File: simult_.m

package info (click to toggle)
dynare 4.6.3-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 74,896 kB
  • sloc: cpp: 98,057; ansic: 28,929; pascal: 13,844; sh: 5,947; objc: 4,236; yacc: 4,215; makefile: 2,583; lex: 1,534; fortran: 877; python: 647; ruby: 291; lisp: 152; xml: 22
file content (192 lines) | stat: -rw-r--r-- 8,309 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
function y_=simult_(M_,options_,y0,dr,ex_,iorder)
% Simulates the model using a perturbation approach, given the path for the exogenous variables and the
% decision rules.
%
% INPUTS
%    M_       [struct]   model
%    options_ [struct]   options
%    y0       [double]   n*1 vector, initial value (n is the number of declared endogenous variables plus the number
%                        of auxilliary variables for lags and leads); must be in declaration order, i.e. as in M_.endo_names
%    dr       [struct]   matlab's structure where the reduced form solution of the model is stored.
%    ex_      [double]   T*q matrix of innovations.
%    iorder   [integer]  order of the taylor approximation.
%
% OUTPUTS
%    y_       [double]   n*(T+1) time series for the endogenous variables.
%
% SPECIAL REQUIREMENTS
%    none

% Copyright (C) 2001-2019 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

iter = size(ex_,1);
endo_nbr = M_.endo_nbr;
exo_nbr = M_.exo_nbr;

y_ = zeros(size(y0,1),iter+M_.maximum_lag);
y_(:,1) = y0;

if options_.loglinear && ~options_.logged_steady_state
    dr.ys=log(dr.ys);
end

if ~options_.k_order_solver || (options_.k_order_solver && options_.pruning) %if k_order_pert is not used or if we do not use Dynare++ with k_order_pert
    if iorder==1
        y_(:,1) = y_(:,1)-dr.ys;
    end
end

if options_.k_order_solver && ~options_.pruning % Call dynare++ routines.
    ex_ = [zeros(M_.maximum_lag,M_.exo_nbr); ex_];
    [err, y_] = dynare_simul_(options_.order,M_.nstatic,M_.npred,M_.nboth,M_.nfwrd,exo_nbr, ...
                              y_(dr.order_var,1),ex_',M_.Sigma_e,options_.DynareRandomStreams.seed, ...
                              dr.ys(dr.order_var),dr);
    mexErrCheck('dynare_simul_', err);
    y_(dr.order_var,:) = y_;
else
    if options_.block
        if M_.maximum_lag > 0
            k2 = dr.state_var;
        else
            k2 = [];
        end
        order_var = 1:endo_nbr;
        dr.order_var = order_var;
    else
        k2 = dr.kstate(find(dr.kstate(:,2) <= M_.maximum_lag+1),[1 2]);
        k2 = k2(:,1)+(M_.maximum_lag+1-k2(:,2))*endo_nbr;
        order_var = dr.order_var;
    end

