1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
|
/*
* Copyright © 2005 Ondra Kamenik
* Copyright © 2019 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef OGP_DYNAMIC_ATOMS_H
#define OGP_DYNAMIC_ATOMS_H
#include "formula_parser.hh"
#include <vector>
#include <map>
#include <set>
#include <string>
#include <limits>
#include <memory>
namespace ogp
{
using std::vector;
using std::map;
using std::set;
using std::string;
/** Class storing names. We will keep names of variables in
* various places, and all these pointers will point to one
* storage, which will be responsible for allocation and
* deallocation. The main function of the class is to allocate
* space for names, and return a pointer of the stored name if
* required. */
class NameStorage
{
protected:
/** Vector of names allocated, this is the storage. */
vector<string> name_store;
/** Map useful to quickly decide if the name is already
* allocated or not. */
set<string> name_set;
public:
/** Query for the name. If the name has been stored, it
* true, otherwise false. */
bool
query(const string &name) const
{
return name_set.find(name) != name_set.end();
}
/** Insert the name if it has not been inserted yet. */
void insert(string name);
int
num() const
{
return static_cast<int>(name_store.size());
}
const string &
get_name(int i) const
{
return name_store[i];
}
/** Debug print. */
void print() const;
};
class Constants : public AtomValues
{
public:
/** Type for a map mapping tree indices to double values. */
using Tconstantmap = map<int, double>;
using Tintintmap = map<int, int>;
protected:
/** Map mapping a tree index of a constant to its double value. */
Tconstantmap cmap;
public:
Constants() = default;
/** Copy constructor. */
Constants(const Constants &c)
: cmap(c.cmap), cinvmap(c.cinvmap)
{
}
/** Copy constructor registering the constants in the given
* tree. The mapping from old tree indices to new ones is
* traced in tmap. */
Constants(const Constants &c, OperationTree &otree, Tintintmap &tmap)
{
import_constants(c, otree, tmap);
}
/** Import constants registering their tree indices in the
* given tree. The mapping form old tree indices to new ones
* is traced in tmap. */
void import_constants(const Constants &c, OperationTree &otree, Tintintmap &tmap);
/** Implements AtomValues interface. This sets the values to
* the evaluation tree EvalTree. */
void setValues(EvalTree &et) const override;
/** This adds a constant with the given tree index. The
* constant must be checked previously and asserted that it
* does not exist. */
void add_constant(int t, double val);
/** Returns true if the tree index is either an hardwired
* constant (initial number OperationTree:num_constants in
* OperationTree) or the tree index is a registered constant
* by add_constant method. */
bool is_constant(int t) const;
double get_constant_value(int t) const;
/** Return -1 if the given string representation of a constant
* is not among the constants (double represenations). If it
* is, its tree index is returned. */
int check(const string &str) const;
/** Debug print. */
void print() const;
const Tconstantmap &
get_constantmap() const
{
return cmap;
}
private:
/** Inverse map to Tconstantmap. */
using Tconstantinvmap = map<double, int>;
/** This is an inverse map to cmap. This is only used for fast
* queries for the existing double constants in check
* method and add_constant. */
Tconstantinvmap cinvmap;
};
/** This class is a parent to Atoms classes which distinguish between
* constants (numerical literals), and variables with lags and
* leads. This abstraction does not distinguish between a parameter
* and a variable without lag or lead. In this sense, everything is a
* variable.*/
class DynamicAtoms : public Atoms, public Constants
{
public:
/** Definition of a type mapping lags to the indices of the variables. */
using Tlagmap = map<int, int>;
protected:
/** Definition of a type mapping names of the atoms to Tlagmap. */
using Tvarmap = map<string, Tlagmap>;
/** Definition of a type mapping indices of variables to the variable names. */
using Tindexmap = map<int, string>;
/** This is just a storage for variable names, since all other
* instances of a variable name just point to the memory
* allocated by this object. */
NameStorage varnames;
/** This is the map for variables. Each variable name is
* mapped to the Tlagmap, which maps lags/leads to the nulary
* term indices in the tree. */
Tvarmap vars;
/** This is almost inverse map to the vars. It maps variable
* indices to the names. A returned name can be in turn used
* as a key in vars. */
Tindexmap indices;
/** Number of variables. */
int nv{0};
/** Minimum lag, if there is at least one lag, than this is a negative number. */
int minlag{std::numeric_limits<int>::max()};
/** Maximum lead, if there is at least one lead, than this is a positive number. */
int maxlead{std::numeric_limits<int>::min()};
public:
/** Construct empty DynamicAtoms. */
DynamicAtoms() = default;
/** Check the nulary term identified by its string
* representation. The nulary term can be either a constant or
