1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
|
function DERIVS = get_perturbation_params_derivs(M, options, estim_params, oo, indpmodel, indpstderr, indpcorr, d2flag)
% DERIVS = get_perturbation_params_derivs(M, options, estim_params, oo, indpmodel, indpstderr, indpcorr, d2flag)
% previously getH.m in dynare 4.5
% -------------------------------------------------------------------------
% Computes derivatives (with respect to parameters) of
% (1) steady-state (ys) and covariance matrix of shocks (Sigma_e)
% (2) dynamic model jacobians (g1, g2, g3)
% (3) perturbation solution matrices:
% * order==1: ghx,ghu
% * order==2: ghx,ghu,ghxx,ghxu,ghuu,ghs2
% * order==3: ghx,ghu,ghxx,ghxu,ghuu,ghs2,ghxxx,ghxxu,ghxuu,ghuuu,ghxss,ghuss
% Note that the order in the parameter Jacobians is the following:
% (1) stderr parameters (indpstderr)
% (2) corr parameters (indpcorr)
% (3) model parameters (indpmodel)
%
% =========================================================================
% INPUTS
% M: [structure] storing the model information
% options: [structure] storing the options
% estim_params: [structure] storing the estimation information
% oo: [structure] storing the solution results
% indpmodel: [modparam_nbr by 1] index of selected (estimated) parameters in M.params;
% corresponds to model parameters (no stderr and no corr) in estimated_params block
% indpstderr: [stderrparam_nbr by 1] index of selected (estimated) standard errors,
% i.e. for all exogenous variables where 'stderr' is given in the estimated_params block
% indpcorr: [corrparam_nbr by 2] matrix of selected (estimated) correlations,
% i.e. for all exogenous variables where 'corr' is given in the estimated_params block
% d2flag: [boolean] flag to compute second-order parameter derivatives of steady state and first-order Kalman transition matrices
% -------------------------------------------------------------------------
% OUTPUTS
% DERIVS: Structure with the following fields:
% dYss: [endo_nbr by modparam_nbr] in DR order
% Jacobian (wrt model parameters only) of steady state, i.e. ys(order_var,:)
% dSigma_e: [exo_nbr by exo_nbr by totparam_nbr] in declaration order
% Jacobian (wrt to all paramters) of covariance matrix of shocks, i.e. Sigma_e
% dg1: [endo_nbr by yy0ex0_nbr by modparam_nbr] in DR order
% Parameter Jacobian of first derivative (wrt dynamic model variables) of dynamic model (wrt to model parameters only)
% dg2: [endo_nbr by yy0ex0_nbr^2*modparam_nbr] in DR order
% Parameter Jacobian of second derivative (wrt dynamic model variables) of dynamic model (wrt to model parameters only)
% Note that instead of tensors we use matrix notation with blocks: dg2 = [dg2_dp1 dg2_dp2 ...],
% where dg2_dpj is [endo_nbr by yy0ex0_nbr^2] and represents the derivative of g2 wrt parameter pj
% dg3: [endo_nbr by yy0ex0_nbr^3*modparam_nbr] in DR order
% Parameter Jacobian of third derivative (wrt dynamic model variables) of dynamic model (wrt to model parameters only)
% Note that instead of tensors we use matrix notation with blocks: dg3 = [dg3_dp1 dg3_dp2 ...],
% where dg3_dpj is [endo_nbr by yy0ex0_nbr^3] and represents the derivative of g3 wrt parameter pj
% dghx: [endo_nbr by nspred by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of first-order perturbation solution matrix ghx
% dghu: [endo_nbr by exo_nbr by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of first-order perturbation solution matrix ghu
% dOm: [endo_nbr by endo_nbr by totparam_nbr] in DR order
% Jacobian (wrt to all paramters) of Om = ghu*Sigma_e*transpose(ghu)
% dghxx [endo_nbr by nspred*nspred by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of second-order perturbation solution matrix ghxx
% dghxu [endo_nbr by nspred*exo_nbr by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of second-order perturbation solution matrix ghxu
% dghuu [endo_nbr by exo_nbr*exo_nbr by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of second-order perturbation solution matrix ghuu
% dghs2 [endo_nbr by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of second-order perturbation solution matrix ghs2
% dghxxx [endo_nbr by nspred*nspred*nspred by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of third-order perturbation solution matrix ghxxx
% dghxxu [endo_nbr by nspred*nspred*exo_nbr by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of third-order perturbation solution matrix ghxxu
% dghxuu [endo_nbr by nspred*exo_nbr*exo_nbr by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of third-order perturbation solution matrix ghxuu
% dghuuu [endo_nbr by exo_nbr*exo_nbr*exo_nbr by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of third-order perturbation solution matrix ghuuu
% dghxss [endo_nbr by nspred by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of third-order perturbation solution matrix ghxss
% dghuss [endo_nbr by exo_nbr by totparam_nbr] in DR order
% Jacobian (wrt to all parameters) of third-order perturbation solution matrix ghuss
% if d2flag==true, we additional output:
% d2KalmanA: [endo_nbr*endo_nbr by totparam_nbr*(totparam_nbr+1)/2] in DR order
% Unique entries of Hessian (wrt all parameters) of Kalman transition matrix A
% d2Om: [endo_nbr*(endo_nbr+1)/2 by totparam_nbr*(totparam_nbr+1)/2] in DR order
% Unique entries of Hessian (wrt all parameters) of Om=ghu*Sigma_e*transpose(ghu)
% d2Yss: [endo_nbr by modparam_nbr by modparam_nbr] in DR order
% Unique entries of Hessian (wrt model parameters only) of steady state ys(order_var,:)
%
% -------------------------------------------------------------------------
% This function is called by
% * dsge_likelihood.m
% * get_identification_jacobians.m
% -------------------------------------------------------------------------
% This function calls
% * [fname,'.dynamic']
% * [fname,'.dynamic_params_derivs']
% * [fname,'.static']
% * [fname,'.static_params_derivs']
% * commutation
% * dyn_vech
% * dyn_unvech
% * fjaco
% * get_2nd_deriv (embedded)
% * get_2nd_deriv_mat(embedded)
% * get_all_parameters
% * get_all_resid_2nd_derivs (embedded)
% * get_hess_deriv (embedded)
% * hessian_sparse
% * sylvester3
% * sylvester3a
% * get_perturbation_params_derivs_numerical_objective
% =========================================================================
% Copyright (C) 2019-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
% =========================================================================
% Get fields from M
Correlation_matrix = M.Correlation_matrix;
dname = M.dname;
dynamic_tmp_nbr = M.dynamic_tmp_nbr;
endo_nbr = M.endo_nbr;
exo_nbr = M.exo_nbr;
exo_det_nbr = M.exo_det_nbr;
fname = M.fname;
lead_lag_incidence = M.lead_lag_incidence;
nfwrd = M.nfwrd;
npred = M.npred;
nspred = M.nspred;
nstatic = M.nstatic;
params = M.params;
param_nbr = M.param_nbr;
Sigma_e = M.Sigma_e;
% Get fields from options
analytic_derivation_mode = options.analytic_derivation_mode;
% analytic_derivation_mode: select method to compute Jacobians, default is 0
% * 0: efficient sylvester equation method to compute analytical derivatives as in Ratto & Iskrev (2012)
% * 1: kronecker products method to compute analytical derivatives as in Iskrev (2010), only for order=1
% * -1: numerical two-sided finite difference method to compute numerical derivatives of all output arguments using function get_perturbation_params_derivs_numerical_objective.m
% * -2: numerical two-sided finite difference method to compute numerically dYss, dg1, dg2, dg3, d2Yss and d2g1, the other output arguments are computed analytically as in kronflag=0
gstep = options.gstep;
order = options.order;
if isempty(options.qz_criterium)
% set default value for qz_criterium: if there are no unit roots one can use 1.0
% If they are possible, you may have have multiple unit roots and the accuracy
% decreases when computing the eigenvalues in lyapunov_symm. Hence, we normally use 1+1e-6
options = select_qz_criterium_value(options);
end
qz_criterium = options.qz_criterium;
threads_BC = options.threads.kronecker.sparse_hessian_times_B_kronecker_C;
% Get fields from oo
exo_steady_state = oo.exo_steady_state;
ghx = oo.dr.ghx;
ghu = oo.dr.ghu;
if order > 1
ghxx = oo.dr.ghxx;
ghxu = oo.dr.ghxu;
ghuu = oo.dr.ghuu;
ghs2 = oo.dr.ghs2;
end
if order > 2
ghxxx = oo.dr.ghxxx;
ghxxu = oo.dr.ghxxu;
ghxuu = oo.dr.ghxuu;
ghuuu = oo.dr.ghuuu;
ghxss = oo.dr.ghxss;
ghuss = oo.dr.ghuss;
end
order_var = oo.dr.order_var;
ys = oo.dr.ys;
% Some checks
if exo_det_nbr > 0
error('''get_perturbation_params_derivs'': not compatible with deterministic exogenous variables, please declare as endogenous.')
end
if order > 1 && analytic_derivation_mode == 1
%analytic derivatives using Kronecker products is implemented only at first-order, at higher order we reset to analytic derivatives with sylvester equations
%options.analytic_derivation_mode = 0; fprintf('As order > 1, reset ''analytic_derivation_mode'' to 0\n');
analytic_derivation_mode = 0; fprintf('As order > 1, reset ''analytic_derivation_mode'' to 0\n');
end
numerical_objective_fname = str2func('get_perturbation_params_derivs_numerical_objective');
idx_states = nstatic+(1:nspred); %index for state variables, in DR order
modparam_nbr = length(indpmodel); %number of selected model parameters
stderrparam_nbr = length(indpstderr); %number of selected stderr parameters
corrparam_nbr = size(indpcorr,1); %number of selected corr parameters
totparam_nbr = modparam_nbr + stderrparam_nbr + corrparam_nbr; %total number of selected parameters
[I,~] = find(lead_lag_incidence'); %I is used to select nonzero columns of the Jacobian of endogenous variables in dynamic model files
yy0_nbr = length(ys(I)); %number of dynamic variables
yy0ex0_nbr = yy0_nbr+exo_nbr; %number of dynamic variables + exogenous variables
kyy0 = nonzeros(lead_lag_incidence(:,order_var)'); %index for nonzero entries in dynamic files at t-1,t,t+1 in DR order
kyy0ex0 = [kyy0; length(kyy0)+(1:exo_nbr)']; %dynamic files include derivatives wrt exogenous variables, note that exo_det is always 0
if order > 1
k2yy0ex0 = transpose(reshape(1:yy0ex0_nbr^2,yy0ex0_nbr,yy0ex0_nbr)); %index for the second dynamic derivatives, i.e. to evaluate the derivative of f wrt to yy0ex0(i) and yy0ex0(j), in DR order
end
if order > 2
k3yy0ex0 = permute(reshape(transpose(reshape(1:yy0ex0_nbr^3,yy0ex0_nbr,yy0ex0_nbr^2)),yy0ex0_nbr,yy0ex0_nbr,yy0ex0_nbr),[2 1 3]); %index for the third dynamic derivative, i.e. df/(dyyex0_i*dyyex0_j*dyyex0_k)
end
% Check for purely backward or forward looking models
if size(lead_lag_incidence,1)<3
if nfwrd == 0 %purely backward models
klag = lead_lag_incidence(1,order_var); %indices of lagged (i.e. t-1) variables in dynamic files, columns are in DR order
