_u , jp3) = kron(dE_xs_jp3,E_uu) + kron(E_xs,dE_uu_jp3);
dVarinov(id_inov4_xs_u , id_inov4_xs_u , jp3) = kron(dE_xsxs_jp3,E_uu) + kron(E_xsxs,dE_uu_jp3);
dVarinov(id_inov4_xs_u , id_inov5_xf_xf_u , jp3) = kron(dE_xsxf_xf_jp3, E_uu) + kron(E_xsxf_xf, dE_uu_jp3);
dVarinov(id_inov4_xs_u , id_inov7_u_u_u , jp3) = kron(dE_xs_jp3,reshape(QPu*E_u_u_u_u,u_nbr,u_nbr^3)) + kron(E_xs,reshape(dE_u_u_u_u_jp3,u_nbr,u_nbr^3));
dVarinov(id_inov5_xf_xf_u , id_inov1_u , jp3) = kron(dE_xfxf_jp3(:),E_uu) + kron(E_xfxf(:),dE_uu_jp3);
dVarinov(id_inov5_xf_xf_u , id_inov4_xs_u , jp3) = kron(dE_xf_xfxs_jp3,E_uu) + kron(E_xf_xfxs,dE_uu_jp3);
dVarinov(id_inov5_xf_xf_u , id_inov5_xf_xf_u , jp3) = kron(dE_xf_xfxf_xf_jp3,E_uu) + kron(E_xf_xfxf_xf,dE_uu_jp3);
dVarinov(id_inov5_xf_xf_u , id_inov7_u_u_u , jp3) = kron(dE_xfxf_jp3(:),reshape(QPu*E_u_u_u_u,u_nbr,u_nbr^3)) + kron(E_xfxf(:),reshape(dE_u_u_u_u_jp3,u_nbr,u_nbr^3));
dVarinov(id_inov6_xf_u_u , id_inov6_xf_u_u , jp3) = kron(dE_xfxf_jp3,reshape(QPu*E_u_u_u_u,u_nbr^2,u_nbr^2)) + kron(E_xfxf,reshape(dE_u_u_u_u_jp3,u_nbr^2,u_nbr^2));
dVarinov(id_inov7_u_u_u , id_inov1_u , jp3) = reshape(dE_u_u_u_u_jp3,u_nbr^3,u_nbr);
dVarinov(id_inov7_u_u_u , id_inov4_xs_u , jp3) = kron(dE_xs_jp3',reshape(QPu*E_u_u_u_u,u_nbr^3,u_nbr)) + kron(E_xs',reshape(dE_u_u_u_u_jp3,u_nbr^3,u_nbr));
dVarinov(id_inov7_u_u_u , id_inov5_xf_xf_u , jp3) = kron(transpose(dE_xfxf_jp3(:)),reshape(QPu*E_u_u_u_u,u_nbr^3,u_nbr)) + kron(transpose(E_xfxf(:)),reshape(dE_u_u_u_u_jp3,u_nbr^3,u_nbr));
dVarinov(id_inov7_u_u_u , id_inov7_u_u_u , jp3) = reshape(dE_u_u_u_u_u_u_jp3,u_nbr^3,u_nbr^3);
dE_inovzlag1(id_inov6_xf_u_u , id_z1_xf , jp3) = kron(dE_xfxf_jp3,E_uu(:)) + kron(E_xfxf,dE_uu_jp3(:));
dE_inovzlag1(id_inov6_xf_u_u , id_z4_xrd , jp3) = kron(dE_xrdxf_jp3',E_uu(:)) + kron(E_xrdxf',dE_uu_jp3(:));
dE_inovzlag1(id_inov6_xf_u_u , id_z5_xf_xs , jp3) = kron(reshape(commutation(x_nbr^2,x_nbr)*vec(dE_xsxf_xf_jp3),x_nbr,x_nbr^2),vec(E_uu)) + kron(reshape(commutation(x_nbr^2,x_nbr)*vec(E_xsxf_xf),x_nbr,x_nbr^2),vec(dE_uu_jp3)) ;
