1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
function [yhat,Estr,rcon,Rcon,u,v,d] = fidcnderr(valuecon,stepcon,varcon,nconstr,...
nstepsm,nvar,lags,phil,eq_iden,Aband,Sband,yforeml,imf3sml,Bhml,...
yfore_h,imf3s_h,Bh_h,Cms,TLindx,TLnumber,nCms,eq_Cms)
%function [yhat,Estr,rcon,Rcon,u,v,d] = fidcnderr(valuecon,stepcon,varcon,nconstr,...
% nstepsm,nvar,lags,phil,eq_iden,Aband,Sband,yforeml,imf3sml,Bhml,...
% yfore_h,imf3s_h,Bh_h,Cms,TLindx,TLnumber,nCms,eq_Cms)
% To be done (8/25/98): (1) yforeml, imf3sml, and Bhml should not be there.
% (2) MS stuff need to be generalized.
% (3) perhaps, imf3s_h needs to be re-examined.
% Conditional forecasting in the identified model with one draw for error bands
%
% valuecon: vector of values conditioned
% stepcon: sequence (cell) of steps conditioned; if length(stepcon{i}) > 1, the condition
% is then an arithmetic average of log(y) over the stepcon{i} period.
% varcon: vector of variables conditioned
% nconstr: number of constraints
% nstepsm: maximum number of steps in all constraints
% nvar: number of variables in the BVAR model
% lags: number of lags in the BVAR model
% phil: the 1-by-(nvar*lags+1) data matrix where k=nvar*lags+1
% (last period plus lags before the beginning of forecast)
% eq_iden: identified equation or shock (in terms of number). If equ_iden=[], then
% 'fidencond' is, similar to RATS, to compute forecasts with *all* shocks.
% Sband: 1: generate error bands from random shocks E; 0: no random shocks
% yfore: uncondtional forecasts: forep-by-nvar
% imf3s: 3-dimensional impulse responses matrix:
% impsteps-by-nvar shocks-by-nvar responses
% Bh: reduced-form parameter matrix: k-by-nvar, y(t) = X(t)*Bh+e(t)
% where X(t) is k-by-nvar and y(t) is 1-by-nvar
% ------
% yhat: conditional forecasts: forep-by-nvar
% Estr: backed-out structural shocks (from N(0,1))
% rcon: vector - the difference between valuecon and log(yfore) (unconditional forecasts)
% Rcon: k-by-q (q constranits and k=nvar*max(nsteps)) so that
% Rcon'*e = rcon where e is k-by-1
% [u,d,v]: svd(Rcon,0)
%
%% See Zha's note "Forecast (1)" p. 5, RATS manual (some errors in RATS), etc.
%
%% Some notations: y(t+1) = y(t)B1 + e(t+1)inv(A0). e(t+1) is 1-by-n.
%% Let r(t+1)=e(t+1)inv(A0) + e(t+2)C + .... where inv(A0) is impulse
%% response at t=1, C at t=2, etc. The row of inv(A0) or C is
%% all responses to one shock.
%% Let r be q-by-1 (such as r(1) = r(t+1)
%% = y(t+1) (constrained) - y(t+1) (forecast)).
%% Use impulse responses to find out R (k-by-q) where k=nvar*nsteps
%% where nsteps the largest constrained step. The key of the program
%% is to creat R using impulse responses
%% Optimal solution for shock e where R'*e=r and e is k-by-1 is
%% e = R*inv(R'*R)*r.
%
%
% Copyright (C) 1997-2012 Tao Zha
%
% This free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% If you did not received a copy of the GNU General Public License
% with this software, see <http://www.gnu.org/licenses/>.
%
IdenShock = ~isempty(eq_iden); % if not empty, the shock is identified
forep=size(yfore_h,1);
impsteps=size(imf3s_h,1);
if (forep<nstepsm) | (impsteps<nstepsm)
disp('Increase # of forecast or impulse steps!!')
disp('Or decrease # of constraints (nconstr) or constrained steps (stepcon(i))!!')
error('Maximum of conditional steps > # of forecast or impulse steps!!')
end
kfs = nvar*nstepsm; % k -- fs: free shocks
%*** initializing
Rcon = zeros(kfs,nconstr); % R: k-by-q
Econ = zeros(kfs,1); % E: k-by-1
rcon = zeros(nconstr,1); % r: q-by-1
%rcon=valuecon-diag(yfore(stepcon,varcon)); % another way is to use "loop" below.