kcurr = lead_lag_incidence(2,order_var); %indices of current (i.e. t) variables in dynamic files, columns are in DR order
klead = zeros(1,size(lead_lag_incidence,2)); %indices of lead (i.e. t+1) variables in dynamic files, columns are in DR order
elseif npred == 0 %purely forward models
klag = zeros(1,size(lead_lag_incidence,2)); %indices of lagged (i.e. t-1) variables in dynamic files, columns are in DR order
kcurr = lead_lag_incidence(1,order_var); %indices of current (i.e. t) variables in dynamic files, columns are in DR order
klead = lead_lag_incidence(2,order_var); %indices of lead (i.e. t+1) variables in dynamic files, columns are in DR order
end
else %normal models
klag = lead_lag_incidence(1,order_var); %indices of lagged (i.e. t-1) variables in dynamic files, columns are in DR order
kcurr = lead_lag_incidence(2,order_var); %indices of current (i.e. t) variables in dynamic files, columns are in DR order
klead = lead_lag_incidence(3,order_var); %indices of lead (i.e. t+1) variables in dynamic files, columns are in DR order
end
if analytic_derivation_mode < 0
%Create auxiliary estim_params blocks if not available for numerical derivatives, estim_params_model contains only model parameters
estim_params_model.np = length(indpmodel);
estim_params_model.param_vals(:,1) = indpmodel;
estim_params_model.nvx = 0; estim_params_model.ncx = 0; estim_params_model.nvn = 0; estim_params_model.ncn = 0;
modparam1 = get_all_parameters(estim_params_model, M); %get all selected model parameters
if ~isempty(indpstderr) && isempty(estim_params.var_exo) %if there are stderr parameters but no estimated_params_block
%provide temporary necessary information for stderr parameters
estim_params.nvx = length(indpstderr);
estim_params.var_exo(:,1) = indpstderr;
end
if ~isempty(indpcorr) && isempty(estim_params.corrx) %if there are corr parameters but no estimated_params_block
%provide temporary necessary information for stderr parameters
estim_params.ncx = size(indpcorr,1);
estim_params.corrx(:,1:2) = indpcorr;
end
if ~isfield(estim_params,'nvn') %stderr of measurement errors not yet
estim_params.nvn = 0;
estim_params.var_endo = [];
end
if ~isfield(estim_params,'ncn') %corr of measurement errors not yet
estim_params.ncn = 0;
estim_params.corrn = [];
end
if ~isempty(indpmodel) && isempty(estim_params.param_vals) %if there are model parameters but no estimated_params_block
%provide temporary necessary information for model parameters
estim_params.np = length(indpmodel);
estim_params.param_vals(:,1) = indpmodel;
end
xparam1 = get_all_parameters(estim_params, M); %get all selected stderr, corr, and model parameters in estimated_params block, stderr and corr come first, then model parameters
end
if d2flag
modparam_nbr2 = modparam_nbr*(modparam_nbr+1)/2; %number of unique entries of selected model parameters only in second-order derivative matrix
totparam_nbr2 = totparam_nbr*(totparam_nbr+1)/2; %number of unique entries of all selected parameters in second-order derivative matrix
%get indices of elements in second derivatives of parameters
indp2tottot = reshape(1:totparam_nbr^2,totparam_nbr,totparam_nbr);
indp2stderrstderr = indp2tottot(1:stderrparam_nbr , 1:stderrparam_nbr);
indp2stderrcorr = indp2tottot(1:stderrparam_nbr , stderrparam_nbr+1:stderrparam_nbr+corrparam_nbr);
indp2modmod = indp2tottot(stderrparam_nbr+corrparam_nbr+1:stderrparam_nbr+corrparam_nbr+modparam_nbr , stderrparam_nbr+corrparam_nbr+1:stderrparam_nbr+corrparam_nbr+modparam_nbr);
if totparam_nbr ~=1
indp2tottot2 = dyn_vech(indp2tottot); %index of unique second-order derivatives
else
indp2tottot2 = indp2tottot;
end
if modparam_nbr ~= 1
indp2modmod2 = dyn_vech(indp2modmod); %get rid of cross derivatives
else
indp2modmod2 = indp2modmod;
end
%Kalman transition matrices, as in kalman_transition_matrix.m
KalmanA = zeros(endo_nbr,endo_nbr);
KalmanA(:,idx_states) = ghx;
KalmanB = ghu;
end
% Store some objects
DERIVS.indpmodel = indpmodel;
DERIVS.indpstderr = indpstderr;
DERIVS.indpcorr = indpcorr;
if analytic_derivation_mode == -1
%% numerical two-sided finite difference method using function get_perturbation_params_derivs_numerical_objective.m (previously thet2tau.m in Dynare 4.5) for
% Jacobian (wrt selected stderr, corr and model parameters) of
% - dynamic model derivatives: dg1, dg2, dg3
% - steady state (in DR order): dYss
% - covariance matrix of shocks: dSigma_e
% - perturbation solution matrices: dghx, dghu, dghxx, dghxu, dghuu, dghs2, dghxxx, dghxxu, dghxuu, dghuuu, dghxss, dghuss
%Parameter Jacobian of covariance matrix and solution matrices (wrt selected stderr, corr and model paramters)
dSig_gh = fjaco(numerical_objective_fname, xparam1, 'perturbation_solution', estim_params, M, oo, options);
ind_Sigma_e = (1:exo_nbr^2);
ind_ghx = ind_Sigma_e(end) + (1:endo_nbr*nspred);
ind_ghu = ind_ghx(end) + (1:endo_nbr*exo_nbr);
DERIVS.dSigma_e = reshape(dSig_gh(ind_Sigma_e,:),[exo_nbr exo_nbr totparam_nbr]); %in tensor notation, wrt selected parameters
DERIVS.dghx = reshape(dSig_gh(ind_ghx,:),[endo_nbr nspred totparam_nbr]); %in tensor notation, wrt selected parameters
DERIVS.dghu = reshape(dSig_gh(ind_ghu,:),[endo_nbr exo_nbr totparam_nbr]); %in tensor notation, wrt selected parameters
if order > 1
ind_ghxx = ind_ghu(end) + (1:endo_nbr*nspred^2);
ind_ghxu = ind_ghxx(end) + (1:endo_nbr*nspred*exo_nbr);
ind_ghuu = ind_ghxu(end) + (1:endo_nbr*exo_nbr*exo_nbr);
ind_ghs2 = ind_ghuu(end) + (1:endo_nbr);
DERIVS.dghxx = reshape(dSig_gh(ind_ghxx,:), [endo_nbr nspred^2 totparam_nbr]); %in tensor notation, wrt selected parameters
DERIVS.dghxu = reshape(dSig_gh(ind_ghxu,:), [endo_nbr nspred*exo_nbr totparam_nbr]); %in tensor notation, wrt selected parameters
DERIVS.dghuu = reshape(dSig_gh(ind_ghuu,:), [endo_nbr exo_nbr*exo_nbr totparam_nbr]); %in tensor notation, wrt selected parameters
DERIVS.dghs2 = reshape(dSig_gh(ind_ghs2,:), [endo_nbr totparam_nbr]); %in tensor notation, wrt selected parameters
end
if order > 2
ind_ghxxx = ind_ghs2(end) + (1:endo_nbr*nspred^3);
ind_ghxxu = ind_ghxxx(end) + (1:endo_nbr*nspred^2*exo_nbr);
ind_ghxuu = ind_ghxxu(end) + (1:endo_nbr*nspred*exo_nbr^2);
ind_ghuuu = ind_ghxuu(end) + (1:endo_nbr*exo_nbr^3);
ind_ghxss = ind_ghuuu(end) + (1:endo_nbr*nspred);
ind_ghuss = ind_ghxss(end) + (1:endo_nbr*exo_nbr);
DERIVS.dghxxx = reshape(dSig_gh(ind_ghxxx,:), [endo_nbr nspred^3 totparam_nbr]); %in tensor notation, wrt selected parameters
DERIVS.dghxxu = reshape(dSig_gh(ind_ghxxu,:), [endo_nbr nspred^2*exo_nbr totparam_nbr]); %in tensor notation, wrt selected parameters
DERIVS.dghxuu = reshape(dSig_gh(ind_ghxuu,:), [endo_nbr nspred*exo_nbr^2 totparam_nbr]); %in tensor notation, wrt selected parameters
DERIVS.dghuuu = reshape(dSig_gh(ind_ghuuu,:), [endo_nbr exo_nbr^3 totparam_nbr]); %in tensor notation, wrt selected parameters
DERIVS.dghxss = reshape(dSig_gh(ind_ghxss,:), [endo_nbr nspred totparam_nbr]); %in tensor notation, wrt selected parameters
DERIVS.dghuss = reshape(dSig_gh(ind_ghuss,:), [endo_nbr exo_nbr totparam_nbr]); %in tensor notation, wrt selected parameters
end
% Parameter Jacobian of Om=ghu*Sigma_e*ghu' and Correlation_matrix (wrt selected stderr, corr and model paramters)
DERIVS.dOm = zeros(endo_nbr,endo_nbr,totparam_nbr); %initialize in tensor notation
DERIVS.dCorrelation_matrix = zeros(exo_nbr,exo_nbr,totparam_nbr); %initialize in tensor notation
if ~isempty(indpstderr) %derivatives of ghu wrt stderr parameters are zero by construction
for jp=1:stderrparam_nbr
DERIVS.dOm(:,:,jp) = ghu*DERIVS.dSigma_e(:,:,jp)*ghu';
end
end
if ~isempty(indpcorr) %derivatives of ghu wrt corr parameters are zero by construction
for jp=1:corrparam_nbr
DERIVS.dOm(:,:,stderrparam_nbr+jp) = ghu*DERIVS.dSigma_e(:,:,stderrparam_nbr+jp)*ghu';
DERIVS.dCorrelation_matrix(indpcorr(jp,1),indpcorr(jp,2),stderrparam_nbr+jp) = 1;
DERIVS.dCorrelation_matrix(indpcorr(jp,2),indpcorr(jp,1),stderrparam_nbr+jp) = 1;%symmetry
end
end
if ~isempty(indpmodel) %derivatives of Sigma_e wrt model parameters are zero by construction
for jp=1:modparam_nbr
DERIVS.dOm(:,:,stderrparam_nbr+corrparam_nbr+jp) = DERIVS.dghu(:,:,stderrparam_nbr+corrparam_nbr+jp)*Sigma_e*ghu' + ghu*Sigma_e*DERIVS.dghu(:,:,stderrparam_nbr+corrparam_nbr+jp)';
end
end
%Parameter Jacobian of dynamic model derivatives (wrt selected model parameters only)
dYss_g = fjaco(numerical_objective_fname, modparam1, 'dynamic_model', estim_params_model, M, oo, options);
ind_Yss = 1:endo_nbr;
if options.discretionary_policy || options.ramsey_policy
ind_g1 = ind_Yss(end) + (1:M.eq_nbr*yy0ex0_nbr);
else
ind_g1 = ind_Yss(end) + (1:endo_nbr*yy0ex0_nbr);
end
DERIVS.dYss = dYss_g(ind_Yss, :); %in tensor notation, wrt selected model parameters only
if options.discretionary_policy || options.ramsey_policy
DERIVS.dg1 = reshape(dYss_g(ind_g1,:),[M.eq_nbr, yy0ex0_nbr, modparam_nbr]); %in tensor notation, wrt selected model parameters only
else
DERIVS.dg1 = reshape(dYss_g(ind_g1,:),[endo_nbr, yy0ex0_nbr, modparam_nbr]); %in tensor notation, wrt selected model parameters only
end
if order > 1
ind_g2 = ind_g1(end) + (1:endo_nbr*yy0ex0_nbr^2);
DERIVS.dg2 = reshape(sparse(dYss_g(ind_g2,:)),[endo_nbr, yy0ex0_nbr^2*modparam_nbr]); %blockwise in matrix notation, i.e. [dg2_dp1 dg2_dp2 ...], where dg2_dpj has dimension endo_nbr by yy0ex0_nbr^2
end
if order > 2
ind_g3 = ind_g2(end) + (1:endo_nbr*yy0ex0_nbr^3);
DERIVS.dg3 = reshape(sparse(dYss_g(ind_g3,:)),[endo_nbr, yy0ex0_nbr^3*modparam_nbr]); %blockwise in matrix notation, i.e. [dg3_dp1 dg3_dp2 ...], where dg3_dpj has dimension endo_nbr by yy0ex0_nbr^3
end
if d2flag
% Hessian (wrt paramters) of steady state and first-order solution matrices ghx and Om
% note that hessian_sparse.m (contrary to hessian.m) does not take symmetry into account, but focuses already on unique values
options.order = 1; %make sure only first order
d2Yss_KalmanA_Om = hessian_sparse(numerical_objective_fname, xparam1, gstep, 'Kalman_Transition', estim_params, M, oo, options);
options.order = order; %make sure to set back
ind_KalmanA = ind_Yss(end) + (1:endo_nbr^2);
DERIVS.d2KalmanA = d2Yss_KalmanA_Om(ind_KalmanA, indp2tottot2); %only unique elements
DERIVS.d2Om = d2Yss_KalmanA_Om(ind_KalmanA(end)+1:end , indp2tottot2); %only unique elements
DERIVS.d2Yss = zeros(endo_nbr,modparam_nbr,modparam_nbr); %initialize
for j = 1:endo_nbr
DERIVS.d2Yss(j,:,:) = dyn_unvech(full(d2Yss_KalmanA_Om(j,indp2modmod2))); %Hessian for d2Yss, but without cross derivatives
end
end
return %[END OF MAIN FUNCTION]!!!!!
end
if analytic_derivation_mode == -2
%% Numerical two-sided finite difference method to compute parameter derivatives of steady state and dynamic model,
% i.e. dYss, dg1, dg2, dg3 as well as d2Yss, d2g1 numerically.
