File: fidcnderr.m

package info (click to toggle)
dynare 5.3-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 77,852 kB
  • sloc: cpp: 94,481; ansic: 28,551; pascal: 14,532; sh: 5,453; objc: 4,671; yacc: 4,442; makefile: 2,923; lex: 1,612; python: 677; ruby: 469; lisp: 156; xml: 22
file content (265 lines) | stat: -rw-r--r-- 10,928 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
function [yhat,Estr,rcon,Rcon,u,v,d] = fidcnderr(valuecon,stepcon,varcon,nconstr,...
               nstepsm,nvar,lags,phil,eq_iden,Aband,Sband,yforeml,imf3sml,Bhml,...
               yfore_h,imf3s_h,Bh_h,Cms,TLindx,TLnumber,nCms,eq_Cms)
%function [yhat,Estr,rcon,Rcon,u,v,d] = fidcnderr(valuecon,stepcon,varcon,nconstr,...
%               nstepsm,nvar,lags,phil,eq_iden,Aband,Sband,yforeml,imf3sml,Bhml,...
%               yfore_h,imf3s_h,Bh_h,Cms,TLindx,TLnumber,nCms,eq_Cms)
% To be done (8/25/98): (1) yforeml, imf3sml, and Bhml should not be there.
%                        (2) MS stuff need to be generalized.
%                        (3) perhaps, imf3s_h needs to be re-examined.
% Conditional forecasting in the identified model with one draw for error bands
%
% valuecon:  vector of values conditioned
% stepcon:   sequence (cell) of steps conditioned; if length(stepcon{i}) > 1, the condition
%               is then an arithmetic average of log(y) over the stepcon{i} period.
% varcon:    vector of variables conditioned
% nconstr:   number of constraints
% nstepsm:   maximum number of steps in all constraints
% nvar:   number of variables in the BVAR model
% lags:   number of lags in the BVAR model
% phil:  the 1-by-(nvar*lags+1) data matrix where k=nvar*lags+1
%                 (last period plus lags before the beginning of forecast)
% eq_iden: identified equation or shock (in terms of number). If equ_iden=[], then
%          'fidencond' is, similar to RATS, to compute forecasts with *all* shocks.
% Sband:  1: generate error bands from random shocks E; 0: no random shocks
% yfore:  uncondtional forecasts: forep-by-nvar
% imf3s: 3-dimensional impulse responses matrix:
%                               impsteps-by-nvar shocks-by-nvar responses
% Bh:  reduced-form parameter matrix: k-by-nvar, y(t) = X(t)*Bh+e(t)
%                    where X(t) is k-by-nvar and y(t) is 1-by-nvar
% ------
% yhat:  conditional forecasts: forep-by-nvar
% Estr:  backed-out structural shocks (from N(0,1))
% rcon:  vector - the difference between valuecon and log(yfore) (unconditional forecasts)
% Rcon:  k-by-q (q constranits and k=nvar*max(nsteps)) so that
%                        Rcon'*e = rcon where e is k-by-1
% [u,d,v]:  svd(Rcon,0)
%
%% See Zha's note "Forecast (1)" p. 5, RATS manual (some errors in RATS), etc.
%
%% Some notations:  y(t+1) = y(t)B1 + e(t+1)inv(A0). e(t+1) is 1-by-n.
%%    Let r(t+1)=e(t+1)inv(A0) + e(t+2)C + .... where inv(A0) is impulse
%%          response at t=1, C at t=2, etc. The row of inv(A0) or C is
%%          all responses to one shock.
%%    Let r be q-by-1 (such as r(1) = r(t+1)
%%                 = y(t+1) (constrained) - y(t+1) (forecast)).
%%    Use impulse responses to find out R (k-by-q) where k=nvar*nsteps
%%        where nsteps the largest constrained step.  The key of the program
%%        is to creat R using impulse responses
%%    Optimal solution for shock e where R'*e=r and e is k-by-1 is
%%                 e = R*inv(R'*R)*r.
%
%
% Copyright (C) 1997-2012 Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%