dE_inovzlag1(id_inov6_xf_u_u , id_z6_xf_xf_xf , jp3) = kron(reshape(dE_xf_xfxf_xf_jp3,x_nbr,x_nbr^3),E_uu(:)) + kron(reshape(E_xf_xfxf_xf,x_nbr,x_nbr^3),dE_uu_jp3(:));
dBinovzlag1A_jp3 = dB(:,:,jp3)*E_inovzlag1*transpose(A) + B*dE_inovzlag1(:,:,jp3)*transpose(A) + B*E_inovzlag1*transpose(dA(:,:,jp3));
dOm_z_jp3 = dB(:,:,jp3)*Varinov*transpose(B) + B*dVarinov(:,:,jp3)*transpose(B) + B*Varinov*transpose(dB(:,:,jp3)) + dBinovzlag1A_jp3 + transpose(dBinovzlag1A_jp3);
[dVar_z(:,:,jp3), errorflag] = disclyap_fast(A, dA(:,:,jp3)*Var_z*A' + A*Var_z*dA(:,:,jp3)' + dOm_z_jp3, options.lyapunov_doubling_tol);
if errorflag
dVar_z(:,:,jp3) = lyapunov_symm(A, dA(:,:,jp3)*Var_z*A' + A*Var_z*dA(:,:,jp3)' + dOm_z_jp3,...
options.lyapunov_fixed_point_tol,options.qz_criterium,options.lyapunov_complex_threshold,...
lyapunov_symm_method,...
options.debug);
if lyapunov_symm_method == 1
lyapunov_symm_method = 2; %now we can reuse persistent schur
end
end
%make sure some stuff is zero due to Gaussianity
dVar_z(id_z1_xf , id_z2_xs , jp3) = zeros(x_nbr,x_nbr);
dVar_z(id_z1_xf , id_z3_xf_xf , jp3) = zeros(x_nbr,x_nbr^2);
dVar_z(id_z2_xs , id_z1_xf , jp3) = zeros(x_nbr,x_nbr);
dVar_z(id_z2_xs , id_z4_xrd , jp3) = zeros(x_nbr,x_nbr);
dVar_z(id_z2_xs , id_z5_xf_xs , jp3) = zeros(x_nbr,x_nbr^2);
dVar_z(id_z2_xs , id_z6_xf_xf_xf , jp3) = zeros(x_nbr,x_nbr^3);
dVar_z(id_z3_xf_xf , id_z1_xf , jp3) = zeros(x_nbr^2,x_nbr);
dVar_z(id_z3_xf_xf , id_z4_xrd , jp3) = zeros(x_nbr^2,x_nbr);
dVar_z(id_z3_xf_xf , id_z5_xf_xs , jp3) = zeros(x_nbr^2,x_nbr^2);
dVar_z(id_z3_xf_xf , id_z6_xf_xf_xf , jp3) = zeros(x_nbr^2,x_nbr^3);
dVar_z(id_z4_xrd , id_z2_xs , jp3) = zeros(x_nbr,x_nbr);
dVar_z(id_z4_xrd , id_z3_xf_xf , jp3) = zeros(x_nbr,x_nbr^2);
dVar_z(id_z5_xf_xs , id_z2_xs , jp3) = zeros(x_nbr^2,x_nbr);
dVar_z(id_z5_xf_xs , id_z3_xf_xf , jp3) = zeros(x_nbr^2,x_nbr^2);
dVar_z(id_z6_xf_xf_xf , id_z2_xs , jp3) = zeros(x_nbr^3,x_nbr);
dVar_z(id_z6_xf_xf_xf , id_z3_xf_xf , jp3) = zeros(x_nbr^3,x_nbr^2);
end
end
end
end
%% Covariance/Correlation of control variables
Var_y = NaN*ones(y_nbr,y_nbr);
if order < 3
Var_y(stationary_vars,stationary_vars) = C(stationary_vars,:)*Var_z*C(stationary_vars,:)'...