% The parameter derivatives of perturbation solution matrices are computed analytically below (analytic_derivation_mode=0)
if order == 3
[~, g1, g2, g3] = feval([fname,'.dynamic'], ys(I), exo_steady_state', params, ys, 1);
g3 = unfold_g3(g3, yy0ex0_nbr);
elseif order == 2
[~, g1, g2] = feval([fname,'.dynamic'], ys(I), exo_steady_state', params, ys, 1);
elseif order == 1
[~, g1] = feval([fname,'.dynamic'], ys(I), exo_steady_state', params, ys, 1);
end
if d2flag
% computation of d2Yss and d2g1
% note that hessian_sparse does not take symmetry into account, i.e. compare hessian_sparse.m to hessian.m, but focuses already on unique values, which are duplicated below
options.order = 1; %d2flag requires only first order
d2Yss_g1 = hessian_sparse(numerical_objective_fname, modparam1, gstep, 'dynamic_model', estim_params_model, M, oo, options); % d2flag requires only first-order
options.order = order; %make sure to set back the order
d2Yss = reshape(full(d2Yss_g1(1:endo_nbr,:)), [endo_nbr modparam_nbr modparam_nbr]); %put into tensor notation
for j=1:endo_nbr
d2Yss(j,:,:) = dyn_unvech(dyn_vech(d2Yss(j,:,:))); %add duplicate values to full hessian
end
d2g1_full = d2Yss_g1(endo_nbr+1:end,:);
%store only nonzero unique entries and the corresponding indices of d2g1:
% rows: respective derivative term
% 1st column: equation number of the term appearing
% 2nd column: column number of variable in Jacobian of the dynamic model
% 3rd column: number of the first parameter in derivative
% 4th column: number of the second parameter in derivative
% 5th column: value of the Hessian term
ind_d2g1 = find(d2g1_full);
d2g1 = zeros(length(ind_d2g1),5);
for j=1:length(ind_d2g1)
[i1, i2] = ind2sub(size(d2g1_full),ind_d2g1(j));
[ig1, ig2] = ind2sub(size(g1),i1);
[ip1, ip2] = ind2sub([modparam_nbr modparam_nbr],i2);
d2g1(j,:) = [ig1 ig2 ip1 ip2 d2g1_full(ind_d2g1(j))];
end
clear d2g1_full d2Yss_g1;
end
%Parameter Jacobian of dynamic model derivatives (wrt selected model parameters only)
dYss_g = fjaco(numerical_objective_fname, modparam1, 'dynamic_model', estim_params_model, M, oo, options);
ind_Yss = 1:endo_nbr;
ind_g1 = ind_Yss(end) + (1:endo_nbr*yy0ex0_nbr);
dYss = dYss_g(ind_Yss,:); %in tensor notation, wrt selected model parameters only
dg1 = reshape(dYss_g(ind_g1,:),[endo_nbr,yy0ex0_nbr,modparam_nbr]); %in tensor notation
if order > 1
ind_g2 = ind_g1(end) + (1:endo_nbr*yy0ex0_nbr^2);
dg2 = reshape(sparse(dYss_g(ind_g2,:)),[endo_nbr, yy0ex0_nbr^2*modparam_nbr]); %blockwise in matrix notation, i.e. [dg2_dp1 dg2_dp2 ...], where dg2_dpj has dimension endo_nbr by yy0ex0_nbr^2
end
if order > 2
ind_g3 = ind_g2(end) + (1:endo_nbr*yy0ex0_nbr^3);
dg3 = reshape(sparse(dYss_g(ind_g3,:)), [endo_nbr, yy0ex0_nbr^3*modparam_nbr]); %blockwise in matrix notation, i.e. [dg3_dp1 dg3_dp2 ...], where dg3_dpj has dimension endo_nbr by yy0ex0_nbr^3
end
clear dYss_g
elseif (analytic_derivation_mode == 0 || analytic_derivation_mode == 1)
%% Analytical computation of Jacobian and Hessian (wrt selected model parameters) of steady state, i.e. dYss and d2Yss
[~, g1_static] = feval([fname,'.static'], ys, exo_steady_state', params); %g1_static is [endo_nbr by endo_nbr] first-derivative (wrt all endogenous variables) of static model equations f, i.e. df/dys, in declaration order
try
rp_static = feval([fname,'.static_params_derivs'], ys, exo_steady_state', params); %rp_static is [endo_nbr by param_nbr] first-derivative (wrt all model parameters) of static model equations f, i.e. df/dparams, in declaration order
catch
error('For analytical parameter derivatives ''static_params_derivs.m'' file is needed, this can be created by putting identification(order=%d) into your mod file.',order)
end
dys = -g1_static\rp_static; %use implicit function theorem (equation 5 of Ratto and Iskrev (2012) to compute [endo_nbr by param_nbr] first-derivative (wrt all model parameters) of steady state for all endogenous variables analytically, note that dys is in declaration order
d2ys = zeros(endo_nbr, param_nbr, param_nbr); %initialize in tensor notation, note that d2ys is only needed for d2flag, i.e. for g1pp
if d2flag
[~, ~, g2_static] = feval([fname,'.static'], ys, exo_steady_state', params); %g2_static is [endo_nbr by endo_nbr^2] second derivative (wrt all endogenous variables) of static model equations f, i.e. d(df/dys)/dys, in declaration order
if order < 3
[~, g1, g2, g3] = feval([fname,'.dynamic'], ys(I), exo_steady_state', params, ys, 1); %note that g3 does not contain symmetric elements
g3 = unfold_g3(g3, yy0ex0_nbr); %add symmetric elements to g3
else
T = NaN(sum(dynamic_tmp_nbr(1:5)));
T = feval([fname, '.dynamic_g4_tt'], T, ys(I), exo_steady_state', params, ys, 1);
g1 = feval([fname, '.dynamic_g1'], T, ys(I), exo_steady_state', params, ys, 1, false); %g1 is [endo_nbr by yy0ex0_nbr first derivative (wrt all dynamic variables) of dynamic model equations, i.e. df/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
g2 = feval([fname, '.dynamic_g2'], T, ys(I), exo_steady_state', params, ys, 1, false); %g2 is [endo_nbr by yy0ex0_nbr^2] second derivative (wrt all dynamic variables) of dynamic model equations, i.e. d(df/dyy0ex0)/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
g3 = feval([fname, '.dynamic_g3'], T, ys(I), exo_steady_state', params, ys, 1, false); %note that g3 does not contain symmetric elements
g4 = feval([fname, '.dynamic_g4'], T, ys(I), exo_steady_state', params, ys, 1, false); %note that g4 does not contain symmetric elements
g3 = unfold_g3(g3, yy0ex0_nbr); %add symmetric elements to g3, %g3 is [endo_nbr by yy0ex0_nbr^3] third-derivative (wrt all dynamic variables) of dynamic model equations, i.e. (d(df/dyy0ex0)/dyy0ex0)/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
g4 = unfold_g4(g4, yy0ex0_nbr); %add symmetric elements to g4, %g4 is [endo_nbr by yy0ex0_nbr^4] fourth-derivative (wrt all dynamic variables) of dynamic model equations, i.e. ((d(df/dyy0ex0)/dyy0ex0)/dyy0ex0)/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
end
%g1 is [endo_nbr by yy0ex0_nbr first derivative (wrt all dynamic variables) of dynamic model equations, i.e. df/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
%g2 is [endo_nbr by yy0ex0_nbr^2] second derivative (wrt all dynamic variables) of dynamic model equations, i.e. d(df/dyy0ex0)/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
%g3 is [endo_nbr by yy0ex0_nbr^3] third-derivative (wrt all dynamic variables) of dynamic model equations, i.e. (d(df/dyy0ex0)/dyy0ex0)/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
try
[~, g1p_static, rpp_static] = feval([fname,'.static_params_derivs'], ys, exo_steady_state', params);
%g1p_static is [endo_nbr by endo_nbr by param_nbr] first derivative (wrt all model parameters) of first-derivative (wrt all endogenous variables) of static model equations f, i.e. (df/dys)/dparams, in declaration order
%rpp_static is [#second_order_residual_terms by 4] and contains nonzero values and corresponding indices of second derivatives (wrt all model parameters) of static model equations f, i.e. d(df/dparams)/dparams, in declaration order, where
% column 1 contains equation number; column 2 contains first parameter; column 3 contains second parameter; column 4 contains value of derivative
catch
error('For analytical parameter derivatives ''static_params_derivs.m'' file is needed, this can be created by putting identification(order=%d) into your mod file.',order)
end
rpp_static = get_all_resid_2nd_derivs(rpp_static, endo_nbr, param_nbr); %make full matrix out of nonzero values and corresponding indices
%rpp_static is [endo_nbr by param_nbr by param_nbr] second derivatives (wrt all model parameters) of static model equations, i.e. d(df/dparams)/dparams, in declaration order
if isempty(find(g2_static))
%auxiliary expression on page 8 of Ratto and Iskrev (2012) is zero, i.e. gam = 0
for j = 1:param_nbr
%using the implicit function theorem, equation 15 on page 7 of Ratto and Iskrev (2012)
d2ys(:,:,j) = -g1_static\rpp_static(:,:,j);
%d2ys is [endo_nbr by param_nbr by param_nbr] second-derivative (wrt all model parameters) of steady state of all endogenous variables, i.e. d(dys/dparams)/dparams, in declaration order
end
else
gam = zeros(endo_nbr,param_nbr,param_nbr); %initialize auxiliary expression on page 8 of Ratto and Iskrev (2012)
for j = 1:endo_nbr
tmp_g1p_static_dys = (squeeze(g1p_static(j,:,:))'*dys);
gam(j,:,:) = transpose(reshape(g2_static(j,:),[endo_nbr endo_nbr])*dys)*dys + tmp_g1p_static_dys + tmp_g1p_static_dys';
end
for j = 1:param_nbr
%using the implicit function theorem, equation 15 on page 7 of Ratto and Iskrev (2012)
d2ys(:,:,j) = -g1_static\(rpp_static(:,:,j)+gam(:,:,j));
%d2ys is [endo_nbr by param_nbr by param_nbr] second-derivative (wrt all model parameters) of steady state of all endogenous variables, i.e. d(dys/dparams)/dparams, in declaration order
end
clear g1p_static g2_static tmp_g1p_static_dys gam
end
end
%handling of steady state for nonstationary variables
if any(any(isnan(dys)))
[U,T] = schur(g1_static);
e1 = abs(ordeig(T)) < qz_criterium-1;
k = sum(e1); % Number of non stationary variables.
% Number of stationary variables: n = length(e1)-k
[U,T] = ordschur(U,T,e1);
T = T(k+1:end,k+1:end);
%using implicit function theorem, equation 5 of Ratto and Iskrev (2012), in declaration order
dys = -U(:,k+1:end)*(T\U(:,k+1:end)')*rp_static;
if d2flag
fprintf('Computation of d2ys for nonstationary variables is not yet correctly handled if g2_static is nonempty, but continue anyways...\n')
for j = 1:param_nbr
%using implicit function theorem, equation 15 of Ratto and Iskrev (2012), in declaration order
d2ys(:,:,j) = -U(:,k+1:end)*(T\U(:,k+1:end)')*rpp_static(:,:,j); %THIS IS NOT CORRECT, IF g2_static IS NONEMPTY. WE NEED TO ADD GAM [willi]
end
end
end
if d2flag
try
if order < 3
[~, g1p, ~, g1pp, g2p] = feval([fname,'.dynamic_params_derivs'], ys(I), exo_steady_state', params, ys, 1, dys, d2ys);
else
[~, g1p, ~, g1pp, g2p, g3p] = feval([fname,'.dynamic_params_derivs'], ys(I), exo_steady_state', params, ys, 1, dys, d2ys);
end
catch
error('For analytical parameter derivatives ''dynamic_params_derivs.m'' file is needed, this can be created by putting identification(order=%d) into your mod file.',order)
end
%g1pp are nonzero values and corresponding indices of second-derivatives (wrt all model parameters) of first-derivative (wrt all dynamic variables) of dynamic model equations, i.e. d(d(df/dyy0ex0)/dparam)/dparam, rows are in declaration order, first column in declaration order
d2Yss = d2ys(order_var,indpmodel,indpmodel); %[endo_nbr by mod_param_nbr by mod_param_nbr], put into DR order and focus only on selected model parameters
else
if order == 1
try
[~, g1p] = feval([fname,'.dynamic_params_derivs'], ys(I), exo_steady_state', params, ys, 1, dys, d2ys);
%g1p is [endo_nbr by yy0ex0_nbr by param_nbr] first-derivative (wrt all model parameters) of first-derivative (wrt all dynamic variables) of dynamic model equations, i.e. d(df/dyy0ex0)/dparam, rows are in declaration order, column in lead_lag_incidence order
catch
error('For analytical parameter derivatives ''dynamic_params_derivs.m'' file is needed, this can be created by putting identification(order=%d) into your mod file.',order)
end
[~, g1, g2 ] = feval([fname,'.dynamic'], ys(I), exo_steady_state', params, ys, 1);
%g1 is [endo_nbr by yy0ex0_nbr first derivative (wrt all dynamic variables) of dynamic model equations, i.e. df/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
%g2 is [endo_nbr by yy0ex0_nbr^2] second derivatives (wrt all dynamic variables) of dynamic model equations, i.e. d(df/dyy0ex0)/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
elseif order == 2
try
[~, g1p, ~, ~, g2p] = feval([fname,'.dynamic_params_derivs'], ys(I), exo_steady_state', params, ys, 1, dys, d2ys);
%g1p is [endo_nbr by yy0ex0_nbr by param_nbr] first-derivative (wrt all model parameters) of first-derivative (wrt all dynamic variables) of dynamic model equations, i.e. d(df/dyy0ex0)/dparam, rows are in declaration order, column in lead_lag_incidence order
%g2p are nonzero values and corresponding indices of first-derivative (wrt all model parameters) of second-derivatives (wrt all dynamic variables) of dynamic model equations, i.e. d(d(df/dyy0ex0)/dyy0ex0)/dparam, rows are in declaration order, first and second column in declaration order
catch
error('For analytical parameter derivatives ''dynamic_params_derivs.m'' file is needed, this can be created by putting identification(order=%d) into your mod file.',order)
end
[~, g1, g2, g3] = feval([fname,'.dynamic'], ys(I), exo_steady_state', params, ys, 1); %note that g3 does not contain symmetric elements
g3 = unfold_g3(g3, yy0ex0_nbr); %add symmetric elements to g3
%g1 is [endo_nbr by yy0ex0_nbr first derivative (wrt all dynamic variables) of dynamic model equations, i.e. df/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
%g2 is [endo_nbr by yy0ex0_nbr^2] second derivative (wrt all dynamic variables) of dynamic model equations, i.e. d(df/dyy0ex0)/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
%g3 is [endo_nbr by yy0ex0_nbr^3] third-derivative (wrt all dynamic variables) of dynamic model equations, i.e. (d(df/dyy0ex0)/dyy0ex0)/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
elseif order == 3
try
[~, g1p, ~, ~, g2p, g3p] = feval([fname,'.dynamic_params_derivs'], ys(I), exo_steady_state', params, ys, 1, dys, d2ys);
%g1p is [endo_nbr by yy0ex0_nbr by param_nbr] first-derivative (wrt all model parameters) of first-derivative (wrt all dynamic variables) of dynamic model equations, i.e. d(df/dyy0ex0)/dparam, rows are in declaration order, column in lead_lag_incidence order
%g2p are nonzero values and corresponding indices of first-derivative (wrt all model parameters) of second-derivatives (wrt all dynamic variables) of dynamic model equations, i.e. d(d(df/dyy0ex0)/dyy0ex0)/dparam, rows are in declaration order, first and second column in declaration order
%g3p are nonzero values and corresponding indices of first-derivative (wrt all model parameters) of third-derivatives (wrt all dynamic variables) of dynamic model equations, i.e. d(d(d(df/dyy0ex0)/dyy0ex0)/dyy0ex0)/dparam, rows are in declaration order, first, second and third column in declaration order
catch
error('For analytical parameter derivatives ''dynamic_params_derivs.m'' file is needed, this can be created by putting identification(order=%d) into your mod file.',order)
end
T = NaN(sum(dynamic_tmp_nbr(1:5)));
T = feval([fname, '.dynamic_g4_tt'], T, ys(I), exo_steady_state', params, ys, 1);
g1 = feval([fname, '.dynamic_g1'], T, ys(I), exo_steady_state', params, ys, 1, false); %g1 is [endo_nbr by yy0ex0_nbr first derivative (wrt all dynamic variables) of dynamic model equations, i.e. df/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
g2 = feval([fname, '.dynamic_g2'], T, ys(I), exo_steady_state', params, ys, 1, false); %g2 is [endo_nbr by yy0ex0_nbr^2] second derivative (wrt all dynamic variables) of dynamic model equations, i.e. d(df/dyy0ex0)/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
g3 = feval([fname, '.dynamic_g3'], T, ys(I), exo_steady_state', params, ys, 1, false); %note that g3 does not contain symmetric elements
g4 = feval([fname, '.dynamic_g4'], T, ys(I), exo_steady_state', params, ys, 1, false); %note that g4 does not contain symmetric elements
g3 = unfold_g3(g3, yy0ex0_nbr); %add symmetric elements to g3, %g3 is [endo_nbr by yy0ex0_nbr^3] third-derivative (wrt all dynamic variables) of dynamic model equations, i.e. (d(df/dyy0ex0)/dyy0ex0)/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
g4 = unfold_g4(g4, yy0ex0_nbr); %add symmetric elements to g4, %g4 is [endo_nbr by yy0ex0_nbr^4] fourth-derivative (wrt all dynamic variables) of dynamic model equations, i.e. ((d(df/dyy0ex0)/dyy0ex0)/dyy0ex0)/dyy0ex0, rows are in declaration order, columns in lead_lag_incidence order
end
end
% Parameter Jacobian of steady state in different orderings, note dys is in declaration order
dYss = dys(order_var, indpmodel); %in DR-order, focus only on selected model parameters
dyy0 = dys(I,:); %in lead_lag_incidence order, Jacobian of dynamic (without exogenous) variables, focus on all model parameters
dyy0ex0 = sparse([dyy0; zeros(exo_nbr,param_nbr)]); %in lead_lag_incidence order, Jacobian of dynamic (with exogenous) variables, focus on all model parameters
%% Analytical computation of Jacobian (wrt selected model parameters) of first-derivative of dynamic model, i.e. dg1
% Note that we use the implicit function theorem (see Ratto and Iskrev (2012) formula 7):
% Let g1 = df/dyy0ex0 be the first derivative (wrt all dynamic variables) of the dynamic model, then
% dg1 denotes the first-derivative (wrt model parameters) of g1 evaluated at the steady state.