IdenShock = ~isempty(eq_iden);   % if not empty, the shock is identified

forep=size(yfore_h,1);
impsteps=size(imf3s_h,1);
if (forep<nstepsm) | (impsteps<nstepsm)
	disp('Increase # of forecast or impulse steps!!')
   disp('Or decrease # of constraints (nconstr) or constrained steps (stepcon(i))!!')
	error('Maximum of conditional steps > # of forecast or impulse steps!!')
end
kfs = nvar*nstepsm;   % k -- fs: free shocks
%*** initializing
Rcon = zeros(kfs,nconstr);   % R: k-by-q
Econ = zeros(kfs,1);      % E: k-by-1
rcon = zeros(nconstr,1);   % r: q-by-1
%rcon=valuecon-diag(yfore(stepcon,varcon));  % another way is to use "loop" below.
A0in = reshape(imf3s_h(1,:,:),nvar,nvar);  % nvar shocks-by-nvar responses


for i=1:nconstr
	if IdenShock
   	rcon(i)=length(stepcon{i})*valuecon(i) - ...
		                     sum(yforeml(stepcon{i},varcon(i)),1);  % <<>>
	else
		rcon(i)=length(stepcon{i})*valuecon(i) - ...
		                     sum(yfore_h(stepcon{i},varcon(i)),1);  %<<>>
	end
   Rmat = zeros(nstepsm,nvar);
	r2mat = zeros(nstepsm,1);   % simply one identified equation
           % Must be here inside the loop because it's matrix of one column of Rcon
   for j=1:length(stepcon{i})
		if IdenShock     % Rcon only at ML; assuming the Fed can't see all other shocks
      	Rmat(1:stepcon{i}(j),eq_iden) = Rmat(1:stepcon{i}(j),eq_iden) + ...
                 imf3sml(stepcon{i}(j):-1:1,eq_iden,varcon(i));
	                % Rmat: row--nstepsm, column--nvar shocks (here all shocks except
						 %     the identified one are set to zero) for a particular
                   %     endogenous variable 'varcon(i)'.  See Zha Forcast (1), pp.6-7
		else             % Rcon random with (A0,A+)
			Rmat(1:stepcon{i}(j),:) = Rmat(1:stepcon{i}(j),:) + ...
			        imf3s_h(stepcon{i}(j):-1:1,:,varcon(i));
	                % Rmat: row--nstepsm, column--nvar shocks (here all shocks are
						 %     *not* set to zero) for a particular endogenous
                   %     variable 'varcon(i)'.  See Zha Forcast (1), pp.6-7
		end
   end
	Rmatt = Rmat';   % Now, nvar-by-nstepsm. I think here is where RATS has an error
							  % i.e. "OVERR" is not transposed when overlaid to "CAPR"
	Rcon(:,i)=Rmatt(:);      % Rcon: k-by-q where q=nconstr
end

if nconstr
	[u d v]=svd(Rcon,0); %trial
	% rtr = Rcon'*Rcon; %trial
	% rtrinv = inv(Rcon'*Rcon); %trial
	vd=v.*(ones(size(v,2),1)*diag(d)'); %trial
	dinv = 1./diag(d);    % inv(diag(d))
	vdinv=v.*(ones(size(v,2),1)*dinv'); %trial
	rtr=vd*vd';       % R'*R
	rtrinv = vdinv*vdinv';   % inv(R'*R)

	Econ = Rcon*rtrinv*rcon;    % E = R*inv(R'R)*r; mean
else
	Econ = zeros(kfs,1);
	Rcon = NaN;
	rcon = NaN;
	u = NaN;
	d = NaN;
	v = NaN;
end


tcwc = nvar*lags;     % total coefficients without constant
phi=phil;
phis=phil;     % for exact backed out shocks
%
if (Sband==0)     % no random or random only from (A0,A+)
	Estr = reshape(Econ,nvar,nstepsm);
	Estr = Estr';   % transpose so that
	          % Estr: structural shocks. Row--steps, Column--n shocks
	Estr = [Estr;randn(forep-nstepsm,nvar)];
				 % Now, forep-by-nvar -- ready for forecasts
	Ures = Estr*A0in;     % nstepsm-by-nvar
			 % Ures: reduced-form residuals.  Row--steps; Column--n shocks

