File: dynare_solve.m

package info (click to toggle)
dynare 5.3-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 77,852 kB
  • sloc: cpp: 94,481; ansic: 28,551; pascal: 14,532; sh: 5,453; objc: 4,671; yacc: 4,442; makefile: 2,923; lex: 1,612; python: 677; ruby: 469; lisp: 156; xml: 22
file content (394 lines) | stat: -rw-r--r-- 14,841 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
function [x, errorflag, fvec, fjac] = dynare_solve(f, x, options, varargin)

% Solves a nonlinear system of equations, f(x) = 0 with n unknowns
% and n equations.
%
% INPUTS
% - f            [char, fhandle]    function to be solved
% - x            [double]           n×1 vector, initial guess.
% - options      [struct]           Dynare options, aka options_.
% - varargin                        list of additional arguments to be passed to func.
%
% OUTPUTS
% - x            [double]           n×1 vector, solution.
% - errorflag    [logical]          scalar, true iff the model can not be solved.
% - fvec         [double]           n×1 vector, function value at x (f(x), used for debugging when errorflag is true).
% - fjac         [double]           n×n matrix, Jacobian value at x (J(x), used for debugging when errorflag is true).

% Copyright © 2001-2021 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

jacobian_flag = options.jacobian_flag; % true iff Jacobian is returned by f routine (as a second output argument).

% Set tolerance parameter depending the the caller function.
stack = dbstack;
if isoctave
    [~, name, ext]=fileparts(stack(2).file);
    caller_file_name=[name,ext];
else
    if size(stack,1)>1
        caller_file_name=stack(2).file;
    else
        caller_file_name=stack(1).file;
    end
end
if strcmp(caller_file_name, 'solve_stacked_problem.m') || strcmp(caller_file_name, 'sim1_purely_backward.m') 
    tolf = options.dynatol.f;
    tolx = options.dynatol.x;
else
    tolf = options.solve_tolf;
    tolx = options.solve_tolx;
end

if strcmp(caller_file_name,'dyn_ramsey_static.m')
    maxit = options.ramsey.maxit;
else
    maxit = options.steady.maxit;
end

errorflag = false;
nn = size(x,1);

% Get status of the initial guess (default values?)
if any(x)
    % The current initial guess is not the default for all the variables.
    idx = find(x);      % Indices of the variables with default initial guess values.
    in0 = length(idx);
else
    % The current initial guess is the default for all the variables.
    idx = transpose(1:nn);
    in0 = nn;
end

% Get first element of varargin if solve_algo ∈ {12,14} and rename varargin.
if ismember(options.solve_algo, [12, 14])
    isloggedlhs = varargin{1};
    isauxdiffloggedrhs = varargin{2};
    endo_names = varargin{3};
    lhs = varargin{4};
    args = varargin(5:end);
else
    args = varargin;
end

% checking initial values
if jacobian_flag
    [fvec, fjac] = feval(f, x, args{:});
    wrong_initial_guess_flag = false;
    if ~all(isfinite(fvec)) || any(isinf(fjac(:))) || any(isnan((fjac(:)))) ...
            || any(~isreal(fvec)) || any(~isreal(fjac(:)))
        if max(abs(fvec)) < tolf %return if initial value solves problem
            info = 0;
            return;
        end
        disp_verbose('Randomize initial guess...',options.verbosity)
        % Let's try random numbers for the variables initialized with the default value.
        wrong_initial_guess_flag = true;
        % First try with positive numbers.
        tentative_number = 0;
        while wrong_initial_guess_flag && tentative_number<=in0*10
            tentative_number = tentative_number+1;
            x(idx) = rand(in0, 1)*10;
            [fvec, fjac] = feval(f, x, args{:});
            wrong_initial_guess_flag = ~all(isfinite(fvec)) || any(isinf(fjac(:))) || any(isnan((fjac(:))));
        end
        % If all previous attempts failed, try with real numbers.
        tentative_number = 0;
        while wrong_initial_guess_flag && tentative_number<=in0*10
            tentative_number = tentative_number+1;
            x(idx) = randn(in0, 1)*10;
            [fvec, fjac] = feval(f, x, args{:});
            wrong_initial_guess_flag = ~all(isfinite(fvec)) || any(isinf(fjac(:))) || any(isnan((fjac(:))));
        end
        % Last tentative, ff all previous attempts failed, try with negative numbers.
        tentative_number = 0;
        while wrong_initial_guess_flag && tentative_number<=in0*10
            tentative_number = tentative_number+1;
            x(idx) = -rand(in0, 1)*10;
            [fvec, fjac] = feval(f, x, args{:});
            wrong_initial_guess_flag = ~all(isfinite(fvec)) || any(isinf(fjac(:))) || any(isnan((fjac(:))));
        end
    end
else
    fvec = feval(f, x, args{:});
    fjac = zeros(nn, nn);
    wrong_initial_guess_flag = false;
    if ~all(isfinite(fvec))
        % Let's try random numbers for the variables initialized with the default value.
        wrong_initial_guess_flag = true;
        % First try with positive numbers.
        tentative_number = 0;
        while wrong_initial_guess_flag && tentative_number<=in0*10
            tentative_number = tentative_number+1;
            x(idx) = rand(in0, 1)*10;
            fvec = feval(f, x, args{:});
            wrong_initial_guess_flag = ~all(isfinite(fvec));
        end
        % If all previous attempts failed, try with real numbers.
        tentative_number = 0;
        while wrong_initial_guess_flag && tentative_number<=in0*10
            tentative_number = tentative_number+1;
            x(idx) = randn(in0, 1)*10;
            fvec = feval(f, x, args{:});
            wrong_initial_guess_flag = ~all(isfinite(fvec));
        end
        % Last tentative, ff all previous attempts failed, try with negative numbers.
        tentative_number = 0;
        while wrong_initial_guess_flag && tentative_number<=in0*10
            tentative_number = tentative_number+1;
            x(idx) = -rand(in0, 1)*10;
            fvec = feval(f, x, args{:});
            wrong_initial_guess_flag = ~all(isfinite(fvec));
        end
    end
end

