File: shock_decomposition.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (145 lines) | stat: -rw-r--r-- 4,952 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
function [oo_,M_] = shock_decomposition(M_,oo_,options_,varlist,bayestopt_,estim_params_)
% function z = shock_decomposition(M_,oo_,options_,varlist)
% Computes shocks contribution to a simulated trajectory. The field set is
% oo_.shock_decomposition. It is a n_var by nshock+2 by nperiods array. The
% first nshock columns store the respective shock contributions, column n+1
% stores the role of the initial conditions, while column n+2 stores the
% value of the smoothed variables.  Both the variables and shocks are stored
% in the order of declaration, i.e. M_.endo_names and M_.exo_names, respectively.
%
% INPUTS
%    M_:          [structure]  Definition of the model
%    oo_:         [structure]  Storage of results
%    options_:    [structure]  Options
%    varlist:     [char]       List of variables
%    bayestopt_:  [structure]  describing the priors
%    estim_params_: [structure] characterizing parameters to be estimated
%
% OUTPUTS
%    oo_:         [structure]  Storage of results
%    M_:          [structure]  Definition of the model; makes sure that
%                               M_.params is correctly updated
%
% SPECIAL REQUIREMENTS
%    none

% Copyright (C) 2009-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

% indices of endogenous variables

if isfield(oo_,'shock_decomposition_info') && isfield(oo_.shock_decomposition_info,'i_var')
    if isfield (oo_,'realtime_conditional_shock_decomposition') ...
            || isfield (oo_,'realtime_forecast_shock_decomposition') ...
            || isfield (oo_,'realtime_shock_decomposition') ...
            || isfield (oo_,'conditional_shock_decomposition') ...
            || isfield (oo_,'initval_decomposition')
        error('shock_decomposition::squeezed shock decompositions are already stored in oo_')
    end
end
with_epilogue = options_.shock_decomp.with_epilogue;

if isempty(varlist)
    varlist = M_.endo_names(1:M_.orig_endo_nbr);
end

[~, ~,index_uniques] = varlist_indices(varlist, M_.endo_names);
varlist = varlist(index_uniques);

% number of variables
endo_nbr = M_.endo_nbr;

% number of shocks
nshocks = M_.exo_nbr;

% parameter set
parameter_set = options_.parameter_set;
if isempty(parameter_set)
    if isfield(oo_,'posterior_mean')
        parameter_set = 'posterior_mean';
    elseif isfield(oo_,'mle_mode')
        parameter_set = 'mle_mode';
    elseif isfield(oo_,'posterior')
        parameter_set = 'posterior_mode';
    else
        error(['shock_decomposition: option parameter_set is not specified ' ...
               'and posterior mode is not available'])
    end
end


options_.selected_variables_only = 0; %make sure all variables are stored
options_.plot_priors=0;
[oo_, M_, ~, ~, Smoothed_Variables_deviation_from_mean] = evaluate_smoother(parameter_set, varlist, M_, oo_, options_, bayestopt_, estim_params_);

% reduced form
dr = oo_.dr;

% data reordering
order_var = dr.order_var;
inv_order_var = dr.inv_order_var;


% coefficients
A = dr.ghx;
B = dr.ghu;

% initialization
gend = size(oo_.SmoothedShocks.(M_.exo_names{1}),1);
epsilon=NaN(nshocks,gend);
for i=1:nshocks
    epsilon(i,:) = oo_.SmoothedShocks.(M_.exo_names{i});
end

z = zeros(endo_nbr,nshocks+2,gend);

z(:,end,:) = Smoothed_Variables_deviation_from_mean;

maximum_lag = M_.maximum_lag;

k2 = dr.kstate(find(dr.kstate(:,2) <= maximum_lag+1),[1 2]);
i_state = order_var(k2(:,1))+(min(i,maximum_lag)+1-k2(:,2))*M_.endo_nbr;
for i=1:gend
    if i > 1 && i <= maximum_lag+1
        lags = min(i-1,maximum_lag):-1:1;
    end

    if i > 1
        tempx = permute(z(:,1:nshocks,lags),[1 3 2]);
        m = min(i-1,maximum_lag);
        tempx = [reshape(tempx,endo_nbr*m,nshocks); zeros(endo_nbr*(maximum_lag-i+1),nshocks)];
        z(:,1:nshocks,i) = A(inv_order_var,:)*tempx(i_state,:);
        lags = lags+1;
    end

    if i > options_.shock_decomp.init_state
        z(:,1:nshocks,i) = z(:,1:nshocks,i) + B(inv_order_var,:).*repmat(epsilon(:,i)',endo_nbr,1);
    end
    z(:,nshocks+1,i) = z(:,nshocks+2,i) - sum(z(:,1:nshocks,i),2);
end

if with_epilogue
    [z, oo_.shock_decomposition_info.epilogue_steady_state] = epilogue_shock_decomposition(z, M_, oo_);
end

oo_.shock_decomposition = z;

if ~options_.no_graph.shock_decomposition
    oo_ = plot_shock_decomposition(M_,oo_,options_,varlist);
end

oo_.gui.ran_shock_decomposition = true;