% Note that g1 is a function of both the model parameters p and of the steady state of all dynamic variables, which also depend on the model parameters.
% Hence, implicitly g1=g1(p,yy0ex0(p)) and dg1 consists of two parts:
% (1) g1p: direct derivative (wrt to all model parameters) given by the preprocessor
% (2) g2*dyy0ex0: contribution of derivative of steady state of dynamic variables (wrt all model parameters)
% Note that in a stochastic context ex0 and dex0 is always zero and hence can be skipped in the computations
dg1 = zeros(endo_nbr,yy0ex0_nbr,param_nbr); %initialize part (2)
for j = 1:endo_nbr
[II, JJ] = ind2sub([yy0ex0_nbr yy0ex0_nbr], find(g2(j,:))); %g2 is [endo_nbr by yy0ex0_nbr^2]
for i = 1:yy0ex0_nbr
is = find(II==i);
is = is(find(JJ(is)<=yy0_nbr)); %focus only on oo.dr.ys(I) derivatives as exogenous variables are 0 in a stochastic context
if ~isempty(is)
tmp_g2 = full(g2(j,find(g2(j,:))));
dg1(j,i,:) = tmp_g2(is)*dyy0(JJ(is),:); %put into tensor notation
end
end
end
dg1 = g1p + dg1; %add part (1)
dg1 = dg1(:,:,indpmodel); %focus only on selected model parameters
if order>1
%% Analytical computation of Jacobian (wrt selected model parameters) of second derivative of dynamic model, i.e. dg2
% We use the implicit function theorem:
% Let g2 = d2f/(dyy0ex0*dyy0ex0) denote the second derivative (wrt all dynamic variables) of the dynamic model, then
% dg2 denotes the first-derivative (wrt all model parameters) of g2 evaluated at the steady state.
% Note that g2 is a function of both the model parameters p and of the steady state of all dynamic variables, which also depend on the parameters.
% Hence, implicitly g2=g2(p,yy0ex0(p)) and dg2 consists of two parts:
% (1) g2p: direct derivative wrt to all model parameters given by the preprocessor
% and
% (2) g3*dyy0ex0: contribution of derivative of steady state of dynamic variables (wrt all model parameters)
% Note that we focus on selected model parameters only, i.e. indpmodel
% Also note that we stack the parameter derivatives blockwise instead of in tensors
dg2 = reshape(g3,[endo_nbr*yy0ex0_nbr^2 yy0ex0_nbr])*dyy0ex0(:,indpmodel); %part (2)
dg2 = reshape(dg2, [endo_nbr, yy0ex0_nbr^2*modparam_nbr]);
for jj = 1:size(g2p,1)
jpos = find(indpmodel==g2p(jj,4));
if jpos~=0
dg2(g2p(jj,1), k2yy0ex0(g2p(jj,2),g2p(jj,3))+(jpos-1)*yy0ex0_nbr^2) = dg2(g2p(jj,1), k2yy0ex0(g2p(jj,2),g2p(jj,3))+(jpos-1)*yy0ex0_nbr^2) + g2p(jj,5); %add part (1)
end
end
end
if order>2
%% Analytical computation of Jacobian (wrt selected model parameters) of third derivative of dynamic model, i.e. dg3
% We use the implicit function theorem:
% Let g3 = d3f/(dyy0ex0*dyy0ex0*dyy0ex0) denote the third derivative (wrt all dynamic variables) of the dynamic model, then
% dg3 denotes the first-derivative (wrt all model parameters) of g3 evaluated at the steady state.
% Note that g3 is a function of both the model parameters p and of the steady state of all dynamic variables, which also depend on the parameters.
% Hence, implicitly g3=g3(p,yy0ex0(p)) and dg3 consists of two parts:
% (1) g3p: direct derivative wrt to all model parameters given by the preprocessor
% and
% (2) g4*dyy0ex0: contribution of derivative of steady state of dynamic variables (wrt all model parameters)
% Note that we focus on selected model parameters only, i.e. indpmodel
% Also note that we stack the parameter derivatives blockwise instead of in tensors
dg3 = reshape(g4,[endo_nbr*yy0ex0_nbr^3 yy0ex0_nbr])*dyy0ex0(:,indpmodel); %part (2)
dg3 = reshape(dg3, [endo_nbr, yy0ex0_nbr^3*modparam_nbr]);
for jj = 1:size(g3p,1)
jpos = find(indpmodel==g3p(jj,5));
if jpos~=0
idyyy = unique(perms([g3p(jj,2) g3p(jj,3) g3p(jj,4)]),'rows'); %note that g3p does not contain symmetric terms, so we use the perms and unique functions
for k = 1:size(idyyy,1)
dg3(g3p(jj,1), k3yy0ex0(idyyy(k,1),idyyy(k,2),idyyy(k,3))+(jpos-1)*yy0ex0_nbr^3) = dg3(g3p(jj,1), k3yy0ex0(idyyy(k,1),idyyy(k,2),idyyy(k,3))+(jpos-1)*yy0ex0_nbr^3) + g3p(jj,6); %add part (1)
end
end
end
end
if d2flag
%% Analytical computation of Hessian (wrt selected model parameters) of first-derivative of dynamic model, i.e. d2g1
% We use the implicit function theorem (above we already computed: dg1 = g1p + g2*dyy0ex0):
% Accordingly, d2g1, the second-derivative (wrt model parameters), consists of five parts (ignoring transposes, see Ratto and Iskrev (2012) formula 16)
% (1) d(g1p)/dp = g1pp
% (2) d(g1p)/dyy0ex0*d(yy0ex0)/dp = g2p * dyy0ex0
% (3) d(g2)/dp * dyy0ex0 = g2p * dyy0ex0
% (4) d(g2)/dyy0ex0*d(dyy0ex0)/dp * dyy0ex0 = g3 * dyy0ex0 * dyy0ex0
% (5) g2 * d(dyy0ex0)/dp = g2 * d2yy0ex0
% Note that part 2 and 3 are equivalent besides the use of transpose (see Ratto and Iskrev (2012) formula 16)
d2g1_full = sparse(endo_nbr*yy0ex0_nbr, param_nbr*param_nbr); %initialize
g3_tmp = reshape(g3,[endo_nbr*yy0ex0_nbr*yy0ex0_nbr yy0ex0_nbr]);
d2g1_part4_left = sparse(endo_nbr*yy0ex0_nbr*yy0ex0_nbr,param_nbr);
for j = 1:param_nbr
%compute first two terms of part 4
d2g1_part4_left(:,j) = g3_tmp*dyy0ex0(:,j);
end
for j=1:endo_nbr
%Note that in the following we skip exogenous variables as these are 0 by construction in a stochastic setting
d2g1_part5 = reshape(g2(j,:), [yy0ex0_nbr yy0ex0_nbr]);
d2g1_part5 = d2g1_part5(:,1:yy0_nbr)*reshape(d2ys(I,:,:),[yy0_nbr,param_nbr*param_nbr]);
for i=1:yy0ex0_nbr
ind_part4 = sub2ind([endo_nbr yy0ex0_nbr yy0ex0_nbr], ones(yy0ex0_nbr,1)*j ,ones(yy0ex0_nbr,1)*i, (1:yy0ex0_nbr)');
d2g1_part4 = (d2g1_part4_left(ind_part4,:))'*dyy0ex0;
d2g1_part2_and_part3 = (get_hess_deriv(g2p,j,i,yy0ex0_nbr,param_nbr))'*dyy0ex0;
d2g1_part1 = get_2nd_deriv_mat(g1pp,j,i,param_nbr);
d2g1_tmp = d2g1_part1 + d2g1_part2_and_part3 + d2g1_part2_and_part3' + d2g1_part4 + reshape(d2g1_part5(i,:,:),[param_nbr param_nbr]);
d2g1_tmp = d2g1_tmp(indpmodel,indpmodel); %focus only on model parameters
if any(any(d2g1_tmp))
ind_d2g1_tmp = find(triu(d2g1_tmp));
d2g1_full(sub2ind([endo_nbr yy0ex0_nbr],j,i), ind_d2g1_tmp) = transpose(d2g1_tmp(ind_d2g1_tmp));
end
end
end
clear d2g1_tmp d2g1_part1 d2g1_part2_and_part3 d2g1_part4 d2g1_part4_left d2g1_part5
%store only nonzero entries and the corresponding indices of d2g1:
% 1st column: equation number of the term appearing
% 2nd column: column number of variable in Jacobian of the dynamic model
% 3rd column: number of the first parameter in derivative
% 4th column: number of the second parameter in derivative
% 5th column: value of the Hessian term
ind_d2g1 = find(d2g1_full);
d2g1 = zeros(length(ind_d2g1),5);
for j=1:length(ind_d2g1)
[i1, i2] = ind2sub(size(d2g1_full),ind_d2g1(j));
[ig1, ig2] = ind2sub(size(g1),i1);
[ip1, ip2] = ind2sub([modparam_nbr modparam_nbr],i2);
d2g1(j,:) = [ig1 ig2 ip1 ip2 d2g1_full(ind_d2g1(j))];
end
clear d2g1_full;
end
end
%% clear variables that are not used any more
clear dys dyy0 dyy0ex0 d2ys
clear rp_static rpp_static
clear g1_static g1p_static g1p g1pp
clear g2_static g2p tmp_g2 g3_tmp
clear ind_d2g1 ind_d2g1_tmp ind_part4 i j i1 i2 ig1 ig2 I II JJ ip1 ip2 is
if order == 1
clear g2 g3
elseif order == 2
clear g3
end
%% Construct Jacobian (wrt all selected parameters) of Sigma_e and Corr_e for Gaussian innovations
dSigma_e = zeros(exo_nbr,exo_nbr,totparam_nbr); %initialize
dCorrelation_matrix = zeros(exo_nbr,exo_nbr,totparam_nbr); %initialize
% Compute Jacobians wrt stderr parameters (these come first)
% note that derivatives wrt stderr parameters are zero by construction for Corr_e
if ~isempty(indpstderr)
for jp = 1:stderrparam_nbr
dSigma_e(indpstderr(jp),indpstderr(jp),jp) = 2*sqrt(Sigma_e(indpstderr(jp),indpstderr(jp)));
if isdiag(Sigma_e) == 0 % if there are correlated errors add cross derivatives
indotherex0 = 1:exo_nbr;
indotherex0(indpstderr(jp)) = [];
for kk = indotherex0
dSigma_e(indpstderr(jp), kk, jp) = Correlation_matrix(indpstderr(jp),kk)*sqrt(Sigma_e(kk,kk));
dSigma_e(kk, indpstderr(jp), jp) = dSigma_e(indpstderr(jp), kk, jp); %symmetry
end
end
end
end
% Compute Jacobians wrt corr parameters (these come second)
if ~isempty(indpcorr)
for jp = 1:corrparam_nbr
dSigma_e(indpcorr(jp,1),indpcorr(jp,2),stderrparam_nbr+jp) = sqrt(Sigma_e(indpcorr(jp,1),indpcorr(jp,1)))*sqrt(Sigma_e(indpcorr(jp,2),indpcorr(jp,2)));
dSigma_e(indpcorr(jp,2),indpcorr(jp,1),stderrparam_nbr+jp) = dSigma_e(indpcorr(jp,1),indpcorr(jp,2),stderrparam_nbr+jp); %symmetry
dCorrelation_matrix(indpcorr(jp,1),indpcorr(jp,2),stderrparam_nbr+jp) = 1;
dCorrelation_matrix(indpcorr(jp,2),indpcorr(jp,1),stderrparam_nbr+jp) = 1;%symmetry
end
end
% note that derivatives wrt model parameters (these come third) are zero by construction for Sigma_e and Corr_e
%% Analytical computation of Jacobian (wrt selected model parameters) of first-order solution matrices ghx, ghu, and of Om=ghu*Sigma_e*ghu'
%Notation:
% fy_ = g1(:,nonzeros(klag)) in DR order
% fy0 = g1(:,nonzeros(kcurr)) in DR order
% fyp = g1(:,nonzeros(klead)) in DR order
if analytic_derivation_mode == 1
% The following derivations are based on Iskrev (2010) and its online appendix A.