+ D(stationary_vars,:)*Varinov*D(stationary_vars,:)';
else
Var_y(stationary_vars,stationary_vars) = C(stationary_vars,:)*Var_z*C(stationary_vars,:)'...
+ D(stationary_vars,:)*E_inovzlag1*C(stationary_vars,:)'...
+ C(stationary_vars,:)*transpose(E_inovzlag1)*D(stationary_vars,:)'...
+ D(stationary_vars,:)*Varinov*D(stationary_vars,:)';
end
indzeros = find(abs(Var_y) < 1e-12); %find values that are numerical zero
Var_y(indzeros) = 0;
if useautocorr
sdy = sqrt(diag(Var_y)); %theoretical standard deviation
sdy = sdy(stationary_vars);
sy = sdy*sdy'; %cross products of standard deviations
Corr_y = NaN*ones(y_nbr,y_nbr);
Corr_y(stationary_vars,stationary_vars) = Var_y(stationary_vars,stationary_vars)./sy;
Corr_yi = NaN*ones(y_nbr,y_nbr,nlags);
end
if compute_derivs
dVar_y = NaN*ones(y_nbr,y_nbr,totparam_nbr);
if useautocorr
dCorr_y = NaN*ones(y_nbr,y_nbr,totparam_nbr);
dCorr_yi = NaN*ones(y_nbr,y_nbr,nlags,totparam_nbr);
end
for jpV=1:totparam_nbr
if order < 3
dVar_y_tmp = dC(stationary_vars,:,jpV)*Var_z*C(stationary_vars,:)' + C(stationary_vars,:)*dVar_z(:,:,jpV)*C(stationary_vars,:)' + C(stationary_vars,:)*Var_z*dC(stationary_vars,:,jpV)'...
+ dD(stationary_vars,:,jpV)*Varinov*D(stationary_vars,:)' + D(stationary_vars,:)*dVarinov(:,:,jpV)*D(stationary_vars,:)' + D(stationary_vars,:)*Varinov*dD(stationary_vars,:,jpV)';
else
dVar_y_tmp = dC(stationary_vars,:,jpV)*Var_z*C(stationary_vars,:)' + C(stationary_vars,:)*dVar_z(:,:,jpV)*C(stationary_vars,:)' + C(stationary_vars,:)*Var_z*dC(stationary_vars,:,jpV)'...
+ dD(stationary_vars,:,jpV)*E_inovzlag1*C(stationary_vars,:)' + D(stationary_vars,:)*dE_inovzlag1(:,:,jpV)*C(stationary_vars,:)' + D(stationary_vars,:)*E_inovzlag1*dC(stationary_vars,:,jpV)'...
+ dC(stationary_vars,:,jpV)*transpose(E_inovzlag1)*D(stationary_vars,:)' + C(stationary_vars,:)*transpose(dE_inovzlag1(:,:,jpV))*D(stationary_vars,:)' + C(stationary_vars,:)*transpose(E_inovzlag1)*dD(stationary_vars,:,jpV)'...
