1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
function [x,check,info] = trust_region(fcn,x0,j1,j2,jacobian_flag,gstep,tolf,tolx,maxiter,debug,varargin)
% Solves systems of non linear equations of several variables, using a
% trust-region method.
%
% INPUTS
% fcn: name of the function to be solved
% x0: guess values
% j1: equations index for which the model is solved
% j2: unknown variables index
% jacobian_flag=true: jacobian given by the 'func' function
% jacobian_flag=false: jacobian obtained numerically
% gstep increment multiplier in numercial derivative
% computation
% tolf tolerance for residuals
% tolx tolerance for solution variation
% maxiter maximum number of iterations
% debug debug flag
% varargin: list of arguments following bad_cond_flag
%
% OUTPUTS
% x: results
% check=1: the model can not be solved
% info: detailed exitcode
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2008-2012 VZLU Prague, a.s.
% Copyright (C) 2014-2019 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
%
% Initial author: Jaroslav Hajek <highegg@gmail.com>, for GNU Octave
if (ischar (fcn))
fcn = str2func (fcn);
end
n = length(j1);
% These defaults are rather stringent. I think that normally, user
% prefers accuracy to performance.
macheps = eps (class (x0));
niter = 1;
x = x0;
info = 0;
% Initial evaluation.
% Handle arbitrary shapes of x and f and remember them.
fvec = fcn (x, varargin{:});
fvec = fvec(j1);
fn = norm (fvec);
recompute_jacobian = true;
% Outer loop.
while (niter < maxiter && ~info)
% Calculate Jacobian (possibly via FD).
if recompute_jacobian
if jacobian_flag
[~, fjac] = fcn (x, varargin{:});
fjac = fjac(j1,j2);
else
dh = max(abs(x(j2)),gstep(1)*ones(n,1))*eps^(1/3);
for j = 1:n
xdh = x ;
xdh(j2(j)) = xdh(j2(j))+dh(j) ;
t = fcn(xdh,varargin{:});
fjac(:,j) = (t(j1) - fvec)./dh(j) ;
end
end
recompute_jacobian = false;
end
% Get column norms, use them as scaling factors.
jcn = sqrt(sum(fjac.*fjac))';
if (niter == 1)
dg = jcn;
dg(dg == 0) = 1;
else
% Rescale adaptively.
% FIXME: the original minpack used the following rescaling strategy:
% dg = max (dg, jcn);
% but it seems not good if we start with a bad guess yielding Jacobian
% columns with large norms that later decrease, because the corresponding
% variable will still be overscaled. So instead, we only give the old
% scaling a small momentum, but do not honor it.
dg = max (0.1*dg, jcn);
end
if (niter == 1)
xn = norm (dg .* x(j2));
% FIXME: something better?
delta = max (xn, 1);
end
% Get trust-region model (dogleg) minimizer.
s = - dogleg (fjac, fvec, dg, delta);
w = fvec + fjac * s;
sn = norm (dg .* s);
if (niter == 1)
delta = min (delta, sn);
end
x2 = x;
x2(j2) = x2(j2) + s;
fvec1 = fcn (x2, varargin{:});
fvec1 = fvec1(j1);
fn1 = norm (fvec1);
if (fn1 < fn)
% Scaled actual reduction.
actred = 1 - (fn1/fn)^2;
else
actred = -1;
end
% Scaled predicted reduction, and ratio.
t = norm (w);
if (t < fn)
prered = 1 - (t/fn)^2;
ratio = actred / prered;
else
prered = 0;
ratio = 0;
end
% Update delta.
if (ratio < 0.1)
delta = 0.5*delta;
if (delta <= 1e1*macheps*xn)
% Trust region became uselessly small.
if (fn1 <= tolf)
info = 1;
else
info = -3;
end
break
end
elseif (abs (1-ratio) <= 0.1)
delta = 1.4142*sn;
elseif (ratio >= 0.5)
delta = max (delta, 1.4142*sn);
end
if (ratio >= 1e-4)
% Successful iteration.
x(j2) = x(j2) + s;
xn = norm (dg .* x(j2));
fvec = fvec1;
fn = fn1;
recompute_jacobian = true;
end
niter = niter + 1;
% Tests for termination condition
if (fn <= tolf)
info = 1;
end
end
if info==1
check = 0;
else
check = 1;
end
end
% Solve the double dogleg trust-region least-squares problem:
% Minimize norm(r*x-b) subject to the constraint norm(d.*x) <= delta,
% x being a convex combination of the gauss-newton and scaled gradient.
% TODO: error checks
% TODO: handle singularity, or leave it up to mldivide?
function x = dogleg (r, b, d, delta)
% Get Gauss-Newton direction.
x = r \ b;
xn = norm (d .* x);
if (xn > delta)
% GN is too big, get scaled gradient.
s = (r' * b) ./ d;
sn = norm (s);
if (sn > 0)
% Normalize and rescale.
s = (s / sn) ./ d;
% Get the line minimizer in s direction.
tn = norm (r*s);
snm = (sn / tn) / tn;
if (snm < delta)
% Get the dogleg path minimizer.
bn = norm (b);
dxn = delta/xn; snmd = snm/delta;
t = (bn/sn) * (bn/xn) * snmd;
t = t - dxn * snmd^2 + sqrt ((t-dxn)^2 + (1-dxn^2)*(1-snmd^2));
alpha = dxn*(1-snmd^2) / t;
else
alpha = 0;
end
else
alpha = delta / xn;
snm = 0;
end
% Form the appropriate convex combination.
x = alpha * x + ((1-alpha) * min (snm, delta)) * s;
end
end
|