% Basic idea is to make use of the implicit function theorem.
% Define Kalman transition matrix KalmanA = [0 ghx 0], where the first zero spans nstatic columns, and the second zero nfwrd columns
% At first order we have: F = GAM0*KalmanA - GAM1*KalmanA*KalmanA - GAM2 = 0, where GAM0=fy0, GAM1=-fyp, GAM2 = -fy_
% Note that F is a function of parameters p and KalmanA, which is also a function of p,therefore, F = F(p,KalmanA(p))=0, and hence,
% dF = Fp + dF_dKalmanA*dKalmanA = 0 or dKalmanA = - Fp/dF_dKalmanA
% Some auxiliary matrices
I_endo = speye(endo_nbr);
KalmanA = [zeros(endo_nbr,nstatic) ghx zeros(endo_nbr,nfwrd)];
% Reshape to write first dynamic derivatives in the Magnus and Neudecker style, i.e. dvec(X)/dp
GAM0 = zeros(endo_nbr,endo_nbr);
GAM0(:,kcurr~=0,:) = g1(:,nonzeros(kcurr));
dGAM0 = zeros(endo_nbr,endo_nbr,modparam_nbr);
dGAM0(:,kcurr~=0,:) = dg1(:,nonzeros(kcurr),:);
dGAM0 = reshape(dGAM0, endo_nbr*endo_nbr, modparam_nbr);
GAM1 = zeros(endo_nbr,endo_nbr);
GAM1(:,klead~=0,:) = -g1(:,nonzeros(klead));
dGAM1 = zeros(endo_nbr,endo_nbr,modparam_nbr);
dGAM1(:,klead~=0,:) = -dg1(:,nonzeros(klead),:);
dGAM1 = reshape(dGAM1, endo_nbr*endo_nbr, modparam_nbr);
dGAM2 = zeros(endo_nbr,endo_nbr,modparam_nbr);
dGAM2(:,klag~=0,:) = -dg1(:,nonzeros(klag),:);
dGAM2 = reshape(dGAM2, endo_nbr*endo_nbr, modparam_nbr);
GAM3 = -g1(:,yy0_nbr+1:end);
dGAM3 = reshape(-dg1(:,yy0_nbr+1:end,:), endo_nbr*exo_nbr, modparam_nbr);
% Compute dKalmanA via implicit function
dF_dKalmanAghx = kron(I_endo,GAM0) - kron(KalmanA',GAM1) - kron(I_endo,GAM1*KalmanA); %equation 31 in Appendix A of Iskrev (2010)
Fp = kron(KalmanA',I_endo)*dGAM0 - kron( (KalmanA')^2,I_endo)*dGAM1 - dGAM2; %equation 32 in Appendix A of Iskrev (2010)
dKalmanA = -dF_dKalmanAghx\Fp;
% Compute dBB from expressions 33 in Iskrev (2010) Appendix A
MM = GAM0-GAM1*KalmanA; %this corresponds to matrix M in Ratto and Iskrev (2012, page 6)
invMM = MM\eye(endo_nbr);
dghu = - kron( (invMM*GAM3)' , invMM ) * ( dGAM0 - kron( KalmanA' , I_endo ) * dGAM1 - kron( I_endo , GAM1 ) * dKalmanA ) + kron( speye(exo_nbr), invMM ) * dGAM3;
% Add derivatives for stderr and corr parameters, which are zero by construction
dKalmanA = [zeros(endo_nbr^2, stderrparam_nbr+corrparam_nbr) dKalmanA];
dghu = [zeros(endo_nbr*exo_nbr, stderrparam_nbr+corrparam_nbr) dghu];
% Compute dOm = dvec(ghu*Sigma_e*ghu') from expressions 34 in Iskrev (2010) Appendix A
dOm = kron(I_endo,ghu*Sigma_e)*(commutation(endo_nbr, exo_nbr)*dghu)...
+ kron(ghu,ghu)*reshape(dSigma_e, exo_nbr^2, totparam_nbr) + kron(ghu*Sigma_e,I_endo)*dghu;
% Put into tensor notation
dKalmanA = reshape(dKalmanA, endo_nbr, endo_nbr, totparam_nbr);
dghx = dKalmanA(:, nstatic+(1:nspred), stderrparam_nbr+corrparam_nbr+1:end); %get rid of zeros and focus on modparams only
dghu = reshape(dghu, endo_nbr, exo_nbr, totparam_nbr);
dghu = dghu(:,:,stderrparam_nbr+corrparam_nbr+1:end); %focus only on modparams
dOm = reshape(dOm, endo_nbr, endo_nbr, totparam_nbr);
clear dF_dKalmanAghx Fp dGAM0 dGAM1 dGAM2 dGAM3 MM invMM I_endo
elseif (analytic_derivation_mode == 0 || analytic_derivation_mode == -2)
% Here we make use of more efficient generalized sylvester equations
% Notation: ghx_ = ghx(idx_states,:), ghx0 = ghx(kcurr~=0,:), ghxp = ghx(klead~=0,:)
% Note that at first-order we have the following expressions, which are (numerically) zero:
% * for ghx: g1*zx = fyp*ghxp*ghx_ + fy0*ghx0 + fy_ = A*ghx + fy_ = 0
% Taking the differential yields a generalized sylvester equation to get dghx: A*dghx + B*dghx*ghx_ = -dg1*zx
% * for ghu: g1*zu = A*ghu + fu = 0
% Taking the differential yields an invertible equation to get dghu: A*dghu = -(dfu + dA*ghu)
% INITIALIZATIONS
% Note that A and B are the perturbation matrices (NOT the Kalman transition matrices)!
A = zeros(endo_nbr,endo_nbr);
A(:,kcurr~=0) = g1(:,nonzeros(kcurr));
A(:,idx_states) = A(:,idx_states) + g1(:,nonzeros(klead))*ghx(klead~=0,:);
B = zeros(endo_nbr,endo_nbr);
B(:,nstatic+npred+1:end) = g1(:,nonzeros(klead));
zx = [eye(nspred);
ghx(kcurr~=0,:);
ghx(klead~=0,:)*ghx(idx_states,:);
zeros(exo_nbr,nspred)];
dRHSx = zeros(endo_nbr,nspred,modparam_nbr);
for jp=1:modparam_nbr
dRHSx(:,:,jp) = -dg1(:,kyy0,jp)*zx(1:yy0_nbr,:);
end
%use iterated generalized sylvester equation to compute dghx
dghx = sylvester3(A,B,ghx(idx_states,:),dRHSx);
flag = 1; icount = 0;
while flag && icount < 4
[dghx, flag] = sylvester3a(dghx,A,B,ghx(idx_states,:),dRHSx);
icount = icount+1;
end
%Compute dOm, dghu, dA, dB
dOm = zeros(endo_nbr,endo_nbr,totparam_nbr); %as Om=ghu*Sigma_e*ghu', we need to use totparam_nbr, because there is also a contribution from stderr and corr parameters, which we compute after modparams
dghu = zeros(endo_nbr,exo_nbr,modparam_nbr);
dA = zeros(endo_nbr,endo_nbr,modparam_nbr); %dA is also needed at higher orders
dA(:,kcurr~=0,:) = dg1(:,nonzeros(kcurr),:);
invA = inv(A); %also needed at higher orders
for jp=1:modparam_nbr
dA(:,idx_states,jp) = dA(:,idx_states,jp) + dg1(:,nonzeros(klead),jp)*ghx(klead~=0,:) + g1(:,nonzeros(klead))*dghx(klead~=0,:,jp);
dghu(:,:,jp) = -invA*( dg1(:,yy0_nbr+1:end,jp) + dA(:,:,jp)*ghu);
dOm(:,:,stderrparam_nbr+corrparam_nbr+jp) = dghu(:,:,jp)*Sigma_e*ghu' + ghu*Sigma_e*dghu(:,:,jp)';
end
%add stderr and corr derivatives to Om=ghu*Sigma_e*ghu'
if ~isempty(indpstderr)
for jp = 1:stderrparam_nbr
dOm(:,:,jp) = ghu*dSigma_e(:,:,jp)*ghu';
end
end
if ~isempty(indpcorr)
for jp = 1:corrparam_nbr
dOm(:,:,stderrparam_nbr+jp) = ghu*dSigma_e(:,:,stderrparam_nbr+jp)*ghu';
end
end
end
%% Analytical computation of Jacobian (wrt selected model parameters) of second-order solution matrices ghxx,ghxu,ghuu and ghs2
if order > 1
% Notation: ghxx_ = ghxx(idx_states,:), ghxx0 = ghxx(kcurr~=0,:), ghxxp = ghxx(klead~=0,:)
% and similar for ghxu, ghuu and ghs2
% Note that at second-order we have the following expressions, which are (numerically) zero:
% * for ghxx: A*ghxx + B*ghxx*kron(ghx_,ghx_) + g2*kron(zx,zx) = 0
% Taking the differential yields a generalized sylvester equation to get dghxx: A*dghxx + B*dghxx*kron(ghx_,ghx_) = RHSxx
% * for ghxu: A*ghxu + B*ghxx*kron(ghx_,ghu_) + g2*kron(zx,zu) = 0
% Taking the differential yields an invertible equation to get dghxu: A*dghxu = RHSxu
% * for ghuu: A*ghuu + B*ghxx*kron(ghu_,ghu_) + g2*kron(zu,zu) = 0
% Taking the differential yields an invertible equation to get dghuu: A*dghuu = RHSuu
% * for ghs2: Ahs2*ghs2 + (gg2_{++}*kron(ghup,ghup) + fyp*ghuup)*vec(Sigma_e) = 0
% Taking the differential yields an invertible equation to get dghs2: S*dghs2 = RHSs2
% * due to certainty equivalence and zero mean shocks, we note that ghxs and ghus are zero, and thus not computed
dB = zeros(endo_nbr,endo_nbr,modparam_nbr); %this matrix is also needed at higher orders
dB(:,nstatic+npred+1:end,:) = dg1(:,nonzeros(klead),:);
S = A + B; %needed for dghs2, but also at higher orders
dS = dA + dB;
invS = inv(S);
G_x_x = kron(ghx(idx_states,:),ghx(idx_states,:));
dG_x_x = zeros(size(G_x_x,1),size(G_x_x,2),modparam_nbr);
dzx = zeros(size(zx,1),size(zx,2),modparam_nbr);
dRHSghxx = zeros(endo_nbr,nspred^2,modparam_nbr);
for jp=1:modparam_nbr
dzx(:,:,jp) = [zeros(nspred,nspred);
dghx(kcurr~=0,:,jp);
dghx(klead~=0,:,jp)*ghx(idx_states,:) + ghx(klead~=0,:)*dghx(idx_states,:,jp);
zeros(exo_nbr,nspred)];
dRHS_1 = sparse_hessian_times_B_kronecker_C(dg2(:,k2yy0ex0(kyy0,kyy0)+(jp-1)*yy0ex0_nbr^2),zx(1:yy0_nbr,:),threads_BC);
dRHS_2 = sparse_hessian_times_B_kronecker_C(g2(:,k2yy0ex0(kyy0,kyy0)),dzx(1:yy0_nbr,:,jp),zx(1:yy0_nbr,:),threads_BC);
dRHS_3 = sparse_hessian_times_B_kronecker_C(g2(:,k2yy0ex0(kyy0,kyy0)),zx(1:yy0_nbr,:),dzx(1:yy0_nbr,:,jp),threads_BC);
dG_x_x(:,:,jp) = kron(dghx(idx_states,:,jp),ghx(idx_states,:)) + kron(ghx(idx_states,:),dghx(idx_states,:,jp));
dRHSghxx(:,:,jp) = -( (dRHS_1+dRHS_2+dRHS_3) + dA(:,:,jp)*ghxx + dB(:,:,jp)*ghxx*G_x_x + B*ghxx*dG_x_x(:,:,jp) );
end
%use iterated generalized sylvester equation to compute dghxx
dghxx = sylvester3(A,B,G_x_x,dRHSghxx);
flag = 1; icount = 0;
while flag && icount < 4
[dghxx, flag] = sylvester3a(dghxx,A,B,G_x_x,dRHSghxx);
icount = icount+1;
end
zu = [zeros(nspred,exo_nbr);
ghu(kcurr~=0,:);