	% ** reconstruct x(t) for y(t+h) = x(t+h-1)*B
	% **       where phi = x(t+h-1) with last column being constant
	%
	yhat = zeros(forep,nvar);
	for k=1:forep
   	yhat(k,:) = phi*Bh_h + Ures(k,:);
		phi(1,nvar+1:tcwc) = phi(1,1:tcwc-nvar);
		phi(1,1:nvar) = yhat(k,:);
      %
	end
else     % random from shocks E and possibly (A0,A+) depending on if imf3s is random
	if nconstr
		if IdenShock    % other shocks are indepedent of the eq_iden shock
			Osk = randn(kfs,1);    % other shocks
			for j=1:nstepsm
            Osk(nvar*(j-1)+eq_iden)=0;     % no shock to the MS or identified equation
			end
			Estr = Econ + Osk;   % Econ is non zero only at position
			                     %  eq_iden*j where j=1:nstepsm
		else
    		Ome = eye(kfs) - u*u';        % note, I-u*u' = I - R*inv(R'*R)*R'
    		%[u1 d1 v1] = svd(Ome);  % too slow
    		[u1 d1] = eig(Ome);
    		Stdcon = u1*diag(sqrt(diag(abs(d1))));    % lower triagular chol of conditional variance
    							% see Zha's forecast (1), p.17
			if Cms
				if TLindx      % tight
    				Estr1 = Econ + Stdcon*randn(kfs,1);
					Estr2 = reshape(Estr1,nvar,nstepsm);
					Estr2 = Estr2';   % transpose so that
	                % Estr2: structural shocks. Row--nstepsm, Column--n shocks
					Estr = [Estr2;randn(forep-nstepsm,nvar)];
				       % Now, forep-by-nvar -- ready for forecasts
					Sindx = find(Estr(1:nCms,eq_Cms)<TLnumber);
					while ~isempty(Sindx)
		    			Estr1 = Econ + Stdcon*randn(kfs,1);
						Estr2 = reshape(Estr1,nvar,nstepsm);
						Estr2 = Estr2';   % transpose so that
	              		 % Estr2: structural shocks. Row--nstepsm, Column--n shocks
						Estr = [Estr2;randn(forep-nstepsm,nvar)];
				     		% Now, forep-by-nvar -- ready for forecasts
						Sindx = find(Estr(1:nCms,eq_Cms)<TLnumber);
					end
				else                     % loose
    				Estr1 = Econ + Stdcon*randn(kfs,1);
					Estr2 = reshape(Estr1,nvar,nstepsm);
					Estr2 = Estr2';   % transpose so that
	                % Estr2: structural shocks. Row--nstepsm, Column--n shocks
					Estr = [Estr2;randn(forep-nstepsm,nvar)];
				       % Now, forep-by-nvar -- ready for forecasts
					Sindx = find(Estr(1:nCms,eq_Cms)>TLnumber);
					while ~isempty(Sindx)
		    			Estr1 = Econ + Stdcon*randn(kfs,1);
						Estr2 = reshape(Estr1,nvar,nstepsm);
						Estr2 = Estr2';   % transpose so that
	              		 % Estr2: structural shocks. Row--nstepsm, Column--n shocks
						Estr = [Estr2;randn(forep-nstepsm,nvar)];
				     		% Now, forep-by-nvar -- ready for forecasts
						Sindx = find(Estr(1:nCms,eq_Cms)>TLnumber);
					end
				end
			else
  				Estr1 = Econ + Stdcon*randn(kfs,1);
				Estr2 = reshape(Estr1,nvar,nstepsm);
				Estr2 = Estr2';   % transpose so that
                % Estr2: structural shocks. Row--nstepsm, Column--n shocks
				Estr = [Estr2;randn(forep-nstepsm,nvar)];
			       % Now, forep-by-nvar -- ready for forecasts
			end
		end
	else
		if Cms
			if TLindx      % tight
				Estr = randn(forep,nvar);
				    % Now, forep-by-nvar -- ready for forecasts
				Sindx = find(Estr(1:nCms,eq_Cms)<TLnumber);
				while ~isempty(Sindx)
					Estr = randn(forep,nvar);
				   	% Now, forep-by-nvar -- ready for forecasts
					Sindx = find(Estr(1:nCms,eq_Cms)<TLnumber);
				end
			else                     % loose
				Estr = randn(forep,nvar);
				    % Now, forep-by-nvar -- ready for forecasts
				Sindx = find(Estr(1:nCms,eq_Cms)>TLnumber);
				while ~isempty(Sindx)
					Estr = randn(forep,nvar);
				   	% Now, forep-by-nvar -- ready for forecasts
					Sindx = find(Estr(1:nCms,eq_Cms)>TLnumber);
				end
			end
		else
			Estr = randn(forep,nvar);
			    % Now, forep-by-nvar -- ready for forecasts
		end
	end
	%
	%disp('HERE')

	Ures = Estr*A0in;     % nstepsm-by-nvar
			 % Ures: reduced-form residuals.  Row--steps; Column--n shocks

	% ** reconstruct x(t) for y(t+h) = x(t+h-1)*B
	% **       where phi = x(t+h-1) with last column being constant
	%
	yhat = zeros(forep,nvar);
	for k=1:forep
   	yhat(k,:) = phi*Bh_h + Ures(k,:);
		phi(1,nvar+1:tcwc) = phi(1,1:tcwc-nvar);
		phi(1,1:nvar) = yhat(k,:);
	end
end