1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
function [theta, fxsim, neval] = rotated_slice_sampler(objective_function,theta,thetaprior,sampler_options,varargin)
% ----------------------------------------------------------
% ROTATED SLICE SAMPLER - with stepping out (Neal, 2003)
% extension of the orthogonal univarite sampler (slice_sampler.m)
% copyright M. Ratto (European Commission)
%
% objective_function(theta,varargin): -log of any unnormalized pdf
% with varargin (optional) a vector of auxiliaty parameters
% to be passed to f( ).
% ----------------------------------------------------------
%
% INPUTS
% objective_function: objective function (expressed as minus the log of a density)
% theta: last value of theta
% thetaprior: bounds of the theta space
% sampler_options: posterior sampler options
% varargin: optional input arguments to objective function
%
% OUTPUTS
% theta: new theta sample
% fxsim: value of the objective function for the new sample
% neval: number of function evaluations
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2015-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
theta=theta(:);
npar = length(theta);
neval = zeros(npar,1);
W1=[];
if isfield(sampler_options,'WR')
W1 = sampler_options.WR;
end
if ~isempty(sampler_options.mode)
mm = sampler_options.mode;
n = length(mm);
for j=1:n
distance(j)=sqrt(sum((theta-mm(j).m).^2));
end
[m, im] = min(distance);
r=im;
V1 = mm(r).m;
jj=0;
for j=1:n
if j~=r
jj=jj+1;
tmp=mm(j).m-mm(r).m;
%tmp=mm(j).m-theta;
V1(:,jj)=tmp/norm(tmp);
end
end
resul=randperm(n-1,n-1);
V1 = V1(:,resul);
%V1 = V1(:, randperm(n-1));
% %d = chol(mm(r).invhess);
% %V1 = transpose(feval(sampler_options.proposal_distribution, transpose(mm(r).m), d, npar));
%
% V1=eye(npar);
% V1=V1(:,randperm(npar));
% for j=1:2,
% V1(:,j)=mm(r(j)).m-theta;
% V1(:,j)=V1(:,j)/norm(V1(:,j));
% end
% % Gram-Schmidt
% for j=2:npar,
% for k=1:j-1,
% V1(:,j)=V1(:,j)-V1(:,k)'*V1(:,j)*V1(:,k);
% end
% V1(:,j)=V1(:,j)/norm(V1(:,j));
% end
% for j=1:n,
% distance(j)=sqrt(sum((theta-mm(j).m).^2));
% end
% [m, im] = min(distance);
% if im==r,
% fxsim=[];
% return,
% else
% theta1=theta;
% end
else
V1 = sampler_options.V1;
end
npar=size(V1,2);
for it=1:npar
theta0 = theta;
neval(it) = 0;
xold = 0;
% XLB = thetaprior(3);
% XUB = thetaprior(4);
tb=sort([(thetaprior(:,1)-theta)./V1(:,it) (thetaprior(:,2)-theta)./V1(:,it)],2);
XLB=max(tb(:,1));
XUB=min(tb(:,2));
if isempty(W1)
W = (XUB-XLB); %*0.8;
else
W = W1(it);
end
% -------------------------------------------------------
% 1. DRAW Z = ln[f(X0)] - EXP(1) where EXP(1)=-ln(U(0,1))
% THIS DEFINES THE SLICE S={x: z < ln(f(x))}
% -------------------------------------------------------
fxold = -feval(objective_function,theta,varargin{:});
%I have to be sure that the rotation is for L,R or for Fxold, theta(it)
neval(it) = neval(it) + 1;
Z = fxold + log(rand(1,1));
% -------------------------------------------------------------
% 2. FIND I=(L,R) AROUND X0 THAT CONTAINS S AS MUCH AS POSSIBLE
% STEPPING-OUT PROCEDURE
% -------------------------------------------------------------
u = rand(1,1);
L = max(XLB,xold-W*u);
R = min(XUB,L+W);
%[L R]=slice_rotation(L, R, alpha);
while(L > XLB)
xsim = L;
theta = theta0+xsim*V1(:,it);
fxl = -feval(objective_function,theta,varargin{:});
neval(it) = neval(it) + 1;
if (fxl <= Z)
break
end
L = max(XLB,L-W);
end
while(R < XUB)
xsim = R;
theta = theta0+xsim*V1(:,it);
fxr = -feval(objective_function,theta,varargin{:});
neval(it) = neval(it) + 1;
if (fxr <= Z)
break
end
R = min(XUB,R+W);
end
% ------------------------------------------------------
% 3. SAMPLING FROM THE SET A = (I INTERSECT S) = (LA,RA)
% ------------------------------------------------------
fxsim = Z-1;
while (fxsim < Z)
u = rand(1,1);
xsim = L + u*(R - L);
theta = theta0+xsim*V1(:,it);
fxsim = -feval(objective_function,theta,varargin{:});
neval(it) = neval(it) + 1;
if (xsim > xold)
R = xsim;
else
L = xsim;
end
end
end
% if ~isempty(sampler_options.mode),
% dist1=sqrt(sum((theta-mm(r).m).^2));
% if dist1>distance(r),
% theta=theta1;
% fxsim=[];
% end
% end
end
|