% Exit with error if no initial guess has been found.
if wrong_initial_guess_flag
    errorflag = true;
    x = NaN(size(fvec));
    return
end

% this test doesn't check complementarity conditions and is not used for
% mixed complementarity problems
if (~ismember(options.solve_algo,[10,11])) && (max(abs(fvec)) < tolf)
    return ;
end

if options.solve_algo == 0
    if ~isoctave
        if ~user_has_matlab_license('optimization_toolbox')
            error('You can''t use solve_algo=0 since you don''t have MATLAB''s Optimization Toolbox')
        end
    end
    options4fsolve=optimset('fsolve');
    options4fsolve.MaxFunEvals = 50000;
    options4fsolve.MaxIter = maxit;
    options4fsolve.TolFun = tolf;
    options4fsolve.TolX = tolx;
    if options.debug==1
        options4fsolve.Display = 'final';
    else
        options4fsolve.Display = 'off';
    end
    if jacobian_flag
        options4fsolve.Jacobian = 'on';
    else
        options4fsolve.Jacobian = 'off';
    end
    if ~isoctave
        [x, ~, exitval] = fsolve(f, x, options4fsolve, args{:});
    else
        % Under Octave, use a wrapper, since fsolve() does not have a 4th arg
        if ischar(f)
            f2 = str2func(f);
        else
            f2 = f;
        end
        f = @(x) f2(x, args{:});
        % The Octave version of fsolve does not converge when it starts from the solution
        fvec = feval(f, x);
        if max(abs(fvec)) >= tolf
            [x, ~,exitval] = fsolve(f, x, options4fsolve);
        else
            exitval = 3;
        end
    end