A0in = reshape(imf3s_h(1,:,:),nvar,nvar); % nvar shocks-by-nvar responses
for i=1:nconstr
if IdenShock
rcon(i)=length(stepcon{i})*valuecon(i) - ...
sum(yforeml(stepcon{i},varcon(i)),1); % <<>>
else
rcon(i)=length(stepcon{i})*valuecon(i) - ...
sum(yfore_h(stepcon{i},varcon(i)),1); %<<>>
end
Rmat = zeros(nstepsm,nvar);
r2mat = zeros(nstepsm,1); % simply one identified equation
% Must be here inside the loop because it's matrix of one column of Rcon
for j=1:length(stepcon{i})
if IdenShock % Rcon only at ML; assuming the Fed can't see all other shocks
Rmat(1:stepcon{i}(j),eq_iden) = Rmat(1:stepcon{i}(j),eq_iden) + ...
imf3sml(stepcon{i}(j):-1:1,eq_iden,varcon(i));
% Rmat: row--nstepsm, column--nvar shocks (here all shocks except
% the identified one are set to zero) for a particular
% endogenous variable 'varcon(i)'. See Zha Forcast (1), pp.6-7
else % Rcon random with (A0,A+)
Rmat(1:stepcon{i}(j),:) = Rmat(1:stepcon{i}(j),:) + ...
imf3s_h(stepcon{i}(j):-1:1,:,varcon(i));
% Rmat: row--nstepsm, column--nvar shocks (here all shocks are
% *not* set to zero) for a particular endogenous
% variable 'varcon(i)'. See Zha Forcast (1), pp.6-7
end
end
Rmatt = Rmat'; % Now, nvar-by-nstepsm. I think here is where RATS has an error
% i.e. "OVERR" is not transposed when overlaid to "CAPR"
Rcon(:,i)=Rmatt(:); % Rcon: k-by-q where q=nconstr
end
if nconstr
[u d v]=svd(Rcon,0); %trial
% rtr = Rcon'*Rcon; %trial
% rtrinv = inv(Rcon'*Rcon); %trial
vd=v.*(ones(size(v,2),1)*diag(d)'); %trial
dinv = 1./diag(d); % inv(diag(d))
vdinv=v.*(ones(size(v,2),1)*dinv'); %trial
rtr=vd*vd'; % R'*R
rtrinv = vdinv*vdinv'; % inv(R'*R)
Econ = Rcon*rtrinv*rcon; % E = R*inv(R'R)*r; mean
else
Econ = zeros(kfs,1);
Rcon = NaN;
rcon = NaN;
u = NaN;
d = NaN;
v = NaN;
end
tcwc = nvar*lags; % total coefficients without constant
phi=phil;
phis=phil; % for exact backed out shocks
%
if (Sband==0) % no random or random only from (A0,A+)
Estr = reshape(Econ,nvar,nstepsm);
Estr = Estr'; % transpose so that
% Estr: structural shocks. Row--steps, Column--n shocks
Estr = [Estr;randn(forep-nstepsm,nvar)];
% Now, forep-by-nvar -- ready for forecasts
Ures = Estr*A0in; % nstepsm-by-nvar
% Ures: reduced-form residuals. Row--steps; Column--n shocks
% ** reconstruct x(t) for y(t+h) = x(t+h-1)*B
% ** where phi = x(t+h-1) with last column being constant
%
yhat = zeros(forep,nvar);
for k=1:forep
yhat(k,:) = phi*Bh_h + Ures(k,:);
phi(1,nvar+1:tcwc) = phi(1,1:tcwc-nvar);
phi(1,1:nvar) = yhat(k,:);
%
end
else % random from shocks E and possibly (A0,A+) depending on if imf3s is random
if nconstr
if IdenShock % other shocks are indepedent of the eq_iden shock
Osk = randn(kfs,1); % other shocks
for j=1:nstepsm
Osk(nvar*(j-1)+eq_iden)=0; % no shock to the MS or identified equation
end
Estr = Econ + Osk; % Econ is non zero only at position