ghx(klead~=0,:)*ghu(idx_states,:);
eye(exo_nbr)];
abcOutxu = A_times_B_kronecker_C(ghxx,ghx(idx_states,:),ghu(idx_states,:)); %auxiliary expressions for dghxu
abcOutuu = A_times_B_kronecker_C(ghxx,ghu(idx_states,:)); %auxiliary expressions for dghuu
RHSs2 = sparse_hessian_times_B_kronecker_C(g2(:,k2yy0ex0(nonzeros(klead),nonzeros(klead))), ghu(klead~=0,:),threads_BC);
RHSs2 = RHSs2 + g1(:,nonzeros(klead))*ghuu(klead~=0,:);
dzu = zeros(size(zu,1),size(zu,2),modparam_nbr);
dghxu = zeros(endo_nbr,nspred*exo_nbr,modparam_nbr);
dghuu = zeros(endo_nbr,exo_nbr*exo_nbr,modparam_nbr);
dghs2 = zeros(endo_nbr,totparam_nbr); %note that for modparam we ignore the contribution by dSigma_e and add it after the computations for stderr and corr
for jp=1:modparam_nbr
dzu(:,:,jp) = [zeros(nspred,exo_nbr);
dghu(kcurr~=0,:,jp);
dghx(klead~=0,:,jp)*ghu(idx_states,:) + ghx(klead~=0,:)*dghu(idx_states,:,jp);
zeros(exo_nbr,exo_nbr)];
%compute dghxu
dRHS_1 = sparse_hessian_times_B_kronecker_C(dg2(:,k2yy0ex0(kyy0ex0,kyy0ex0)+(jp-1)*yy0ex0_nbr^2),zx,zu,threads_BC);
dRHS_2 = sparse_hessian_times_B_kronecker_C(g2(:,k2yy0ex0(kyy0ex0,kyy0ex0)),dzx(:,:,jp),zu,threads_BC);
dRHS_3 = sparse_hessian_times_B_kronecker_C(g2(:,k2yy0ex0(kyy0ex0,kyy0ex0)),zx,dzu(:,:,jp),threads_BC);
dabcOut_1 = A_times_B_kronecker_C(dghxx(:,:,jp),ghx(idx_states,:),ghu(idx_states,:));
dabcOut_2 = A_times_B_kronecker_C(ghxx,dghx(idx_states,:,jp),ghu(idx_states,:));
dabcOut_3 = A_times_B_kronecker_C(ghxx,ghx(idx_states,:),dghu(idx_states,:,jp));
dghxu(:,:,jp) = -invA * ( dA(:,:,jp)*ghxu + (dRHS_1+dRHS_2+dRHS_3) + dB(:,:,jp)*abcOutxu + B*(dabcOut_1+dabcOut_2+dabcOut_3) );
%compute dghuu
dRHS_1 = sparse_hessian_times_B_kronecker_C(dg2(:,k2yy0ex0(kyy0ex0,kyy0ex0)+(jp-1)*yy0ex0_nbr^2),zu,threads_BC);
dRHS_2 = sparse_hessian_times_B_kronecker_C(g2(:,k2yy0ex0(kyy0ex0,kyy0ex0)),dzu(:,:,jp),zu,threads_BC);
dRHS_3 = sparse_hessian_times_B_kronecker_C(g2(:,k2yy0ex0(kyy0ex0,kyy0ex0)),zu,dzu(:,:,jp),threads_BC);
dabcOut_1 = A_times_B_kronecker_C(dghxx(:,:,jp),ghu(idx_states,:));
dabcOut_2 = A_times_B_kronecker_C(ghxx,dghu(idx_states,:,jp),ghu(idx_states,:));
dabcOut_3 = A_times_B_kronecker_C(ghxx,ghu(idx_states,:),dghu(idx_states,:,jp));
dghuu(:,:,jp) = -invA * ( dA(:,:,jp)*ghuu + (dRHS_1+dRHS_2+dRHS_3) + dB(:,:,jp)*abcOutuu + B*(dabcOut_1+dabcOut_2+dabcOut_3) );
%compute dghs2
dRHS_1 = sparse_hessian_times_B_kronecker_C(dg2(:,k2yy0ex0(nonzeros(klead),nonzeros(klead))+(jp-1)*yy0ex0_nbr^2), ghu(klead~=0,:),threads_BC);
dRHS_2 = sparse_hessian_times_B_kronecker_C(g2(:,k2yy0ex0(nonzeros(klead),nonzeros(klead))), dghu(klead~=0,:,jp), ghu(klead~=0,:),threads_BC);
dRHS_3 = sparse_hessian_times_B_kronecker_C(g2(:,k2yy0ex0(nonzeros(klead),nonzeros(klead))), ghu(klead~=0,:), dghu(klead~=0,:,jp),threads_BC);
dghs2(:,stderrparam_nbr+corrparam_nbr+jp) = -invS * ( dS(:,:,jp)*ghs2 + ( (dRHS_1+dRHS_2+dRHS_3) + dg1(:,nonzeros(klead),jp)*ghuu(klead~=0,:) + g1(:,nonzeros(klead))*dghuu(klead~=0,:,jp) )*Sigma_e(:) );
end
%add contributions by dSigma_e to dghs2
if ~isempty(indpstderr)
for jp = 1:stderrparam_nbr
dghs2(:,jp) = -invS * RHSs2*vec(dSigma_e(:,:,jp));
end
end
if ~isempty(indpcorr)
for jp = 1:corrparam_nbr
dghs2(:,stderrparam_nbr+jp) = -invS * RHSs2*vec(dSigma_e(:,:,stderrparam_nbr+jp));
end
end
end
if order > 2
% NOTE: The computations can be improved significantly, particularly for larger models [to do: @wmutschl]
% Notation: ghxxx_ = ghxxx(idx_states,:), ghxxx0 = ghxxx(kcurr~=0,:), ghxxxp = ghxxx(klead~=0,:)
% and similar for ghxxu, ghxuu, ghuuu, ghxss, ghuss
% Note that at third-order we have the following expressions, which are (numerically) zero, given suitable tensor-unfolding permuation matrices P:
% * for ghxxx: A*ghxxx + B*ghxxx*kron(ghx_,kron(ghx_,ghx_)) + g3*kron(kron(zx,zx),zx) + g2*kron(zx,zxx)*P_x_xx + fyp*ghxxp*kron(ghx_,ghxx_)*P_x_xx = 0
% Taking the differential yields a generalized sylvester equation to get dghxxx: A*dghxxx + B*dghxxx*kron(ghx_,kron(ghx_,ghx_)) = RHSxxx
% * for ghxxu: A*ghxxu + B*ghxxx*kron(ghx_,kron(ghx_,ghu_)) + gg3*kron(zx,kron(zx,zu)) + gg2*(kron(zx,zxu)*P_x_xu + kron(zxx,zu)) + fyp*ghxxp*(kron(ghx_,ghxu_)*P_x_xu + kron(ghxx_,ghu_)) = 0
% Taking the differential yields an invertible equation to get dghxxu: A*dghxxu = RHSxxu
% * for ghxuu: A*ghxuu + B*ghxxx*kron(ghx_,kron(ghu_,ghu_)) + gg3*kron(zx,kron(zu,zu)) + gg2*(kron(zxu,zu)*P_xu_u + kron(zx,zuu)) + fyp*ghxxp*(kron(ghxu_,ghu_)*Pxu_u + kron(ghx_,ghuu_)) = 0
% Taking the differential yields an invertible equation to get dghxuu: A*dghxuu = RHSxuu
% * for ghuuu: A*ghuuu + B*ghxxx*kron(ghu_,kron(ghu_,ghu_)) + gg3*kron(kron(zu,zu),zu) + gg2*kron(zu,zuu)*P_u_uu + fyp*ghxxp*kron(ghu_,ghuu_)*P_u_uu = 0
% Taking the differential yields an invertible equation to get dghuuu: A*dghuuu = RHSuuu
% * for ghxss: A*ghxss + B*ghxss*ghx_ + fyp*ghxxp*kron(ghx_,ghss_) + gg2*kron(zx,zss) + Fxupup*kron(Ix,Sigma_e(:)) = 0
% Taking the differential yields a generalized sylvester equation to get dghxss: A*dghxss + B*dghxss*ghx_ = RHSxss
% * for ghuss: A*ghuss + B*ghxss*ghu_ + gg2*kron(zu,zss) + fyp*ghxxp*kron(ghu_,ghss_) + Fuupup*kron(Iu,Sigma_e(:)) = 0
% Taking the differential yields an invertible equation to get dghuss: A*dghuss = RHSuss
% * due to certainty equivalence and Gaussian shocks, we note that ghxxs, ghxus, ghuus, and ghsss are zero and thus not computed
% permutation matrices
id_xxx = reshape(1:nspred^3,1,nspred,nspred,nspred);
id_uux = reshape(1:nspred*exo_nbr^2,1,exo_nbr,exo_nbr,nspred);
id_uxx = reshape(1:nspred^2*exo_nbr,1,exo_nbr,nspred,nspred);
id_uuu = reshape(1:exo_nbr^3,1,exo_nbr,exo_nbr,exo_nbr);
I_xxx = speye(nspred^3);
I_xxu = speye(nspred^2*exo_nbr);
I_xuu = speye(nspred*exo_nbr^2);
I_uuu = speye(exo_nbr^3);
P_x_xx = I_xxx(:,ipermute(id_xxx,[1,3,4,2])) + I_xxx(:,ipermute(id_xxx,[1,2,4,3])) + I_xxx(:,ipermute(id_xxx,[1,2,3,4]));
P_x_xu = I_xxu(:,ipermute(id_uxx,[1,2,3,4])) + I_xxu(:,ipermute(id_uxx,[1,2,4,3]));
P_xu_u = I_xuu(:,ipermute(id_uux,[1,2,3,4])) + I_xuu(:,ipermute(id_uux,[1,3,2,4]));
P_u_uu = I_uuu(:,ipermute(id_uuu,[1,3,4,2])) + I_uuu(:,ipermute(id_uuu,[1,2,4,3])) + I_uuu(:,ipermute(id_uuu,[1,2,3,4]));
P_uu_u = I_uuu(:,ipermute(id_uuu,[1,2,3,4])) + I_uuu(:,ipermute(id_uuu,[1,3,4,2]));
zxx = [spalloc(nspred,nspred^2,0);
ghxx(kcurr~=0,:);
ghxx(klead~=0,:)*G_x_x + ghx(klead~=0,:)*ghxx(idx_states,:);
spalloc(exo_nbr,nspred^2,0)];
G_x_x_x = kron(ghx(idx_states,:), G_x_x);
G_x_xx = kron(ghx(idx_states,:),ghxx(idx_states,:));
Z_x_x = kron(zx,zx);
Z_x_x_x = kron(zx,Z_x_x);
Z_x_xx = kron(zx,zxx);
fyp_ghxxp = sparse(g1(:,nonzeros(klead))*ghxx(klead~=0,:));
B_ghxxx = B*ghxxx;
dzxx = zeros(size(zxx,1),size(zxx,2),modparam_nbr);
dfyp_ghxxp = zeros(size(fyp_ghxxp,1),size(fyp_ghxxp,2),modparam_nbr);
dRHSghxxx = zeros(endo_nbr,nspred^3,modparam_nbr);
for jp=1:modparam_nbr
dzxx(:,:,jp) = [zeros(nspred,nspred^2);
dghxx(kcurr~=0,:,jp);
dghxx(klead~=0,:,jp)*G_x_x + ghxx(klead~=0,:)*dG_x_x(:,:,jp) + dghx(klead~=0,:,jp)*ghxx(idx_states,:) + ghx(klead~=0,:)*dghxx(idx_states,:,jp);
zeros(exo_nbr,nspred^2)];
dG_x_x_x = kron(dghx(idx_states,:,jp),G_x_x) + kron(ghx(idx_states,:),dG_x_x(:,:,jp));
dG_x_xx = kron(dghx(idx_states,:,jp),ghxx(idx_states,:)) + kron(ghx(idx_states,:),dghxx(idx_states,:,jp));
dZ_x_x = kron(dzx(:,:,jp), zx) + kron(zx, dzx(:,:,jp));
dZ_x_x_x = kron(dzx(:,:,jp), Z_x_x) + kron(zx, dZ_x_x);
dZ_x_xx = kron(dzx(:,:,jp), zxx) + kron(zx, dzxx(:,:,jp));
dfyp_ghxxp(:,:,jp) = dg1(:,nonzeros(klead),jp)*ghxx(klead~=0,:) + g1(:,nonzeros(klead))*dghxx(klead~=0,:,jp);
dRHSghxxx(:,:,jp) = dA(:,:,jp)*ghxxx + dB(:,:,jp)*ghxxx*G_x_x_x + B_ghxxx*dG_x_x_x;
dRHSghxxx(:,:,jp) = dRHSghxxx(:,:,jp) + dg3(:,k3yy0ex0(kyy0ex0,kyy0ex0,kyy0ex0)+(jp-1)*yy0ex0_nbr^3)*Z_x_x_x + g3(:,k3yy0ex0(kyy0ex0,kyy0ex0,kyy0ex0))*dZ_x_x_x;
dRHSghxxx(:,:,jp) = dRHSghxxx(:,:,jp) + dg2(:,k2yy0ex0(kyy0ex0,kyy0ex0)+(jp-1)*yy0ex0_nbr^2)*Z_x_xx*P_x_xx + g2(:,k2yy0ex0(kyy0ex0,kyy0ex0))*dZ_x_xx*P_x_xx;
dRHSghxxx(:,:,jp) = dRHSghxxx(:,:,jp) + dfyp_ghxxp(:,:,jp)*G_x_xx*P_x_xx + fyp_ghxxp*dG_x_xx*P_x_xx;
end
dRHSghxxx = -dRHSghxxx;
%use iterated generalized sylvester equation to compute dghxxx
dghxxx = sylvester3(A,B,G_x_x_x,dRHSghxxx);