+ dD(stationary_vars,:,jpV)*Varinov*D(stationary_vars,:)' + D(stationary_vars,:)*dVarinov(:,:,jpV)*D(stationary_vars,:)' + D(stationary_vars,:)*Varinov*dD(stationary_vars,:,jpV)';
end
indzeros = find(abs(dVar_y_tmp) < 1e-12); %find values that are numerical zero
dVar_y_tmp(indzeros) = 0;
dVar_y(stationary_vars,stationary_vars,jpV) = dVar_y_tmp;
if useautocorr
dsy = 1/2./sdy.*diag(dVar_y(:,:,jpV));
dsy = dsy(stationary_vars);
dsy = dsy*sdy'+sdy*dsy';
dCorr_y(stationary_vars,stationary_vars,jpV) = (dVar_y(stationary_vars,stationary_vars,jpV).*sy-dsy.*Var_y(stationary_vars,stationary_vars))./(sy.*sy);
dCorr_y(stationary_vars,stationary_vars,jpV) = dCorr_y(stationary_vars,stationary_vars,jpV)-diag(diag(dCorr_y(stationary_vars,stationary_vars,jpV)))+diag(diag(dVar_y(stationary_vars,stationary_vars,jpV)));
end
end
end
%% Autocovariances/autocorrelations of lagged control variables
Var_yi = NaN*ones(y_nbr,y_nbr,nlags);
Ai = eye(z_nbr); %this is A^0
hxi = eye(x_nbr);
E_inovzlagi = E_inovzlag1;
Var_zi = Var_z;
if order <= 2
tmp = A*Var_z*C(stationary_vars,:)' + B*Varinov*D(stationary_vars,:)';
else
tmp = A*E_inovzlag1'*D(stationary_vars,:)' + B*Varinov*D(stationary_vars,:)';
end
for i = 1:nlags
if order <= 2
Var_yi(stationary_vars,stationary_vars,i) = C(stationary_vars,:)*Ai*tmp;
else
Var_zi = A*Var_zi + B*E_inovzlagi;
hxi = hx*hxi;
E_inovzlagi = zeros(inov_nbr,z_nbr);
E_inovzlagi(id_inov6_xf_u_u , id_z1_xf ) = kron(hxi*E_xfxf,E_uu(:));
E_inovzlagi(id_inov6_xf_u_u , id_z4_xrd ) = kron(hxi*E_xrdxf',E_uu(:));
E_inovzlagi(id_inov6_xf_u_u , id_z5_xf_xs ) = kron(hxi*reshape(commutation(x_nbr^2,x_nbr)*vec(E_xsxf_xf),x_nbr,x_nbr^2),vec(E_uu));
E_inovzlagi(id_inov6_xf_u_u , id_z6_xf_xf_xf ) = kron(hxi*reshape(E_xf_xfxf_xf,x_nbr,x_nbr^3),E_uu(:));
Var_yi(stationary_vars,stationary_vars,i) = C(stationary_vars,:)*Var_zi*C(stationary_vars,:)' + C(stationary_vars,:)*Ai*tmp + D(stationary_vars,:)*E_inovzlagi*C(stationary_vars,:)';
end
if useautocorr
Corr_yi(stationary_vars,stationary_vars,i) = Var_yi(stationary_vars,stationary_vars,i)./sy;
end
Ai = Ai*A; %note that this is A^(i-1)
end
if compute_derivs
dVar_yi = NaN*ones(y_nbr,y_nbr,nlags,totparam_nbr);
for jpVi=1:totparam_nbr
Ai = eye(z_nbr); dAi_jpVi = zeros(z_nbr,z_nbr);
hxi = eye(x_nbr); dhxi_jpVi = zeros(x_nbr,x_nbr);
E_inovzlagi = E_inovzlag1; dE_inovzlagi_jpVi = dE_inovzlag1(:,:,jpVi);
Var_zi = Var_z; dVar_zi_jpVi = dVar_z(:,:,jpVi);
if order <= 2
dtmp_jpVi = dA(:,:,jpVi)*Var_z*C(stationary_vars,:)' + A*dVar_z(:,:,jpVi)*C(stationary_vars,:)' + A*Var_z*dC(stationary_vars,:,jpVi)'...
+ dB(:,:,jpVi)*Varinov*D(stationary_vars,:)' + B*dVarinov(:,:,jpVi)*D(stationary_vars,:)' + B*Varinov*dD(stationary_vars,:,jpVi)';
else
dtmp_jpVi = dA(:,:,jpVi)*E_inovzlag1'*D(stationary_vars,:)' + A*dE_inovzlag1(:,:,jpVi)'*D(stationary_vars,:)' + A*E_inovzlag1'*dD(stationary_vars,:,jpVi)'...