    switch iorder
      case 1
        if isempty(dr.ghu)% For (linearized) deterministic models.
            for i = 2:iter+M_.maximum_lag
                yhat = y_(order_var(k2),i-1);
                y_(order_var,i) = dr.ghx*yhat;
            end
        elseif isempty(dr.ghx)% For (linearized) purely forward variables (no state variables).
            y_(dr.order_var,:) = dr.ghu*transpose(ex_);
        else
            epsilon = dr.ghu*transpose(ex_);
            for i = 2:iter+M_.maximum_lag
                yhat = y_(order_var(k2),i-1);
                y_(order_var,i) = dr.ghx*yhat + epsilon(:,i-1);
            end
        end
        y_ = bsxfun(@plus,y_,dr.ys);
      case 2
        constant = dr.ys(order_var)+.5*dr.ghs2;
        if options_.pruning
            y__ = y0;
            for i = 2:iter+M_.maximum_lag
                yhat1 = y__(order_var(k2))-dr.ys(order_var(k2));
                yhat2 = y_(order_var(k2),i-1)-dr.ys(order_var(k2));
                epsilon = ex_(i-1,:)';
                [abcOut1, err] = A_times_B_kronecker_C(.5*dr.ghxx,yhat1);
                mexErrCheck('A_times_B_kronecker_C', err);
                [abcOut2, err] = A_times_B_kronecker_C(.5*dr.ghuu,epsilon);
                mexErrCheck('A_times_B_kronecker_C', err);
                [abcOut3, err] = A_times_B_kronecker_C(dr.ghxu,yhat1,epsilon);
                mexErrCheck('A_times_B_kronecker_C', err);
                y_(order_var,i) = constant + dr.ghx*yhat2 + dr.ghu*epsilon ...
                    + abcOut1 + abcOut2 + abcOut3;
                y__(order_var) = dr.ys(order_var) + dr.ghx*yhat1 + dr.ghu*epsilon;
            end
        else
            for i = 2:iter+M_.maximum_lag
                yhat = y_(order_var(k2),i-1)-dr.ys(order_var(k2));
                epsilon = ex_(i-1,:)';
                [abcOut1, err] = A_times_B_kronecker_C(.5*dr.ghxx,yhat);
                mexErrCheck('A_times_B_kronecker_C', err);
                [abcOut2, err] = A_times_B_kronecker_C(.5*dr.ghuu,epsilon);
                mexErrCheck('A_times_B_kronecker_C', err);
                [abcOut3, err] = A_times_B_kronecker_C(dr.ghxu,yhat,epsilon);
                mexErrCheck('A_times_B_kronecker_C', err);
                y_(dr.order_var,i) = constant + dr.ghx*yhat + dr.ghu*epsilon ...
                    + abcOut1 + abcOut2 + abcOut3;
            end
        end
      case 3
        % only with pruning
        % the third moments of the shocks are assumed null. We don't have
        % an interface for specifying them
        ghx = dr.ghx;
        ghu = dr.ghu;
        ghxx = dr.ghxx;
        ghxu = dr.ghxu;
        ghuu = dr.ghuu;
        ghs2 = dr.ghs2;
        ghxxx = dr.ghxxx;
        ghxxu = dr.ghxxu;
        ghxuu = dr.ghxuu;
        ghuuu = dr.ghuuu;
        ghxss = dr.ghxss;
        ghuss = dr.ghuss;
        nspred = M_.nspred;
        ipred = M_.nstatic+(1:nspred);
        %construction follows Andreasen et al (2013), Technical
        %Appendix, Formulas (65) and (66)
        %split into first, second, and third order terms
        yhat1 = y0(order_var(k2))-dr.ys(order_var(k2));
        yhat2 = zeros(nspred,1);
        yhat3 = zeros(nspred,1);
        for i=2:iter+M_.maximum_lag
            u = ex_(i-1,:)';
            %construct terms of order 2 from second order part, based
            %on linear component yhat1
            [gyy, err] = A_times_B_kronecker_C(ghxx,yhat1);
            mexErrCheck('A_times_B_kronecker_C', err);
            [guu, err] = A_times_B_kronecker_C(ghuu,u);
            mexErrCheck('A_times_B_kronecker_C', err);
            [gyu, err] = A_times_B_kronecker_C(ghxu,yhat1,u);
            mexErrCheck('A_times_B_kronecker_C', err);
            %construct terms of order 3 from second order part, based
            %on order 2 component yhat2
            [gyy12, err] = A_times_B_kronecker_C(ghxx,yhat1,yhat2);
            mexErrCheck('A_times_B_kronecker_C', err);
            [gy2u, err] = A_times_B_kronecker_C(ghxu,yhat2,u);
            mexErrCheck('A_times_B_kronecker_C', err);
            %construct terms of order 3, all based on first order component yhat1
            y2a = kron(yhat1,yhat1);
            [gyyy, err] = A_times_B_kronecker_C(ghxxx,y2a,yhat1);
            mexErrCheck('A_times_B_kronecker_C', err);
            u2a = kron(u,u);
            [guuu, err] = A_times_B_kronecker_C(ghuuu,u2a,u);
            mexErrCheck('A_times_B_kronecker_C', err);
            yu = kron(yhat1,u);
            [gyyu, err] = A_times_B_kronecker_C(ghxxu,yhat1,yu);
            mexErrCheck('A_times_B_kronecker_C', err);
            [gyuu, err] = A_times_B_kronecker_C(ghxuu,yu,u);
            mexErrCheck('A_times_B_kronecker_C', err);
            %add all terms of order 3, linear component based on third
            %order yhat3
            yhat3 = ghx*yhat3 +gyy12 ... % prefactor is 1/2*2=1, see (65) Appendix Andreasen et al.
                    + gy2u ... % prefactor is 1/2*2=1, see (65) Appendix Andreasen et al.
                    + 1/6*(gyyy + guuu + 3*(gyyu + gyuu +  ghxss*yhat1 + ghuss*u)); %note: s is treated as variable, thus xss and uss are third order
            yhat2 = ghx*yhat2 + 1/2*(gyy + guu + 2*gyu + ghs2);
            yhat1 = ghx*yhat1 + ghu*u;
            y_(order_var,i) = dr.ys(order_var)+yhat1 + yhat2 + yhat3; %combine terms again
            yhat1 = yhat1(ipred);
            yhat2 = yhat2(ipred);
            yhat3 = yhat3(ipred);
        end
      otherwise
          error(['pruning not available for order = ' int2str(options_.order)])
    end
end