1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
|
/*
* Copyright © 2005 Ondra Kamenik
* Copyright © 2019-2021 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
// Higher order at stochastic steady
/* This file defines a number of classes of which KOrderStoch is the main
purpose. Basically, KOrderStoch calculates first and higher order Taylor
expansion of a policy rule at σ>0 with explicit forward g**. More formally,
we have to solve a policy rule g from
𝔼ₜ[f(g**(g*(y*ₜ,uₜ,σ),uₜ₊₁,σ),g(y*,uₜ,σ),y*,uₜ)]
As the introduction in approximation.hh argues, g** at tine t+1 must be
given from outside. Let the explicit 𝔼ₜ(g**(y*,uₜ₊₁,σ) be equal to h(y*,σ).
Then we have to solve f(h(g*(y*,u,σ),σ),g(y,u,σ),y,u), which is much easier
than fully implicit system for σ=0.
Besides the class KOrderStoch, we declare here also classes for the new
containers corresponding to f(h(g*(y*,u,σ),σ),g(y,u,σ),y,u). Further, we
declare IntegDerivs and StochForwardDerivs classes which basically calculate
h as an extrapolation based on an approximation to g at lower σ.
*/
#include <memory>
#include "korder.hh"
#include "faa_di_bruno.hh"
#include "journal.hh"
#include "pascal_triangle.hh"
/* This class is a container, which has a specialized constructor integrating
the policy rule at given σ. */
template<Storage t>
class IntegDerivs : public ctraits<t>::Tgss
{
public:
IntegDerivs(int r, const IntSequence &nvs, const typename ctraits<t>::Tgss &g,
const typename ctraits<t>::Tm &mom, double at_sigma);
};
/* This constructor integrates a rule (namely its g** part) with respect to
u=σ~·η, and stores to the object the derivatives of this integral h at
(y*,u,σ)=(ỹ*,0,σ~). The original container of g**, the moments of the
stochastic shocks ‘mom’ and the σ~ are input.
The code follows the following derivation
h(y,σ) = 𝔼ₜ[g(y,u′,σ)]
1 ⎛ d ⎞
= ỹ + ∑ ── ∑ ⎝i,j,k⎠ [g_yⁱuʲσᵏ] (y*-ỹ*)ⁱ σʲ Σʲ (σ-σ~)ᵏ
ᵈ⁼¹ d! ⁱ⁺ʲ⁺ᵏ⁼ᵈ
1 ⎛ d ⎞ ⎛m+n⎞
= ỹ + ∑ ── ∑ ⎝i,m+n,k⎠ [g_yⁱuᵐ⁺ⁿσᵏ] ŷ*ⁱ Σᵐ⁺ⁿ ⎝m,n⎠ σ~ᵐ σ^ᵏ⁺ⁿ
ᵈ⁼¹ d! ⁱ⁺ᵐ⁺ⁿ⁺ᵏ⁼ᵈ
1 ⎛ d ⎞
= ỹ + ∑ ── ∑ ⎝i,m,n,k⎠ [g_yⁱuᵐ⁺ⁿσᵏ] Σᵐ⁺ⁿ σ~ᵐ ŷ*ⁱ σ^ᵏ⁺ⁿ
ᵈ⁼¹ d! ⁱ⁺ᵐ⁺ⁿ⁺ᵏ⁼ᵈ
1 ⎛ d ⎞
= ỹ + ∑ ── ∑ ∑ ⎝i,m,n,k⎠ [g_yⁱuᵐ⁺ⁿσᵏ] Σᵐ⁺ⁿ σ~ᵐ ŷ*ⁱ σ^ᵏ⁺ⁿ
ᵈ⁼¹ d! ⁱ⁺ᵖ⁼ᵈ ᵐ⁼⁰
ⁿ⁺ᵏ⁼ᵖ
1 ⎛ d ⎞ ⎡ ⎛ p ⎞ 1 ⎤
= ỹ + ∑ ── ∑ ⎝i,p⎠ ⎢ ∑ ⎝n,k⎠ ── [g_yⁱuᵐ⁺ⁿσᵏ] Σᵐ⁺ⁿ σ~ᵐ⎥ ŷ*ⁱ σ^ᵏ⁺ⁿ
ᵈ⁼¹ d! ⁱ⁺ᵖ⁼ᵈ ⎢ ᵐ⁼⁰ m! ⎥
⎣ⁿ⁺ᵏ⁼ᵖ ⎦
⎛ a ⎞
where ⎝b₁,…,bₙ⎠ is a generalized combination number, p=k+n, σ^=σ-σ~,
ŷ*=y*-ỹ, and we gave up writing the multidimensional indexes in Einstein
summation.