+ dB(:,:,jpVi)*Varinov*D(stationary_vars,:)' + B*dVarinov(:,:,jpVi)*D(stationary_vars,:)' + B*Varinov*dD(stationary_vars,:,jpVi)';
end
for i = 1:nlags
if order <= 2
dVar_yi(stationary_vars,stationary_vars,i,jpVi) = dC(stationary_vars,:,jpVi)*Ai*tmp + C(stationary_vars,:)*dAi_jpVi*tmp + C(stationary_vars,:)*Ai*dtmp_jpVi;
else
Var_zi = A*Var_zi + B*E_inovzlagi;
dVar_zi_jpVi = dA(:,:,jpVi)*Var_zi + A*dVar_zi_jpVi + dB(:,:,jpVi)*E_inovzlagi + + B*dE_inovzlagi_jpVi;
dhxi_jpVi = dhx(:,:,jpVi)*hxi + hx*dhxi_jpVi;
hxi = hx*hxi;
E_inovzlagi = zeros(inov_nbr,z_nbr);
E_inovzlagi(id_inov6_xf_u_u , id_z1_xf ) = kron(hxi*E_xfxf,E_uu(:));
E_inovzlagi(id_inov6_xf_u_u , id_z4_xrd ) = kron(hxi*E_xrdxf',E_uu(:));
E_inovzlagi(id_inov6_xf_u_u , id_z5_xf_xs ) = kron(hxi*reshape(commutation(x_nbr^2,x_nbr)*vec(E_xsxf_xf),x_nbr,x_nbr^2),vec(E_uu));
E_inovzlagi(id_inov6_xf_u_u , id_z6_xf_xf_xf ) = kron(hxi*reshape(E_xf_xfxf_xf,x_nbr,x_nbr^3),E_uu(:));
dE_inovzlagi_jpVi = zeros(inov_nbr,z_nbr);
dE_inovzlagi_jpVi(id_inov6_xf_u_u , id_z1_xf ) = kron(dhxi_jpVi*E_xfxf,E_uu(:)) + kron(hxi*dE_xfxf(:,:,jpVi),E_uu(:)) + kron(hxi*E_xfxf,vec(dE_uu(:,:,jpVi)));
dE_inovzlagi_jpVi(id_inov6_xf_u_u , id_z4_xrd ) = kron(dhxi_jpVi*E_xrdxf',E_uu(:)) + kron(hxi*dE_xrdxf(:,:,jpVi)',E_uu(:)) + kron(hxi*E_xrdxf',vec(dE_uu(:,:,jpVi)));
dE_inovzlagi_jpVi(id_inov6_xf_u_u , id_z5_xf_xs ) = kron(dhxi_jpVi*reshape(commutation(x_nbr^2,x_nbr)*vec(E_xsxf_xf),x_nbr,x_nbr^2),vec(E_uu)) + kron(hxi*reshape(commutation(x_nbr^2,x_nbr)*vec(dE_xsxf_xf(:,:,jpVi)),x_nbr,x_nbr^2),vec(E_uu)) + kron(hxi*reshape(commutation(x_nbr^2,x_nbr)*vec(E_xsxf_xf),x_nbr,x_nbr^2),vec(dE_uu(:,:,jpVi)));
dE_inovzlagi_jpVi(id_inov6_xf_u_u , id_z6_xf_xf_xf ) = kron(dhxi_jpVi*reshape(E_xf_xfxf_xf,x_nbr,x_nbr^3),E_uu(:)) + kron(hxi*reshape(dE_xf_xfxf_xf(:,:,jpVi),x_nbr,x_nbr^3),E_uu(:)) + kron(hxi*reshape(E_xf_xfxf_xf,x_nbr,x_nbr^3),vec(dE_uu(:,:,jpVi)));
dVar_yi(stationary_vars,stationary_vars,i,jpVi) = dC(stationary_vars,:,jpVi)*Var_zi*C(stationary_vars,:)' + C(stationary_vars,:)*dVar_zi_jpVi*C(stationary_vars,:)' + C(stationary_vars,:)*Var_zi*dC(stationary_vars,:,jpVi)'...
+ dC(stationary_vars,:,jpVi)*Ai*tmp + C(stationary_vars,:)*dAi_jpVi*tmp + C(stationary_vars,:)*Ai*dtmp_jpVi...
