1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
function [oo_,M_] = shock_decomposition(M_,oo_,options_,varlist,bayestopt_,estim_params_)
% function z = shock_decomposition(M_,oo_,options_,varlist)
% Computes shocks contribution to a simulated trajectory. The field set is
% oo_.shock_decomposition. It is a n_var by nshock+2 by nperiods array. The
% first nshock columns store the respective shock contributions, column n+1
% stores the role of the initial conditions, while column n+2 stores the
% value of the smoothed variables. Both the variables and shocks are stored
% in the order of declaration, i.e. M_.endo_names and M_.exo_names, respectively.
%
% INPUTS
% M_: [structure] Definition of the model
% oo_: [structure] Storage of results
% options_: [structure] Options
% varlist: [char] List of variables
% bayestopt_: [structure] describing the priors
% estim_params_: [structure] characterizing parameters to be estimated
%
% OUTPUTS
% oo_: [structure] Storage of results
% M_: [structure] Definition of the model; makes sure that
% M_.params is correctly updated
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2009-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% indices of endogenous variables
if isfield(oo_,'shock_decomposition_info') && isfield(oo_.shock_decomposition_info,'i_var')
if isfield (oo_,'realtime_conditional_shock_decomposition') ...
|| isfield (oo_,'realtime_forecast_shock_decomposition') ...
|| isfield (oo_,'realtime_shock_decomposition') ...
|| isfield (oo_,'conditional_shock_decomposition') ...
|| isfield (oo_,'initval_decomposition')
error('shock_decomposition::squeezed shock decompositions are already stored in oo_')
end
end
with_epilogue = options_.shock_decomp.with_epilogue;
if isempty(varlist)
varlist = M_.endo_names(1:M_.orig_endo_nbr);
end
[~, ~,index_uniques] = varlist_indices(varlist, M_.endo_names);
varlist = varlist(index_uniques);
% number of variables
endo_nbr = M_.endo_nbr;
% number of shocks
nshocks = M_.exo_nbr;
% parameter set
parameter_set = options_.parameter_set;
if isempty(parameter_set)
if isfield(oo_,'posterior_mean')
parameter_set = 'posterior_mean';
elseif isfield(oo_,'mle_mode')
parameter_set = 'mle_mode';
elseif isfield(oo_,'posterior')
parameter_set = 'posterior_mode';
else
error(['shock_decomposition: option parameter_set is not specified ' ...
'and posterior mode is not available'])
end
end
options_.selected_variables_only = 0; %make sure all variables are stored
options_.plot_priors=0;
[oo_, M_, ~, ~, Smoothed_Variables_deviation_from_mean] = evaluate_smoother(parameter_set, varlist, M_, oo_, options_, bayestopt_, estim_params_);
% reduced form
dr = oo_.dr;
% data reordering
order_var = dr.order_var;
inv_order_var = dr.inv_order_var;
% coefficients
A = dr.ghx;
B = dr.ghu;
% initialization
gend = size(oo_.SmoothedShocks.(M_.exo_names{1}),1);
epsilon=NaN(nshocks,gend);
for i=1:nshocks
epsilon(i,:) = oo_.SmoothedShocks.(M_.exo_names{i});
end
z = zeros(endo_nbr,nshocks+2,gend);
z(:,end,:) = Smoothed_Variables_deviation_from_mean;
maximum_lag = M_.maximum_lag;
k2 = dr.kstate(find(dr.kstate(:,2) <= maximum_lag+1),[1 2]);
i_state = order_var(k2(:,1))+(min(i,maximum_lag)+1-k2(:,2))*M_.endo_nbr;
for i=1:gend
if i > 1 && i <= maximum_lag+1
lags = min(i-1,maximum_lag):-1:1;
end
if i > 1
tempx = permute(z(:,1:nshocks,lags),[1 3 2]);
m = min(i-1,maximum_lag);
tempx = [reshape(tempx,endo_nbr*m,nshocks); zeros(endo_nbr*(maximum_lag-i+1),nshocks)];
z(:,1:nshocks,i) = A(inv_order_var,:)*tempx(i_state,:);
lags = lags+1;
end
if i > options_.shock_decomp.init_state
z(:,1:nshocks,i) = z(:,1:nshocks,i) + B(inv_order_var,:).*repmat(epsilon(:,i)',endo_nbr,1);
end
z(:,nshocks+1,i) = z(:,nshocks+2,i) - sum(z(:,1:nshocks,i),2);
end
if with_epilogue
[z, oo_.shock_decomposition_info.epilogue_steady_state] = epilogue_shock_decomposition(z, M_, oo_);
end
oo_.shock_decomposition = z;
if ~options_.no_graph.shock_decomposition
oo_ = plot_shock_decomposition(M_,oo_,options_,varlist);
end
oo_.gui.ran_shock_decomposition = true;
|