File: set_all_parameters.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (140 lines) | stat: -rw-r--r-- 4,348 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
function M = set_all_parameters(xparam1,estim_params,M)

%@info:
%! @deftypefn {Function File} {@var{M} =} dseries (@var{xparams1},@var{estim_params},@var{M})
%! @anchor{set_all_parameters}
%! @sp 1
%! Update parameter values (deep parameters and covariance matrices).
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item xparam1
%! N*1 vector of doubles, the values of the N estimated parameters.
%! @item estim_params
%! Dynare structure describing the estimated parameters.
%! @item M
%! Dynare structure describing the model.
%! @end table
%! @sp 1
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item M
%! Dynare structure describing the model, with updated parameters and covariances matrices.
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @sp 1
%! @ref{DsgeSmoother}, @ref{dynare_estimation_1}, @ref{@@gsa/filt_mc_}, @ref{identification_analysis}, @ref{PosteriorFilterSmootherAndForecast}, @ref{prior_posterior_statistics_core}, @ref{prior_sampler}
%! @sp 2
%! @strong{This function calls:}
%! @sp 2
%! @end deftypefn
%@eod:

% Copyright (C) 2003-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

nvx = estim_params.nvx;
ncx = estim_params.ncx;
nvn = estim_params.nvn;
ncn = estim_params.ncn;
np = estim_params.np;
Sigma_e = M.Sigma_e;
Correlation_matrix = M.Correlation_matrix;
H = M.H;
Correlation_matrix_ME = M.Correlation_matrix_ME;
% setting shocks variance on the diagonal of Covariance matrix; used later
% for updating covariances
if nvx
    var_exo = estim_params.var_exo;
    for i=1:nvx
        k =var_exo(i,1);
        Sigma_e(k,k) = xparam1(i)^2;
    end
end
% update offset
offset = nvx;

% setting measument error variance; on the diagonal of Covariance matrix; used later
% for updating covariances
if nvn
    for i=1:nvn
        k = estim_params.nvn_observable_correspondence(i,1);
        H(k,k) = xparam1(i+offset)^2;
    end
end

% update offset
offset = nvx+nvn;

% setting shocks covariances
if ncx
    corrx = estim_params.corrx;
    for i=1:ncx
        k1 = corrx(i,1);
        k2 = corrx(i,2);
        Correlation_matrix(k1,k2) = xparam1(i+offset);
        Correlation_matrix(k2,k1) = Correlation_matrix(k1,k2);
    end
end
%build covariance matrix from correlation matrix and variances already on
%diagonal
Sigma_e = diag(sqrt(diag(Sigma_e)))*Correlation_matrix*diag(sqrt(diag(Sigma_e)));
%if calibrated covariances, set them now to their stored value
if isfield(estim_params,'calibrated_covariances')
    Sigma_e(estim_params.calibrated_covariances.position)=estim_params.calibrated_covariances.cov_value;
end
% update offset
offset = nvx+nvn+ncx;

% setting measurement error covariances
if ncn
    corrn_observable_correspondence = estim_params.corrn_observable_correspondence;
    for i=1:ncn
        k1 = corrn_observable_correspondence(i,1);
        k2 = corrn_observable_correspondence(i,2);
        Correlation_matrix_ME(k1,k2) = xparam1(i+offset);
        Correlation_matrix_ME(k2,k1) = Correlation_matrix_ME(k1,k2);
    end
end
%build covariance matrix from correlation matrix and variances already on
%diagonal
H = diag(sqrt(diag(H)))*Correlation_matrix_ME*diag(sqrt(diag(H)));
%if calibrated covariances, set them now to their stored value
if isfield(estim_params,'calibrated_covariances_ME')
    H(estim_params.calibrated_covariances_ME.position)=estim_params.calibrated_covariances_ME.cov_value;
end

% update offset
offset = nvx+ncx+nvn+ncn;
% setting structural parameters
%
if np
    M.params(estim_params.param_vals(:,1)) = xparam1(offset+1:end);
end

% updating matrices in M
if nvx || ncx
    M.Sigma_e = Sigma_e;
    M.Correlation_matrix=Correlation_matrix;
end
if nvn || ncn
    M.H = H;
    M.Correlation_matrix_ME=Correlation_matrix_ME;
end