+ dD(stationary_vars,:,jpVi)*E_inovzlagi*C(stationary_vars,:)' + D(stationary_vars,:)*dE_inovzlagi_jpVi*C(stationary_vars,:)' + D(stationary_vars,:)*E_inovzlagi*dC(stationary_vars,:,jpVi)';
end
if useautocorr
dsy = 1/2./sdy.*diag(dVar_y(:,:,jpVi));
dsy = dsy(stationary_vars);
dsy = dsy*sdy'+sdy*dsy';
dCorr_yi(stationary_vars,stationary_vars,i,jpVi) = (dVar_yi(stationary_vars,stationary_vars,i,jpVi).*sy-dsy.*Var_yi(stationary_vars,stationary_vars,i))./(sy.*sy);
end
dAi_jpVi = dAi_jpVi*A + Ai*dA(:,:,jpVi);
Ai = Ai*A;
end
end
end
%% Mean of control variables
E_z = E_xf;
if order > 1
E_z = [E_xf;E_xs;E_xfxf(:)];
end
if order > 2
E_xf_xs = zeros(x_nbr^2,1);
E_xf_xf_xf = zeros(x_nbr^3,1);
E_z = [E_xf;E_xs;E_xfxf(:);E_xrd;E_xf_xs;E_xf_xf_xf];
end
E_y = Yss(indy,:) + C*E_z + d;
if compute_derivs
dE_y = zeros(y_nbr,totparam_nbr);
for jpE = 1:totparam_nbr
if order == 1
dE_z_jpE = dE_xf(:,jpE);
elseif order == 2
dE_z_jpE = [dE_xf(:,jpE);dE_xs(:,jpE);vec(dE_xfxf(:,:,jpE))];
elseif order == 3
dE_xf_xs_jpE = zeros(x_nbr^2,1);
dE_xf_xf_xf_jpE = zeros(x_nbr^3,1);
dE_z_jpE = [dE_xf(:,jpE);dE_xs(:,jpE);vec(dE_xfxf(:,:,jpE)); dE_xrd(:,jpE); dE_xf_xs_jpE; dE_xf_xf_xf_jpE];
end
dE_y(:,jpE) = dC(:,:,jpE)*E_z + C*dE_z_jpE + dd(:,jpE);
if jpE > (stderrparam_nbr+corrparam_nbr)
dE_y(:,jpE) = dE_y(:,jpE) + dYss(indy,jpE-stderrparam_nbr-corrparam_nbr); %add steady state
end
end
end
non_stationary_vars = setdiff(1:y_nbr,stationary_vars);
E_y(non_stationary_vars) = NaN;
if compute_derivs
dE_y(non_stationary_vars,:) = NaN;
end
%% Store into output structure
pruned_state_space.indx = indx;
pruned_state_space.indy = indy;
pruned_state_space.A = A;
pruned_state_space.B = B;
pruned_state_space.C = C;
pruned_state_space.D = D;
pruned_state_space.c = c;
pruned_state_space.d = d;
pruned_state_space.Varinov = Varinov;
pruned_state_space.Var_z = Var_z; %remove in future [@wmutschl]
pruned_state_space.Var_y = Var_y;
pruned_state_space.Var_yi = Var_yi;
if useautocorr
pruned_state_space.Corr_y = Corr_y;
pruned_state_space.Corr_yi = Corr_yi;
end
pruned_state_space.E_y = E_y;
if compute_derivs == 1
pruned_state_space.dA = dA;
pruned_state_space.dB = dB;
pruned_state_space.dC = dC;
pruned_state_space.dD = dD;
pruned_state_space.dc = dc;
pruned_state_space.dd = dd;
pruned_state_space.dVarinov = dVarinov;
pruned_state_space.dVar_y = dVar_y;
pruned_state_space.dVar_yi = dVar_yi;
if useautocorr
pruned_state_space.dCorr_y = dCorr_y;
pruned_state_space.dCorr_yi = dCorr_yi;
end
pruned_state_space.dE_y = dE_y;
end
|