* a variable. If constant, -1 is returned so that it could be
* assigned regardless if the same constant has already
* appeared or not. If variable, then -1 is returned only if
* the variable has not been assigned an index, otherwise the
* assigned index is returned. */
int check(const string &name) const override;
/** Assign the nulary term identified by its string
* representation. This method should be called when check()
* returns -1. */
void assign(const string &name, int t) override;
/** Return a number of all variables. */
int
nvar() const override
{
return nv;
}
/** Return the vector of variable indices. */
vector<int> variables() const override;
/** Return max lead and min lag for a variable given by the
* index. If a variable cannot be found, the method retursn
* the smallest integer as maxlead and the largest integer as
* minlag. */
void varspan(int t, int &mlead, int &mlag) const;
/** Return max lead and min lag for a variable given by the
* name (without lead, lag). The same is valid if the variable
* name cannot be found. */
void varspan(const string &name, int &mlead, int &mlag) const;
/** Return max lead and min lag for a vector of variables given by the names. */
void varspan(const vector<string> &names, int &mlead, int &mlag) const;
/** Return true for all tree indices corresponding to a
* variable in the sense of this class. (This is parameters,
* exo and endo). Since the semantics of 'variable' will be
* changed in subclasses, we use name 'named atom'. These are
* all atoms but constants. */
bool is_named_atom(int t) const;
/** Return index of the variable described by the variable
* name and lag/lead. If it doesn't exist, return -1. */
int index(const string &name, int ll) const;
/** Return true if a variable is referenced, i.e. it has lag
* map. */
bool is_referenced(const string &name) const;
/** Return the lag map for the variable name. */
const Tlagmap &lagmap(const string &name) const;
/** Return the variable name for the tree index. It throws an
* exception if the tree index t is not a named atom. */
const string &name(int t) const;
/** Return the lead/lag for the tree index. It throws an
* exception if the tree index t is not a named atom. */
int lead(int t) const;
/** Return maximum lead. */
int
get_maxlead() const
{
return maxlead;
}
/** Return minimum lag. */
int
get_minlag() const
{
return minlag;
}
/** Return the name storage to allow querying to other
* classes. */
const NameStorage &
get_name_storage() const
{
return varnames;
}
/** Assign the variable with a given lead. The varname must be
* from the varnames storage. The method checks if the
* variable iwht the given lead/lag is not assigned. If so, an
* exception is thrown. */
void assign_variable(const string &varname, int ll, int t);
/** Unassign the variable with a given lead and given tree
* index. The tree index is only provided as a check. An
* exception is thrown if the name, ll, and the tree index t
* are not consistent. The method also updates nv, indices,
* maxlead and minlag. The varname must be from the varnames
* storage. */
void unassign_variable(const string &varname, int ll, int t);
/** Debug print. */
void print() const override;
protected:
/** Do the check for the variable. A subclass may need to
* reimplement this so that it could raise an error if the
* variable is not among a given list. */
virtual int check_variable(const string &name) const;
/** Assign the constant. */
void assign_constant(const string &name, int t);
/** Assign the variable. */
void assign_variable(const string &name, int t);
/** The method just updates minlag or/and maxlead. Note that
* when assigning variables, the update is done when inserting
* to the maps, however, if removing a variable, we need to
* call this method. */
void update_minmaxll();
/** The method parses the string to recover a variable name
* and lag/lead ll. The variable name doesn't contain a lead/lag. */
virtual void parse_variable(const string &in, string &out, int &ll) const = 0;
public:
/** Return true if the str represents a double.*/
static bool is_string_constant(const string &str);
};
/** This class is a parent of all orderings of the dynamic atoms
* of variables which can appear before t, at t, or after t. It
* encapsulates the ordering, and the information about the number
* of static (appearing only at time t) predetermined (appearing
* before t and possibly at t), both (appearing before t and after
* t and possibly at t) and forward looking (appearing after t and
* possibly at t).
*
* The constructor takes a list of variable names. The class also
* provides mapping from the ordering of the variables in the list
* (outer) to the new ordering (at time t) and back.
*
* The user of the subclass must call do_ordering() after
* initialization.
*
* The class contains a few preimplemented methods for
* ordering. The class is used in this way: Make a subclass, and
* implement pure virtual do_ordering() by just plugging a
* preimplemented method, or plugging your own implementation. The
* method do_ordering() is called by the user after the constructor.