flag = 1; icount = 0;
while flag && icount < 4
[dghxxx, flag] = sylvester3a(dghxxx,A,B,G_x_x_x,dRHSghxxx);
icount = icount+1;
end
%Auxiliary expressions for dghxxu, dghxuu, dghuuu, dghxss, dghuss
G_x_u = kron(ghx(idx_states,:),ghu(idx_states,:));
G_u_u = kron(ghu(idx_states,:),ghu(idx_states,:));
zxu = [zeros(nspred,nspred*exo_nbr);
ghxu(kcurr~=0,:);
ghxx(klead~=0,:)*G_x_u + ghx(klead~=0,:)*ghxu(idx_states,:);
zeros(exo_nbr,exo_nbr*nspred)];
zuu = [zeros(nspred,exo_nbr^2);
ghuu(kcurr~=0,:);
ghxx(klead~=0,:)*G_u_u + ghx(klead~=0,:)*ghuu(idx_states,:);
zeros(exo_nbr,exo_nbr^2)];
Z_x_u = kron(zx,zu);
Z_u_u = kron(zu,zu);
Z_x_xu = kron(zx,zxu);
Z_xx_u = kron(zxx,zu);
Z_xu_u = kron(zxu,zu);
Z_x_uu = kron(zx,zuu);
Z_u_uu = kron(zu,zuu);
Z_x_x_u = kron(Z_x_x,zu);
Z_x_u_u = kron(Z_x_u,zu);
Z_u_u_u = kron(Z_u_u,zu);
G_x_xu = kron(ghx(idx_states,:),ghxu(idx_states,:));
G_xx_u = kron(ghxx(idx_states,:),ghu(idx_states,:));
G_xu_u = kron(ghxu(idx_states,:),ghu(idx_states,:));
G_x_uu = kron(ghx(idx_states,:),ghuu(idx_states,:));
G_u_uu = kron(ghu(idx_states,:),ghuu(idx_states,:));
G_x_x_u = kron(G_x_x,ghu(idx_states,:));
G_x_u_u = kron(G_x_u,ghu(idx_states,:));
G_u_u_u = kron(G_u_u,ghu(idx_states,:));
aux_ZP_x_xu_Z_xx_u = Z_x_xu*P_x_xu + Z_xx_u;
aux_ZP_xu_u_Z_x_uu = Z_xu_u*P_xu_u + Z_x_uu;
aux_GP_x_xu_G_xx_u = G_x_xu*P_x_xu + G_xx_u;
aux_GP_xu_u_G_x_uu = G_xu_u*P_xu_u + G_x_uu;
dghxxu = zeros(endo_nbr,nspred^2*exo_nbr,modparam_nbr);
dghxuu = zeros(endo_nbr,nspred*exo_nbr^2,modparam_nbr);
dghuuu = zeros(endo_nbr,exo_nbr^3,modparam_nbr);
%stuff for ghxss
zup = [zeros(nspred,exo_nbr);
zeros(length(nonzeros(kcurr)),exo_nbr);
ghu(klead~=0,:);
zeros(exo_nbr,exo_nbr)];
zss = [zeros(nspred,1);
ghs2(kcurr~=0,:);
ghs2(klead~=0,:) + ghx(klead~=0,:)*ghs2(idx_states,:);
zeros(exo_nbr,1)];
zxup = [zeros(nspred,nspred*exo_nbr);
zeros(length(nonzeros(kcurr)),nspred*exo_nbr);
ghxu(klead~=0,:)*kron(ghx(idx_states,:),eye(exo_nbr));
zeros(exo_nbr,nspred*exo_nbr)];
zupup = [zeros(nspred,exo_nbr^2);
zeros(length(nonzeros(kcurr)),exo_nbr^2);
ghuu(klead~=0,:);
zeros(exo_nbr,exo_nbr^2)];
G_x_ss = kron(ghx(idx_states,:),ghs2(idx_states,:));
Z_x_ss = kron(zx,zss);
Z_up_up = kron(zup,zup);
Z_xup_up = kron(zxup,zup);
Z_x_upup = kron(zx,zupup);
Z_x_up_up = kron(zx,Z_up_up);
aux_ZP_xup_up_Z_x_upup = Z_xup_up*P_xu_u + Z_x_upup;
Fxupup = g3(:,k3yy0ex0(kyy0ex0,kyy0ex0,kyy0ex0))*Z_x_up_up + g2(:,k2yy0ex0(kyy0ex0,kyy0ex0))*aux_ZP_xup_up_Z_x_upup + g1(:,nonzeros(klead))*ghxuu(klead~=0,:)*kron(ghx(idx_states,:),eye(exo_nbr^2));
Ix_vecSig_e = kron(speye(nspred),Sigma_e(:));
dRHSxss = zeros(endo_nbr,nspred,totparam_nbr);
%stuff for ghuss
zuup = [zeros(nspred,exo_nbr^2);
zeros(length(nonzeros(kcurr)),exo_nbr^2);
ghxu(klead~=0,:)*kron(ghu(idx_states,:),eye(exo_nbr));
zeros(exo_nbr,exo_nbr^2)];
G_u_ss = kron(ghu(idx_states,:),ghs2(idx_states,:));
Z_u_ss = kron(zu,zss);
Z_u_upup = kron(zu,zupup);
Z_uup_up = kron(zuup,zup);
Z_u_up_up = kron(zu,Z_up_up);
aux_ZP_uup_up_Z_u_upup = Z_uup_up*P_uu_u + Z_u_upup;
Fuupup = g3(:,k3yy0ex0(kyy0ex0,kyy0ex0,kyy0ex0))*Z_u_up_up + g2(:,k2yy0ex0(kyy0ex0,kyy0ex0))*aux_ZP_uup_up_Z_u_upup + g1(:,nonzeros(klead))*ghxuu(klead~=0,:)*kron(ghu(idx_states,:),eye(exo_nbr^2));
Iu_vecSig_e = kron(speye(exo_nbr),Sigma_e(:));
dRHSuss = zeros(endo_nbr,exo_nbr,totparam_nbr);
for jp=1:modparam_nbr
dG_x_u = kron(dghx(idx_states,:,jp), ghu(idx_states,:)) + kron(ghx(idx_states,:), dghu(idx_states,:,jp));
dG_u_u = kron(dghu(idx_states,:,jp), ghu(idx_states,:)) + kron(ghu(idx_states,:), dghu(idx_states,:,jp));
dzxu = [zeros(nspred,nspred*exo_nbr);
dghxu(kcurr~=0,:,jp);
dghxx(klead~=0,:,jp)*G_x_u + ghxx(klead~=0,:)*dG_x_u + dghx(klead~=0,:,jp)*ghxu(idx_states,:) + ghx(klead~=0,:)*dghxu(idx_states,:,jp);
zeros(exo_nbr,nspred*exo_nbr)];
dzuu = [zeros(nspred,exo_nbr^2);
dghuu(kcurr~=0,:,jp);
dghxx(klead~=0,:,jp)*G_u_u + ghxx(klead~=0,:)*dG_u_u + dghx(klead~=0,:,jp)*ghuu(idx_states,:) + ghx(klead~=0,:)*dghuu(idx_states,:,jp);
zeros(exo_nbr,exo_nbr^2)];
dG_x_xu = kron(dghx(idx_states,:,jp),ghxu(idx_states,:)) + kron(ghx(idx_states,:),dghxu(idx_states,:,jp));
dG_x_uu = kron(dghx(idx_states,:,jp),ghuu(idx_states,:)) + kron(ghx(idx_states,:),dghuu(idx_states,:,jp));
dG_u_uu = kron(dghu(idx_states,:,jp),ghuu(idx_states,:)) + kron(ghu(idx_states,:),dghuu(idx_states,:,jp));
dG_xx_u = kron(dghxx(idx_states,:,jp),ghu(idx_states,:)) + kron(ghxx(idx_states,:),dghu(idx_states,:,jp));
dG_xu_u = kron(dghxu(idx_states,:,jp),ghu(idx_states,:)) + kron(ghxu(idx_states,:),dghu(idx_states,:,jp));
dG_x_x_u = kron(G_x_x,dghu(idx_states,:,jp)) + kron(dG_x_x(:,:,jp),ghu(idx_states,:));
dG_x_u_u = kron(G_x_u,dghu(idx_states,:,jp)) + kron(dG_x_u,ghu(idx_states,:));
dG_u_u_u = kron(G_u_u,dghu(idx_states,:,jp)) + kron(dG_u_u,ghu(idx_states,:));
dZ_x_u = kron(dzx(:,:,jp),zu) + kron(zx,dzu(:,:,jp));
dZ_u_u = kron(dzu(:,:,jp),zu) + kron(zu,dzu(:,:,jp));
dZ_x_x_u = kron(dzx(:,:,jp), Z_x_u) + kron(zx, dZ_x_u);
dZ_x_u_u = kron(dZ_x_u, zu) + kron(Z_x_u, dzu(:,:,jp));
dZ_u_u_u = kron(dZ_u_u, zu) + kron(Z_u_u, dzu(:,:,jp));
dZ_xx_u = kron(dzxx(:,:,jp), zu) + kron(zxx, dzu(:,:,jp));
dZ_xu_u = kron(dzxu, zu) + kron(zxu, dzu(:,:,jp));
dZ_x_xu = kron(dzx(:,:,jp), zxu) + kron(zx, dzxu);
dZ_x_uu = kron(dzx(:,:,jp), zuu) + kron(zx, dzuu);
dZ_u_uu = kron(dzu(:,:,jp), zuu) + kron(zu, dzuu);
dB_ghxxx = dB(:,:,jp)*ghxxx + B*dghxxx(:,:,jp);
%Compute dghxxu
dRHS = dA(:,:,jp)*ghxxu + dB_ghxxx*G_x_x_u + B_ghxxx*dG_x_x_u;
dRHS = dRHS + dg3(:,k3yy0ex0(kyy0ex0,kyy0ex0,kyy0ex0)+(jp-1)*yy0ex0_nbr^3)*Z_x_x_u + g3(:,k3yy0ex0(kyy0ex0,kyy0ex0,kyy0ex0))*dZ_x_x_u;
dRHS = dRHS + dg2(:,k2yy0ex0(kyy0ex0,kyy0ex0)+(jp-1)*yy0ex0_nbr^2)*aux_ZP_x_xu_Z_xx_u + g2(:,k2yy0ex0(kyy0ex0,kyy0ex0))*( dZ_x_xu*P_x_xu + dZ_xx_u );
dRHS = dRHS + dfyp_ghxxp(:,:,jp)*aux_GP_x_xu_G_xx_u + fyp_ghxxp*( dG_x_xu*P_x_xu + dG_xx_u );
dghxxu(:,:,jp) = invA* (-dRHS);
%Compute dghxuu
dRHS = dA(:,:,jp)*ghxuu + dB_ghxxx*G_x_u_u + B_ghxxx*dG_x_u_u;
dRHS = dRHS + dg3(:,k3yy0ex0(kyy0ex0,kyy0ex0,kyy0ex0)+(jp-1)*yy0ex0_nbr^3)*Z_x_u_u + g3(:,k3yy0ex0(kyy0ex0,kyy0ex0,kyy0ex0))*dZ_x_u_u;
dRHS = dRHS + dg2(:,k2yy0ex0(kyy0ex0,kyy0ex0)+(jp-1)*yy0ex0_nbr^2)*aux_ZP_xu_u_Z_x_uu + g2(:,k2yy0ex0(kyy0ex0,kyy0ex0))*( dZ_xu_u*P_xu_u + dZ_x_uu );
dRHS = dRHS + dfyp_ghxxp(:,:,jp)*aux_GP_xu_u_G_x_uu + fyp_ghxxp*( dG_xu_u*P_xu_u + dG_x_uu );
dghxuu(:,:,jp) = invA* (-dRHS);
%Compute dghuuu
dRHS = dA(:,:,jp)*ghuuu + dB_ghxxx*G_u_u_u + B_ghxxx*dG_u_u_u;
dRHS = dRHS + dg3(:,k3yy0ex0(kyy0ex0,kyy0ex0,kyy0ex0)+(jp-1)*yy0ex0_nbr^3)*Z_u_u_u + g3(:,k3yy0ex0(kyy0ex0,kyy0ex0,kyy0ex0))*dZ_u_u_u;
dRHS = dRHS + dg2(:,k2yy0ex0(kyy0ex0,kyy0ex0)+(jp-1)*yy0ex0_nbr^2)*Z_u_uu*P_u_uu + g2(:,k2yy0ex0(kyy0ex0,kyy0ex0))*dZ_u_uu*P_u_uu;
dRHS = dRHS + dfyp_ghxxp(:,:,jp)*G_u_uu*P_u_uu + fyp_ghxxp*dG_u_uu*P_u_uu;
dghuuu(:,:,jp) = invA* (-dRHS);
%Compute dRHSxss
dzup = [zeros(nspred,exo_nbr);
zeros(length(nonzeros(kcurr)),exo_nbr);
dghu(klead~=0,:,jp);
zeros(exo_nbr,exo_nbr)];
dzss = [zeros(nspred,1);
dghs2(kcurr~=0,stderrparam_nbr+corrparam_nbr+jp);
dghs2(klead~=0,stderrparam_nbr+corrparam_nbr+jp) + dghx(klead~=0,:,jp)*ghs2(idx_states,:) + ghx(klead~=0,:)*dghs2(idx_states,stderrparam_nbr+corrparam_nbr+jp);
zeros(exo_nbr,1)];
dzxup = [zeros(nspred,nspred*exo_nbr);
zeros(length(nonzeros(kcurr)),nspred*exo_nbr);
dghxu(klead~=0,:,jp)*kron(ghx(idx_states,:),eye(exo_nbr)) + ghxu(klead~=0,:)*kron(dghx(idx_states,:,jp),eye(exo_nbr));
zeros(exo_nbr,nspred*exo_nbr)];
dzupup = [zeros(nspred,exo_nbr^2);
zeros(length(nonzeros(kcurr)),exo_nbr^2);
dghuu(klead~=0,:,jp);
zeros(exo_nbr,exo_nbr^2)];
dG_x_ss = kron(dghx(idx_states,:,jp),ghs2(idx_states,:)) + kron(ghx(idx_states,:),dghs2(idx_states,stderrparam_nbr+corrparam_nbr+jp));
dZ_x_ss = kron(dzx(:,:,jp),zss) + kron(zx,dzss);
dZ_up_up = kron(dzup,zup) + kron(zup,dzup);
dZ_xup_up = kron(dzxup,zup) + kron(zxup,dzup);
dZ_x_upup = kron(dzx(:,:,jp),zupup) + kron(zx,dzupup);
dZ_x_up_up = kron(dzx(:,:,jp),Z_up_up) + kron(zx,dZ_up_up);
daux_ZP_xup_up_Z_x_upup = dZ_xup_up*P_xu_u + dZ_x_upup;
dFxupup = dg3(:,k3yy0ex0(kyy0ex0,kyy0ex0,kyy0ex0)+(jp-1)*yy0ex0_nbr^3)*Z_x_up_up + g3(:,k3yy0ex0(kyy0ex0,kyy0ex0,kyy0ex0))*dZ_x_up_up...
