File: rotated_slice_sampler.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (183 lines) | stat: -rw-r--r-- 5,569 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
function [theta, fxsim, neval] = rotated_slice_sampler(objective_function,theta,thetaprior,sampler_options,varargin)
% ----------------------------------------------------------
% ROTATED SLICE SAMPLER - with stepping out (Neal, 2003)
% extension of the orthogonal univarite sampler (slice_sampler.m)
% copyright M. Ratto (European Commission)
%
% objective_function(theta,varargin): -log of any unnormalized pdf
% with varargin (optional) a vector of auxiliaty parameters
% to be passed to f( ).
% ----------------------------------------------------------
%
% INPUTS
%   objective_function:       objective function (expressed as minus the log of a density)
%   theta:                    last value of theta
%   thetaprior:               bounds of the theta space
%   sampler_options:          posterior sampler options
%   varargin:                 optional input arguments to objective function
%
% OUTPUTS
%   theta:       new theta sample
%   fxsim:       value of the objective function for the new sample
%   neval:       number of function evaluations
%
% SPECIAL REQUIREMENTS
%   none

% Copyright (C) 2015-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

theta=theta(:);
npar = length(theta);
neval = zeros(npar,1);
W1=[];
if isfield(sampler_options,'WR')
    W1 = sampler_options.WR;
end
if ~isempty(sampler_options.mode)
    mm = sampler_options.mode;
    n = length(mm);
    for j=1:n
        distance(j)=sqrt(sum((theta-mm(j).m).^2));
    end
    [m, im] = min(distance);

    r=im;
    V1 = mm(r).m;
    jj=0;
    for j=1:n
        if j~=r
            jj=jj+1;
            tmp=mm(j).m-mm(r).m;
            %tmp=mm(j).m-theta;
            V1(:,jj)=tmp/norm(tmp);
        end
    end
    resul=randperm(n-1,n-1);
    V1 = V1(:,resul);

    %V1 = V1(:, randperm(n-1));
    %     %d = chol(mm(r).invhess);
    %     %V1 = transpose(feval(sampler_options.proposal_distribution, transpose(mm(r).m), d, npar));
    %
    %     V1=eye(npar);
    %     V1=V1(:,randperm(npar));
    %     for j=1:2,
    %         V1(:,j)=mm(r(j)).m-theta;
    %         V1(:,j)=V1(:,j)/norm(V1(:,j));
    %     end
    %     % Gram-Schmidt
    %     for j=2:npar,
    %         for k=1:j-1,
    %             V1(:,j)=V1(:,j)-V1(:,k)'*V1(:,j)*V1(:,k);
    %         end
    %         V1(:,j)=V1(:,j)/norm(V1(:,j));
    %     end
    %     for j=1:n,
    %         distance(j)=sqrt(sum((theta-mm(j).m).^2));
    %     end
    %     [m, im] = min(distance);
    %     if im==r,
    %         fxsim=[];
    %         return,
    %     else
    %         theta1=theta;
    %     end
else
    V1 = sampler_options.V1;
end
npar=size(V1,2);

for it=1:npar
    theta0 = theta;
    neval(it) = 0;
    xold  = 0;
    % XLB   = thetaprior(3);
    % XUB   = thetaprior(4);
    tb=sort([(thetaprior(:,1)-theta)./V1(:,it) (thetaprior(:,2)-theta)./V1(:,it)],2);
    XLB=max(tb(:,1));
    XUB=min(tb(:,2));
    if isempty(W1)
        W = (XUB-XLB); %*0.8;
    else
        W = W1(it);
    end

    % -------------------------------------------------------
    % 1. DRAW Z = ln[f(X0)] - EXP(1) where EXP(1)=-ln(U(0,1))
    %    THIS DEFINES THE SLICE S={x: z < ln(f(x))}
    % -------------------------------------------------------

    fxold = -feval(objective_function,theta,varargin{:});
    %I have to be sure that the rotation is for L,R or for Fxold, theta(it)
    neval(it) = neval(it) + 1;
    Z = fxold + log(rand(1,1));
    % -------------------------------------------------------------
    % 2. FIND I=(L,R) AROUND X0 THAT CONTAINS S AS MUCH AS POSSIBLE
    %    STEPPING-OUT PROCEDURE
    % -------------------------------------------------------------
    u = rand(1,1);
    L = max(XLB,xold-W*u);
    R = min(XUB,L+W);

    %[L R]=slice_rotation(L, R, alpha);
    while(L > XLB)
        xsim = L;
        theta = theta0+xsim*V1(:,it);
        fxl = -feval(objective_function,theta,varargin{:});
        neval(it) = neval(it) + 1;
        if (fxl <= Z)
            break
        end
        L = max(XLB,L-W);
    end
    while(R < XUB)
        xsim = R;
        theta = theta0+xsim*V1(:,it);
        fxr = -feval(objective_function,theta,varargin{:});
        neval(it) = neval(it) + 1;
        if (fxr <= Z)
            break
        end
        R = min(XUB,R+W);
    end
    % ------------------------------------------------------
    % 3. SAMPLING FROM THE SET A = (I INTERSECT S) = (LA,RA)
    % ------------------------------------------------------
    fxsim = Z-1;
    while (fxsim < Z)
        u = rand(1,1);
        xsim = L + u*(R - L);
        theta = theta0+xsim*V1(:,it);
        fxsim = -feval(objective_function,theta,varargin{:});
        neval(it) = neval(it) + 1;
        if (xsim > xold)
            R = xsim;
        else
            L = xsim;
        end
    end
end

% if ~isempty(sampler_options.mode),
%     dist1=sqrt(sum((theta-mm(r).m).^2));
%     if dist1>distance(r),
%         theta=theta1;
%         fxsim=[];
%     end
% end
end