This implies that:
⎛ p ⎞ 1
h_yⁱσᵖ = ∑ ⎝n,k⎠ ── [g_yⁱuᵐ⁺ⁿσᵏ] Σᵐ⁺ⁿ σ~ᵐ
ᵐ⁼⁰ m!
ⁿ⁺ᵏ⁼ᵖ
and this is exactly what the code does.
*/
template<Storage t>
IntegDerivs<t>::IntegDerivs(int r, const IntSequence &nvs, const typename ctraits<t>::Tgss &g,
const typename ctraits<t>::Tm &mom, double at_sigma)
: ctraits<t>::Tgss(4)
{
int maxd = g.getMaxDim();
for (int d = 1; d <= maxd; d++)
{
for (int i = 0; i <= d; i++)
{
int p = d-i;
Symmetry sym{i, 0, 0, p};
auto ten = std::make_unique<typename ctraits<t>::Ttensor>(r, TensorDimens(sym, nvs));
// Calculate derivative h_yⁱσᵖ
/* This code calculates:
⎛ p ⎞ 1
h_yⁱσᵖ = ∑ ⎝n,k⎠ ── [g_yⁱuᵐ⁺ⁿσᵏ] Σᵐ⁺ⁿ σ~ᵐ
ᵐ⁼⁰ m!
ⁿ⁺ᵏ⁼ᵖ
and stores it in ‘ten’. */
ten->zeros();
for (int n = 0; n <= p; n++)
{
int k = p-n;
int povern = PascalTriangle::noverk(p, n);
int mfac = 1;
for (int m = 0; i+m+n+k <= maxd; m++, mfac *= m)
{
double mult = (pow(at_sigma, m)*povern)/mfac;
Symmetry sym_mn{i, m+n, 0, k};
if (m+n == 0 && g.check(sym_mn))
ten->add(mult, g.get(sym_mn));
if (m+n > 0 && KOrder::is_even(m+n) && g.check(sym_mn))
{
typename ctraits<t>::Ttensor gtmp(g.get(sym_mn));
gtmp.mult(mult);
gtmp.contractAndAdd(1, *ten, mom.get(Symmetry{m+n}));
}
}
}
this->insert(std::move(ten));
}
}
}
/* This class calculates an extrapolation of expectation of forward
derivatives. It is a container, all calculations are done in a constructor.
The class calculates derivatives of E[g(y*,u,σ)] at (ȳ*,σ¯). The derivatives
are extrapolated based on derivatives at (ỹ*,σ~). */
template<Storage t>
class StochForwardDerivs : public ctraits<t>::Tgss
{
public:
StochForwardDerivs(const PartitionY &ypart, int nu,
const typename ctraits<t>::Tgss &g, const typename ctraits<t>::Tm &m,
const Vector &ydelta, double sdelta,
double at_sigma);
};
/* This is the constructor which performs the integration and the
extrapolation. Its parameters are: ‘g’ is the container of derivatives at
(ỹ,σ~); ‘m’ are the moments of stochastic shocks; ‘ydelta’ is a difference
of the steady states ȳ−ỹ; ‘sdelta’ is the difference between new sigma and
old sigma σ¯−σ~, and ‘at_sigma’ is σ~. There is no need of inputing the ỹ.