*/
class VarOrdering
{
protected:
/** Number of static variables. */
int n_stat;
/** Number of predetermined variables. */
int n_pred;
/** Number of both variables. */
int n_both;
/** Number of forward looking variables. */
int n_forw;
/** This is a set of tree indices corresponding to the
* variables at all times as they occur in the formulas. In
* fact, since this is used only for derivatives, the ordering
* of this vector is only important for ordering of the
* derivatives, in other contexts the ordering is not
* important, so it is rather a set of indices.*/
vector<int> der_atoms;
/** This maps tree index of the variable to the position in
* the row of the ordering. One should be careful with making
* space in the positions for variables not appearing at time
* t. For instance in the pred(t-1), both(t-1), stat(t),
* pred(t), both(t), forw(t), both(t+1), forw(t+1) ordering,
* the variables x(t-1), y(t-1), x(t+1), z(t-1), z(t), and
* z(t+1) having tree indices 6,5,4,3,2,1 will be ordered as
* follows: y(t-1), x(t-1), z(t-1), [y(t)], [x(t)], z(t),
* x(t+1), where a bracketed expresion means non-existent by
* occupying a space. The map thus will look as follows:
* {5→0, 6→1, 3→2, 2→5, 3→6}. Note that nothing is mapped
* to positions 3 and 4. */
map<int, int> positions;
/** This maps an ordering of the list of variables in
* constructor to the new ordering (at time t). The length is
* the number of variables. */
vector<int> outer2y;
/** This maps a new ordering to the ordering of the list of
* variables in constructor (at time t). The length is the
* number of variables. */
vector<int> y2outer;
/** This is just a reference for variable names to keep it
* from constructor to do_ordering() implementations. */
const vector<string> &varnames;
/** This is just a reference to atoms to keep it from
* constructor to do_ordering() implementations. */
const DynamicAtoms &atoms;
public:
/** This is an enum type for an ordering type implemented by
* do_general. */
enum ord_type { pbspbfbf, bfspbfpb };
/** Construct the ordering of the variables given by the names
* with their dynamic occurrences defined by the atoms. It
* calls the virtual method do_ordering which can be
* reimplemented. */
VarOrdering(const vector<string> &vnames, const DynamicAtoms &a)
: n_stat(0), n_pred(0), n_both(0), n_forw(0), varnames(vnames), atoms(a)
{
}
VarOrdering(const VarOrdering &vo, const vector<string> &vnames,
const DynamicAtoms &a);
VarOrdering(const VarOrdering &vo) = delete;
virtual std::unique_ptr<VarOrdering> clone(const vector<string> &vnames,
const DynamicAtoms &a) const = 0;
/** Destructor does nothing here. */
virtual ~VarOrdering() = default;
/** This is the method setting the ordering and the map. A
* subclass must reimplement it, possibly using a
* preimplemented ordering. This method must be called by the
* user after the class has been created. */
virtual void do_ordering() = 0;
/** Return number of static. */
int
nstat() const
{
return n_stat;
}
/** Return number of predetermined. */
int
npred() const
{
return n_pred;
}
/** Return number of both. */
int
nboth() const
{
return n_both;
}
/** Return number of forward looking. */
int
nforw() const
{
return n_forw;
}
/** Return the set of tree indices for derivatives. */
const vector<int> &
get_der_atoms() const
{
return der_atoms;
}
/** Return the y2outer. */
const vector<int> &
get_y2outer() const
{
return y2outer;
}
/** Return the outer2y. */
const vector<int> &
get_outer2y() const
{
return outer2y;
}
/** Query the atom given by the tree index. True is returned
* if the atom is one of the variables in the object. */
bool check(int t) const;
/** Return the position of the atom (nulary term) given by a
* tree index. It is a lookup to the map. If the atom cannot
* be found, the exception is raised. */
int get_pos_of(int t) const;
/** This returns a length of ordered row of atoms. In all
* cases so far, it does not depend on the ordering and it is
* as follows. */
int
length() const
{
return n_stat+2*n_pred+3*n_both+2*n_forw;
}
/** Debug print. */
void print() const;
protected:
/** This is a general ordering method which orders the
* variables by the given ordering ord_type. See documentation
* for respective do_ methods. */
void do_general(ord_type ordering);
/** This is a preimplemented ordering for do_ordering()
* method. It assumes that the variables appear only at time
* t-1, t, t+1. It orders the atoms as pred(t-1), both(t-1),
* stat(t), pred(t), both(t), forw(t), both(t+1),
* forw(t+1). It builds the der_atoms, the map of positions,
* as well as y2outer and outer2y. */
void
do_pbspbfbf()
{
do_general(pbspbfbf);
}
/** This is a preimplemented ordering for do_ordering()
* method. It assumes that the variables appear only at time
* t-1, t, t+1. It orders the atoms as both(t+1), forw(t+1),
* stat(t), pred(t), both(t), forw(t), pred(t-1),
* both(t-1). It builds the der_atoms, the map of positions,
* as well as y2outer and outer2y. */
void
do_bfspbfpb()
{
do_general(bfspbfpb);
}
/** This is a preimplemented ordering for do_ordering()
* method. It makes no assumptions about occurences of
* variables at different times. It orders the atoms with
* increasing time keeping the given ordering within one
* time. This implies that y2outer and outer2y will be
* identities. The der_atoms will be just a sequence of atoms
* from the least to the most time preserving the order of atoms
* within one time. */
void do_increasing_time();
};
};
#endif
|