    if exitval == 1
        errorflag = false;
    elseif exitval > 1
        if ischar(f)
            f2 = str2func(f);
        else
            f2 = f;
        end
        f = @(x) f2(x, args{:});
        fvec = feval(f, x);
        if max(abs(fvec)) >= tolf
            errorflag = true;
        else
            errorflag = false;
        end
    else
        errorflag = true;
    end
elseif options.solve_algo==1
    [x, errorflag] = solve1(f, x, 1:nn, 1:nn, jacobian_flag, options.gstep, ...
                            tolf, tolx, ...
                            maxit, options.debug, args{:});
elseif options.solve_algo==9
    [x, errorflag] = trust_region(f, x, 1:nn, 1:nn, jacobian_flag, options.gstep, ...
                             tolf, tolx, ...
                             maxit, options.debug, args{:});
elseif ismember(options.solve_algo, [2, 12, 4])
    if ismember(options.solve_algo, [2, 12])
        solver = @solve1;
    else
        solver = @trust_region;
    end
    specializedunivariateblocks = options.solve_algo == 12;
    if ~jacobian_flag
        fjac = zeros(nn,nn) ;
        dh = max(abs(x), options.gstep(1)*ones(nn,1))*eps^(1/3);
        for j = 1:nn
            xdh = x ;
            xdh(j) = xdh(j)+dh(j) ;
            fjac(:,j) = (feval(f, xdh, args{:})-fvec)./dh(j) ;
        end
    end
    [j1,j2,r,s] = dmperm(fjac);
    JAC = abs(fjac(j1,j2))>0;
    if options.debug
        disp(['DYNARE_SOLVE (solve_algo=2|4|12): number of blocks = ' num2str(length(r)-1)]);
    end
    l = 0;
    fre = false;
    for i=length(r)-1:-1:1
        blocklength = r(i+1)-r(i);
        if options.debug
            dprintf('DYNARE_SOLVE (solve_algo=2|4|12): solving block %u of size %u.', i, blocklength);
        end
        j = r(i):r(i+1)-1;
        if specializedunivariateblocks
            if options.debug
                dprintf('DYNARE_SOLVE (solve_algo=2|4|12): solving block %u by evaluating RHS.', i);
            end
            if isequal(blocklength, 1)
                if i<length(r)-1
                    if fre || any(JAC(r(i), s(i)+(1:l)))
                        % Reevaluation of the residuals is required because the current RHS depends on
                        % variables that potentially have been updated previously.
                        z = feval(f, x, args{:});
                        l = 0;
                        fre = false;
                    end
                else
                    % First iteration requires the evaluation of the residuals.
                    z = feval(f, x, args{:});
                end
                l = l+1;
                if isequal(lhs{j1(j)}, endo_names{j2(j)}) || isequal(lhs{j1(j)}, sprintf('log(%s)', endo_names{j2(j)}))
                    if isloggedlhs(j1(j))
                        x(j2(j)) = exp(log(x(j2(j)))-z(j1(j)));
                    else
                        x(j2(j)) = x(j2(j))-z(j1(j));
                    end
                else
                    if options.debug
                        dprintf('LHS variable is not determined by RHS expression (%u).', j1(j))
                        dprintf('%s -> %s', lhs{j1(j)}, endo_names{j2(j)})
                    end
                    if ~isempty(regexp(lhs{j1(j)}, '\<AUX_DIFF_(\d*)\>', 'once'))
                        if isauxdiffloggedrhs(j1(j))
                            x(j2(j)) = exp(log(x(j2(j)))+z(j1(j)));
                        else
                            x(j2(j)) = x(j2(j))+z(j1(j));
                        end
                    else
                        error('Algorithm solve_algo=%u cannot be used with this nonlinear problem.', options.solve_algo)
                    end
                end
                continue
            end
        else
            if options.debug
                dprintf('DYNARE_SOLVE (solve_algo=2|4|12): solving block %u with trust_region routine.', i);
            end
        end
        blockcolumns=s(i+1)-s(i);
        if blockcolumns ~= blocklength
            %non-square-block in DM; check whether initial value is solution
            [fval_check, fjac] = feval(f, x, args{:});
            if norm(fval_check(j1(j))) < tolf
                errorflag = false;
                continue
            end
        end
        if blockcolumns>=blocklength
            %(under-)determined block
            [x, errorflag] = solver(f, x, j1(j), j2(j), jacobian_flag, ...
                options.gstep, ...
                tolf, options.solve_tolx, maxit, ...
                options.debug, args{:});
            fre = true;
        else
            fprintf('\nDYNARE_SOLVE (solve_algo=2|4|12): the Dulmage-Mendelsohn decomposition returned a non-square block. This means that the Jacobian is singular. You may want to try another value for solve_algo.\n')
            %overdetermined block
            errorflag = true;
        end
        if errorflag
            return
        end
    end
    fvec = feval(f, x, args{:});
    if max(abs(fvec))>tolf
        disp_verbose('Call solver on the full nonlinear problem.',options.verbosity)
        [x, errorflag] = solver(f, x, 1:nn, 1:nn, jacobian_flag, ...
                                options.gstep, tolf, options.solve_tolx, ...
                                maxit, options.debug, args{:});
    end
elseif options.solve_algo==3
    if jacobian_flag
        [x, errorflag] = csolve(f, x, f, tolf, maxit, args{:});
    else
        [x, errorflag] = csolve(f, x, [], tolf, maxit, args{:});
    end
    [fvec, fjac] = feval(f, x, args{:});
elseif options.solve_algo==10
    % LMMCP
    olmmcp = options.lmmcp;
    [x, ~, exitflag] = lmmcp(f, x, olmmcp.lb, olmmcp.ub, olmmcp, args{:});
    if exitflag==1
        errorflag = false;
    else
        errorflag = true;
    end
elseif options.solve_algo == 11
    % PATH mixed complementary problem
    % PATH linear mixed complementary problem
    if ~exist('mcppath')
        error(['PATH can''t be provided with Dynare. You need to install it ' ...
               'yourself and add its location to Matlab/Octave path before ' ...
               'running Dynare'])
    end
    omcppath = options.mcppath;
    global mcp_data
    mcp_data.func = f;
    mcp_data.args = args;
    try
        [x, fval, jac, mu] = pathmcp(x,omcppath.lb,omcppath.ub,'mcp_func',omcppath.A,omcppath.b,omcppath.t,omcppath.mu0);
    catch
        errorflag = true;
    end
elseif ismember(options.solve_algo, [13, 14])
    if ~jacobian_flag
        error('DYNARE_SOLVE: option solve_algo=13|14 needs computed Jacobian')
    end
    auxstruct = struct();
    if options.solve_algo == 14
        auxstruct.lhs = lhs;
        auxstruct.endo_names = endo_names;
        auxstruct.isloggedlhs = isloggedlhs;
        auxstruct.isauxdiffloggedrhs = isauxdiffloggedrhs;
    end
    [x, errorflag] = block_trust_region(f, x, tolf, options.solve_tolx, maxit, options.debug, auxstruct, args{:});
    [fvec, fjac] = feval(f, x, args{:});
else
    error('DYNARE_SOLVE: option solve_algo must be one of [0,1,2,3,4,9,10,11,12,13,14]')
end