We do the operation in four steps:
— Integrate g**, the derivatives are at (ỹ,σ~)
— Form the (full symmetric) polynomial from the derivatives stacking
⎡y*⎤
⎣σ ⎦
— Centralize this polynomial about (ȳ,σ¯)
— Recover general symmetry tensors from the (full symmetric) polynomial
*/
template<Storage t>
StochForwardDerivs<t>::StochForwardDerivs(const PartitionY &ypart, int nu,
const typename ctraits<t>::Tgss &g,
const typename ctraits<t>::Tm &m,
const Vector &ydelta, double sdelta,
double at_sigma)
: ctraits<t>::Tgss(4)
{
int maxd = g.getMaxDim();
int r = ypart.nyss();
// Make ‘g_int’ be integral of g** at (ỹ,σ~)
/* This simply constructs IntegDerivs class. Note that the ‘nvs’ of
the tensors has zero dimensions for shocks, this is because we need to
⎡y*⎤
make easily stacks of the form ⎣σ ⎦ in the next step. */
IntSequence nvs{ypart.nys(), 0, 0, 1};
IntegDerivs<t> g_int(r, nvs, g, m, at_sigma);
// Make ‘g_int_sym’ be full symmetric polynomial from ‘g_int’
/* Here we just form a polynomial whose unique variable corresponds to
⎡y*⎤
⎣σ ⎦ stack. */
typename ctraits<t>::Tpol g_int_sym(r, ypart.nys()+1);
for (int d = 1; d <= maxd; d++)
{
auto ten = std::make_unique<typename ctraits<t>::Ttensym>(r, ypart.nys()+1, d);
ten->zeros();
for (int i = 0; i <= d; i++)
{
int k = d-i;
if (g_int.check(Symmetry{i, 0, 0, k}))
ten->addSubTensor(g_int.get(Symmetry{i, 0, 0, k}));
}
g_int_sym.insert(std::move(ten));
}
// Make ‘g_int_cent’ the centralized polynomial about (ȳ,σ¯)
/* Here we centralize the polynomial to (ȳ,σ¯) knowing that the polynomial
was centralized about (ỹ,σ~). This is done by derivating and evaluating
the derivated polynomial at (ȳ−ỹ,σ¯-σ~). The stack of this vector is
‘delta’ in the code. */
Vector delta(ypart.nys()+1);
Vector dy(delta, 0, ypart.nys());
ConstVector dy_in(ydelta, ypart.nstat, ypart.nys());
dy = dy_in;
delta[ypart.nys()] = sdelta;
typename ctraits<t>::Tpol g_int_cent(r, ypart.nys()+1);
for (int d = 1; d <= maxd; d++)
{
g_int_sym.derivative(d-1);
auto der = g_int_sym.evalPartially(d, delta);
g_int_cent.insert(std::move(der));
}
// Pull out general symmetry tensors from ‘g_int_cent’
/* Here we only recover the general symmetry derivatives from the full
symmetric polynomial. Note that the derivative get the true ‘nvs’. */
IntSequence ss{ypart.nys(), 0, 0, 1};
IntSequence pp{0, 1, 2, 3};
IntSequence true_nvs(nvs);
true_nvs[1] = nu;
true_nvs[2] = nu;
for (int d = 1; d <= maxd; d++)
if (g_int_cent.check(Symmetry{d}))
for (int i = 0; i <= d; i++)
{
Symmetry sym{i, 0, 0, d-i};
IntSequence coor(pp.unfold(sym));
auto ten = std::make_unique<typename ctraits<t>::Ttensor>(g_int_cent.get(Symmetry{d}),
ss, coor,
TensorDimens(sym, true_nvs));
this->insert(std::move(ten));
}
}
/* This container corresponds to h(g*(y,u,σ),σ). Note that in our application,
the σ as a second argument to h will be its fourth variable in symmetry, so
we have to do four member stack having the second and third stack dummy. */
template<class _Ttype>
class GXContainer : public GContainer<_Ttype>
{
public:
using _Stype = StackContainerInterface<_Ttype>;
using _Ctype = typename StackContainer<_Ttype>::_Ctype;
using itype = typename StackContainer<_Ttype>::itype;
GXContainer(const _Ctype *gs, int ngs, int nu)
: GContainer<_Ttype>(gs, ngs, nu)
{
}
itype getType(int i, const Symmetry &s) const override;
};
/* This routine corresponds to this stack:
⎡ g*(y,u,σ) ⎤
⎢ dummy ⎥
⎢ dummy ⎥
⎣ σ ⎦
*/
template<class _Ttype>