% eq_iden*j where j=1:nstepsm
else
Ome = eye(kfs) - u*u'; % note, I-u*u' = I - R*inv(R'*R)*R'
%[u1 d1 v1] = svd(Ome); % too slow
[u1 d1] = eig(Ome);
Stdcon = u1*diag(sqrt(diag(abs(d1)))); % lower triagular chol of conditional variance
% see Zha's forecast (1), p.17
if Cms
if TLindx % tight
Estr1 = Econ + Stdcon*randn(kfs,1);
Estr2 = reshape(Estr1,nvar,nstepsm);
Estr2 = Estr2'; % transpose so that
% Estr2: structural shocks. Row--nstepsm, Column--n shocks
Estr = [Estr2;randn(forep-nstepsm,nvar)];
% Now, forep-by-nvar -- ready for forecasts
Sindx = find(Estr(1:nCms,eq_Cms)<TLnumber);
while ~isempty(Sindx)
Estr1 = Econ + Stdcon*randn(kfs,1);
Estr2 = reshape(Estr1,nvar,nstepsm);
Estr2 = Estr2'; % transpose so that
% Estr2: structural shocks. Row--nstepsm, Column--n shocks
Estr = [Estr2;randn(forep-nstepsm,nvar)];
% Now, forep-by-nvar -- ready for forecasts
Sindx = find(Estr(1:nCms,eq_Cms)<TLnumber);
end
else % loose
Estr1 = Econ + Stdcon*randn(kfs,1);
Estr2 = reshape(Estr1,nvar,nstepsm);
Estr2 = Estr2'; % transpose so that
% Estr2: structural shocks. Row--nstepsm, Column--n shocks
Estr = [Estr2;randn(forep-nstepsm,nvar)];
% Now, forep-by-nvar -- ready for forecasts
Sindx = find(Estr(1:nCms,eq_Cms)>TLnumber);
while ~isempty(Sindx)
Estr1 = Econ + Stdcon*randn(kfs,1);
Estr2 = reshape(Estr1,nvar,nstepsm);
Estr2 = Estr2'; % transpose so that
% Estr2: structural shocks. Row--nstepsm, Column--n shocks
Estr = [Estr2;randn(forep-nstepsm,nvar)];
% Now, forep-by-nvar -- ready for forecasts
Sindx = find(Estr(1:nCms,eq_Cms)>TLnumber);
end
end
else
Estr1 = Econ + Stdcon*randn(kfs,1);
Estr2 = reshape(Estr1,nvar,nstepsm);
Estr2 = Estr2'; % transpose so that
% Estr2: structural shocks. Row--nstepsm, Column--n shocks
Estr = [Estr2;randn(forep-nstepsm,nvar)];
% Now, forep-by-nvar -- ready for forecasts
end
end
else
if Cms
if TLindx % tight
Estr = randn(forep,nvar);
% Now, forep-by-nvar -- ready for forecasts
Sindx = find(Estr(1:nCms,eq_Cms)<TLnumber);
while ~isempty(Sindx)
Estr = randn(forep,nvar);
% Now, forep-by-nvar -- ready for forecasts
Sindx = find(Estr(1:nCms,eq_Cms)<TLnumber);
end
else % loose
Estr = randn(forep,nvar);
% Now, forep-by-nvar -- ready for forecasts
Sindx = find(Estr(1:nCms,eq_Cms)>TLnumber);
while ~isempty(Sindx)
Estr = randn(forep,nvar);
% Now, forep-by-nvar -- ready for forecasts
Sindx = find(Estr(1:nCms,eq_Cms)>TLnumber);
end
end
else
Estr = randn(forep,nvar);
% Now, forep-by-nvar -- ready for forecasts
end
end
%
%disp('HERE')
Ures = Estr*A0in; % nstepsm-by-nvar
% Ures: reduced-form residuals. Row--steps; Column--n shocks
% ** reconstruct x(t) for y(t+h) = x(t+h-1)*B
% ** where phi = x(t+h-1) with last column being constant
%
yhat = zeros(forep,nvar);
for k=1:forep
yhat(k,:) = phi*Bh_h + Ures(k,:);
phi(1,nvar+1:tcwc) = phi(1,1:tcwc-nvar);
phi(1,1:nvar) = yhat(k,:);
end
end
|