typename GXContainer<_Ttype>::itype
GXContainer<_Ttype>::getType(int i, const Symmetry &s) const
{
if (i == 0)
if (s[2] > 0)
return itype::zero;
else
return itype::matrix;
if (i == 1)
return itype::zero;
if (i == 2)
return itype::zero;
if (i == 3)
if (s == Symmetry{0, 0, 0, 1})
return itype::unit;
else
return itype::zero;
KORD_RAISE("Wrong stack index in GXContainer::getType");
}
/* This container corresponds to f(H(y,u,σ),g(y,u,sigma),y,u), where the H has
the size (number of rows) as g**. Since it is very simmilar to ZContainer,
we inherit form it and override only getType() method. */
template<class _Ttype>
class ZXContainer : public ZContainer<_Ttype>
{
public:
using _Stype = StackContainerInterface<_Ttype>;
using _Ctype = typename StackContainer<_Ttype>::_Ctype;
using itype = typename StackContainer<_Ttype>::itype;
ZXContainer(const _Ctype *gss, int ngss, const _Ctype *g, int ng, int ny, int nu)
: ZContainer<_Ttype>(gss, ngss, g, ng, ny, nu)
{
}
itype getType(int i, const Symmetry &s) const override;
};
/* This getType() method corresponds to this stack:
⎡ H(y,u,σ) ⎤
⎢ g(y,u,σ) ⎥
⎢ y ⎥
⎣ u ⎦
*/
template<class _Ttype>
typename ZXContainer<_Ttype>::itype
ZXContainer<_Ttype>::getType(int i, const Symmetry &s) const
{
if (i == 0)
if (s[2] > 0)
return itype::zero;
else
return itype::matrix;
if (i == 1)
if (s[2] > 0)
return itype::zero;
else
return itype::matrix;
if (i == 2)
if (s == Symmetry{1, 0, 0, 0})
return itype::unit;
else
return itype::zero;
if (i == 3)
if (s == Symmetry{0, 1, 0, 0})
return itype::unit;
else
return itype::zero;
KORD_RAISE("Wrong stack index in ZXContainer::getType");
}
class UnfoldedGXContainer : public GXContainer<UGSTensor>, public UnfoldedStackContainer
{
public:
using _Ctype = TensorContainer<UGSTensor>;
UnfoldedGXContainer(const _Ctype *gs, int ngs, int nu)
: GXContainer<UGSTensor>(gs, ngs, nu)
{
}
};
class FoldedGXContainer : public GXContainer<FGSTensor>, public FoldedStackContainer
{
public:
using _Ctype = TensorContainer<FGSTensor>;
FoldedGXContainer(const _Ctype *gs, int ngs, int nu)
: GXContainer<FGSTensor>(gs, ngs, nu)
{
}
};
class UnfoldedZXContainer : public ZXContainer<UGSTensor>, public UnfoldedStackContainer
{
public:
using _Ctype = TensorContainer<UGSTensor>;
UnfoldedZXContainer(const _Ctype *gss, int ngss, const _Ctype *g, int ng, int ny, int nu)
: ZXContainer<UGSTensor>(gss, ngss, g, ng, ny, nu)
{
}
};
class FoldedZXContainer : public ZXContainer<FGSTensor>, public FoldedStackContainer
{
public:
using _Ctype = TensorContainer<FGSTensor>;
FoldedZXContainer(const _Ctype *gss, int ngss, const _Ctype *g, int ng, int ny, int nu)
: ZXContainer<FGSTensor>(gss, ngss, g, ng, ny, nu)
{
}
};
/* This matrix corresponds to
[f_{y}]+ [0 [f_y**₊]·[h**_y*] 0]
This is almost the same as MatrixA, the only difference that the MatrixA is
constructed from whole h_y*, not only from h**_y*, hence the new
abstraction. */
class MatrixAA : public PLUMatrix
{
public:
MatrixAA(const FSSparseTensor &f, const IntSequence &ss,
const TwoDMatrix &gyss, const PartitionY &ypart);
};
/* This class calculates derivatives of g given implicitly by
f(h(g*(y,u,σ),σ),g(y,u,σ),y,u), where h(y,σ) is given from outside.
Structurally, the class is very similar to KOrder, but calculations are much
easier. The two constructors construct an object from sparse derivatives of
f, and derivatives of h. The caller must ensure that the both derivatives
are done at the same point.
The calculation for order k (including k=1) is done by a call
performStep(k). The derivatives can be retrived by getFoldDers() or
getUnfoldDers(). */
class KOrderStoch
{
protected:
IntSequence nvs;
PartitionY ypart;
Journal &journal;
UGSContainer _ug;
FGSContainer _fg;
UGSContainer _ugs;
FGSContainer _fgs;
UGSContainer _uG;
FGSContainer _fG;
const UGSContainer *_uh;
const FGSContainer *_fh;
UnfoldedZXContainer _uZstack;
FoldedZXContainer _fZstack;
UnfoldedGXContainer _uGstack;
FoldedGXContainer _fGstack;
const TensorContainer<FSSparseTensor> &f;
MatrixAA matA;
public:
KOrderStoch(const PartitionY &ypart, int nu, const TensorContainer<FSSparseTensor> &fcont,
const FGSContainer &hh, Journal &jr);
KOrderStoch(const PartitionY &ypart, int nu, const TensorContainer<FSSparseTensor> &fcont,
const UGSContainer &hh, Journal &jr);
template<Storage t>
void performStep(int order);
const FGSContainer &
getFoldDers() const
{
return _fg;
}
const UGSContainer &
getUnfoldDers() const
{
return _ug;
}
const FGSContainer &
getFoldDersS() const
{
return _fgs;
}
protected:
template<Storage t>
std::unique_ptr<typename ctraits<t>::Ttensor> faaDiBrunoZ(const Symmetry &sym) const;
template<Storage t>
std::unique_ptr<typename ctraits<t>::Ttensor> faaDiBrunoG(const Symmetry &sym) const;
// Convenience access methods
template<Storage t>
typename ctraits<t>::Tg &g();
template<Storage t>
const typename ctraits<t>::Tg &g() const;
template<Storage t>
typename ctraits<t>::Tgs &gs();
template<Storage t>
const typename ctraits<t>::Tgs &gs() const;
template<Storage t>
const typename ctraits<t>::Tgss &h() const;
template<Storage t>
typename ctraits<t>::TG &G();
template<Storage t>
const typename ctraits<t>::TG &G() const;
template<Storage t>
typename ctraits<t>::TZXstack &Zstack();
template<Storage t>
const typename ctraits<t>::TZXstack &Zstack() const;
template<Storage t>
typename ctraits<t>::TGXstack &Gstack();
template<Storage t>
const typename ctraits<t>::TGXstack &Gstack() const;
};
/* This calculates a derivative of f(G(y,u,σ),g(y,u,σ),y,u) of a given
symmetry. */
template<Storage t>
std::unique_ptr<typename ctraits<t>::Ttensor>
KOrderStoch::faaDiBrunoZ(const Symmetry &sym) const
{
JournalRecordPair pa(journal);
pa << u8"Faà Di Bruno ZX container for " << sym << endrec;
auto res = std::make_unique<typename ctraits<t>::Ttensor>(ypart.ny(), TensorDimens(sym, nvs));
FaaDiBruno bruno(journal);
bruno.calculate(Zstack<t>(), f, *res);
return res;
}
/* This calculates a derivative of G(y,u,σ)=h(g*(y,u,σ),σ) of a given
symmetry. */
template<Storage t>
std::unique_ptr<typename ctraits<t>::Ttensor>
KOrderStoch::faaDiBrunoG(const Symmetry &sym) const
{
JournalRecordPair pa(journal);
pa << u8"Faà Di Bruno GX container for " << sym << endrec;
TensorDimens tdims(sym, nvs);
auto res = std::make_unique<typename ctraits<t>::Ttensor>(ypart.nyss(), tdims);
FaaDiBruno bruno(journal);
bruno.calculate(Gstack<t>(), h<t>(), *res);
return res;
}
/* This retrieves all g derivatives of a given dimension from implicit
f(h(g*(y,u,σ),σ),g(y,u,σ),y,u). It supposes that all derivatives of smaller
dimensions have been retrieved.
So, we go through all symmetries s, calculate Gₛ conditional on gₛ=0, insert
the derivative to the G container, then calculate Fₛ conditional on gₛ=0.
This is a righthand side. The left hand side is matA·gₛ. The gₛ is retrieved
as gₛ=-matA⁻¹·RHS. Finally we have to update Gₛ by calling
Gstack<t>().multAndAdd(1, h<t>(), *G_sym_ptr). */
template<Storage t>
void
KOrderStoch::performStep(int order)
{
int maxd = g<t>().getMaxDim();
KORD_RAISE_IF(order-1 != maxd && (order != 1 || maxd != -1),
"Wrong order for KOrderStoch::performStep");
for (auto &si : SymmetrySet(order, 4))
if (si[2] == 0)
{
JournalRecordPair pa(journal);
pa << "Recovering symmetry " << si << endrec;
auto G_sym = faaDiBrunoG<t>(si);
auto G_sym_ptr = G_sym.get();
G<t>().insert(std::move(G_sym));
auto g_sym = faaDiBrunoZ<t>(si);
auto g_sym_ptr = g_sym.get();
g_sym->mult(-1.0);
matA.multInv(*g_sym);
g<t>().insert(std::move(g_sym));
gs<t>().insert(std::make_unique<typename ctraits<t>::Ttensor>(ypart.nstat, ypart.nys(),
*g_sym_ptr));
Gstack<t>().multAndAdd(1, h<t>(), *G_sym_ptr);
}
}
|