+ dg2(:,k2yy0ex0(kyy0ex0,kyy0ex0)+(jp-1)*yy0ex0_nbr^2)*aux_ZP_xup_up_Z_x_upup + g2(:,k2yy0ex0(kyy0ex0,kyy0ex0))*daux_ZP_xup_up_Z_x_upup...
+ dg1(:,nonzeros(klead),jp)*ghxuu(klead~=0,:)*kron(ghx(idx_states,:),eye(exo_nbr^2)) + g1(:,nonzeros(klead))*dghxuu(klead~=0,:,jp)*kron(ghx(idx_states,:),eye(exo_nbr^2)) + g1(:,nonzeros(klead))*ghxuu(klead~=0,:)*kron(dghx(idx_states,:,jp),eye(exo_nbr^2));
dRHSxss(:,:,stderrparam_nbr+corrparam_nbr+jp) = dA(:,:,jp)*ghxss + dB(:,:,jp)*ghxss*ghx(idx_states,:) + B*ghxss*dghx(idx_states,:,jp);
dRHSxss(:,:,stderrparam_nbr+corrparam_nbr+jp) = dRHSxss(:,:,stderrparam_nbr+corrparam_nbr+jp) + dfyp_ghxxp(:,:,jp)*G_x_ss + fyp_ghxxp*dG_x_ss;
dRHSxss(:,:,stderrparam_nbr+corrparam_nbr+jp) = dRHSxss(:,:,stderrparam_nbr+corrparam_nbr+jp) + dg2(:,k2yy0ex0(kyy0ex0,kyy0ex0)+(jp-1)*yy0ex0_nbr^2)*Z_x_ss + g2(:,k2yy0ex0(kyy0ex0,kyy0ex0))*dZ_x_ss;
dRHSxss(:,:,stderrparam_nbr+corrparam_nbr+jp) = dRHSxss(:,:,stderrparam_nbr+corrparam_nbr+jp) + dFxupup*Ix_vecSig_e; %missing contribution by dSigma_e
%Compute dRHSuss
dzuup = [zeros(nspred,exo_nbr^2);
zeros(length(nonzeros(kcurr)),exo_nbr^2);
dghxu(klead~=0,:,jp)*kron(ghu(idx_states,:),eye(exo_nbr)) + ghxu(klead~=0,:)*kron(dghu(idx_states,:,jp),eye(exo_nbr));
zeros(exo_nbr,exo_nbr^2)];
dG_u_ss = kron(dghu(idx_states,:,jp),ghs2(idx_states,:)) + kron(ghu(idx_states,:),dghs2(idx_states,stderrparam_nbr+corrparam_nbr+jp));
dZ_u_ss = kron(dzu(:,:,jp),zss) + kron(zu,dzss);
dZ_u_upup = kron(dzu(:,:,jp),zupup) + kron(zu,dzupup);
dZ_uup_up = kron(dzuup,zup) + kron(zuup,dzup);
dZ_u_up_up = kron(dzu(:,:,jp),Z_up_up) + kron(zu,dZ_up_up);
daux_ZP_uup_up_Z_u_upup = dZ_uup_up*P_uu_u + dZ_u_upup;
dFuupup = dg3(:,k3yy0ex0(kyy0ex0,kyy0ex0,kyy0ex0)+(jp-1)*yy0ex0_nbr^3)*Z_u_up_up + g3(:,k3yy0ex0(kyy0ex0,kyy0ex0,kyy0ex0))*dZ_u_up_up...
+ dg2(:,k2yy0ex0(kyy0ex0,kyy0ex0)+(jp-1)*yy0ex0_nbr^2)*aux_ZP_uup_up_Z_u_upup + g2(:,k2yy0ex0(kyy0ex0,kyy0ex0))*daux_ZP_uup_up_Z_u_upup...
+ dg1(:,nonzeros(klead),jp)*ghxuu(klead~=0,:)*kron(ghu(idx_states,:),eye(exo_nbr^2)) + g1(:,nonzeros(klead))*dghxuu(klead~=0,:,jp)*kron(ghu(idx_states,:),eye(exo_nbr^2)) + g1(:,nonzeros(klead))*ghxuu(klead~=0,:)*kron(dghu(idx_states,:,jp),eye(exo_nbr^2));
dRHSuss(:,:,stderrparam_nbr+corrparam_nbr+jp) = dA(:,:,jp)*ghuss + dB(:,:,jp)*ghxss*ghu(idx_states,:) + B*ghxss*dghu(idx_states,:,jp); %missing dghxss
dRHSuss(:,:,stderrparam_nbr+corrparam_nbr+jp) = dRHSuss(:,:,stderrparam_nbr+corrparam_nbr+jp) + dfyp_ghxxp(:,:,jp)*G_u_ss + fyp_ghxxp*dG_u_ss;
dRHSuss(:,:,stderrparam_nbr+corrparam_nbr+jp) = dRHSuss(:,:,stderrparam_nbr+corrparam_nbr+jp) + dg2(:,k2yy0ex0(kyy0ex0,kyy0ex0)+(jp-1)*yy0ex0_nbr^2)*Z_u_ss + g2(:,k2yy0ex0(kyy0ex0,kyy0ex0))*dZ_u_ss;
dRHSuss(:,:,stderrparam_nbr+corrparam_nbr+jp) = dRHSuss(:,:,stderrparam_nbr+corrparam_nbr+jp) + dFuupup*Iu_vecSig_e; %contribution by dSigma_e only for stderr and corr params
end
%Add contribution for stderr and corr params to dRHSxss and dRHSuss
if ~isempty(indpstderr)
for jp = 1:stderrparam_nbr
dzss = [zeros(nspred,1);
dghs2(kcurr~=0,jp);
dghs2(klead~=0,jp) + ghx(klead~=0,:)*dghs2(idx_states,jp);
zeros(exo_nbr,1)];
dG_x_ss = kron(ghx(idx_states,:),dghs2(idx_states,jp));
dZ_x_ss = kron(zx,dzss);
dRHSxss(:,:,jp) = Fxupup*kron(speye(nspred),vec(dSigma_e(:,:,jp)));
dRHSxss(:,:,jp) = dRHSxss(:,:,jp) + fyp_ghxxp*dG_x_ss;
dRHSxss(:,:,jp) = dRHSxss(:,:,jp) + g2(:,k2yy0ex0(kyy0ex0,kyy0ex0))*dZ_x_ss;
dG_u_ss = kron(ghu(idx_states,:),dghs2(idx_states,jp));
dZ_u_ss = kron(zu,dzss);
dRHSuss(:,:,jp) = Fuupup*kron(speye(exo_nbr),vec(dSigma_e(:,:,jp)));
dRHSuss(:,:,jp) = dRHSuss(:,:,jp) + fyp_ghxxp*dG_u_ss;
dRHSuss(:,:,jp) = dRHSuss(:,:,jp) + g2(:,k2yy0ex0(kyy0ex0,kyy0ex0))*dZ_u_ss;
end
end
if ~isempty(indpcorr)
for jp = (stderrparam_nbr+1):(stderrparam_nbr+corrparam_nbr)
dzss = [zeros(nspred,1);
dghs2(kcurr~=0,jp);
dghs2(klead~=0,jp) + ghx(klead~=0,:)*dghs2(idx_states,jp);
zeros(exo_nbr,1)];
dG_x_ss = kron(ghx(idx_states,:),dghs2(idx_states,jp));
dZ_x_ss = kron(zx,dzss);
dRHSxss(:,:,jp) = Fxupup*kron(speye(nspred),vec(dSigma_e(:,:,jp)));
dRHSxss(:,:,jp) = dRHSxss(:,:,jp) + fyp_ghxxp*dG_x_ss;
dRHSxss(:,:,jp) = dRHSxss(:,:,jp) + g2(:,k2yy0ex0(kyy0ex0,kyy0ex0))*dZ_x_ss;
dG_u_ss = kron(ghu(idx_states,:),dghs2(idx_states,jp));
dZ_u_ss = kron(zu,dzss);
dRHSuss(:,:,jp) = Fuupup*kron(speye(exo_nbr),vec(dSigma_e(:,:,jp)));
dRHSuss(:,:,jp) = dRHSuss(:,:,jp) + fyp_ghxxp*dG_u_ss;
dRHSuss(:,:,jp) = dRHSuss(:,:,jp) + g2(:,k2yy0ex0(kyy0ex0,kyy0ex0))*dZ_u_ss;
end
end
dRHSxss = -dRHSxss;
%use iterated generalized sylvester equation to compute dghxss
dghxss = sylvester3(A,B,ghx(idx_states,:),dRHSxss);
flag = 1; icount = 0;
while flag && icount < 4
[dghxss, flag] = sylvester3a(dghxss,A,B,ghx(idx_states,:),dRHSxss);
icount = icount+1;
end
%Add contribution by dghxss to dRHSuss and compute it
dghuss = zeros(endo_nbr,exo_nbr,totparam_nbr);
for jp = 1:totparam_nbr
dRHS = dRHSuss(:,:,jp) + B*dghxss(:,:,jp)*ghu(idx_states,:);
dghuss(:,:,jp) = invA* (-dRHS);
end
end
%% Store into structure
DERIVS.dg1 = dg1;
DERIVS.dSigma_e = dSigma_e;
DERIVS.dCorrelation_matrix = dCorrelation_matrix;
DERIVS.dYss = dYss;
DERIVS.dghx = cat(3,zeros(endo_nbr,nspred,stderrparam_nbr+corrparam_nbr), dghx);
DERIVS.dghu = cat(3,zeros(endo_nbr,exo_nbr,stderrparam_nbr+corrparam_nbr), dghu);
DERIVS.dOm = dOm;
if order > 1
DERIVS.dg2 = dg2;
DERIVS.dghxx = cat(3,zeros(endo_nbr,nspred^2,stderrparam_nbr+corrparam_nbr), dghxx);
DERIVS.dghxu = cat(3,zeros(endo_nbr,nspred*exo_nbr,stderrparam_nbr+corrparam_nbr), dghxu);
DERIVS.dghuu = cat(3,zeros(endo_nbr,exo_nbr^2,stderrparam_nbr+corrparam_nbr), dghuu);
DERIVS.dghs2 = dghs2;
end
if order > 2
DERIVS.dg3 = dg3;
DERIVS.dghxxx = cat(3,zeros(endo_nbr,nspred^3,stderrparam_nbr+corrparam_nbr), dghxxx);
DERIVS.dghxxu = cat(3,zeros(endo_nbr,nspred^2*exo_nbr,stderrparam_nbr+corrparam_nbr), dghxxu);
DERIVS.dghxuu = cat(3,zeros(endo_nbr,nspred*exo_nbr^2,stderrparam_nbr+corrparam_nbr), dghxuu);
DERIVS.dghuuu = cat(3,zeros(endo_nbr,exo_nbr^3,stderrparam_nbr+corrparam_nbr), dghuuu);
DERIVS.dghxss = dghxss;
DERIVS.dghuss = dghuss;
end
%% Construct Hessian (wrt all selected parameters) of ghx, and Om=ghu*Sigma_e*ghu'
if d2flag
% Construct Hessian (wrt all selected parameters) of Sigma_e
% note that we only need to focus on (stderr x stderr), (stderr x corr), (corr x stderr) parameters, because derivatives wrt all other second-cross parameters are zero by construction
d2Sigma_e = zeros(exo_nbr,exo_nbr,totparam_nbr^2); %initialize full matrix, even though we'll reduce it later to unique upper triangular values
% Compute Hessian of Sigma_e wrt (stderr x stderr) parameters
if ~isempty(indp2stderrstderr)
for jp = 1:stderrparam_nbr
for ip = 1:jp
if jp == ip %same stderr parameters
d2Sigma_e(indpstderr(jp),indpstderr(jp),indp2stderrstderr(ip,jp)) = 2;
else %different stderr parameters
if isdiag(Sigma_e) == 0 % if there are correlated errors
d2Sigma_e(indpstderr(jp),indpstderr(ip),indp2stderrstderr(ip,jp)) = Correlation_matrix(indpstderr(jp),indpstderr(ip));
d2Sigma_e(indpstderr(ip),indpstderr(jp),indp2stderrstderr(ip,jp)) = Correlation_matrix(indpstderr(jp),indpstderr(ip)); %symmetry
end
end
end
end
end
% Compute Hessian of Sigma_e wrt (stderr x corr) parameters
if ~isempty(indp2stderrcorr)
for jp = 1:stderrparam_nbr
for ip = 1:corrparam_nbr
if indpstderr(jp) == indpcorr(ip,1) %if stderr is equal to first index of corr parameter, then derivative is equal to stderr of second index
d2Sigma_e(indpstderr(jp),indpcorr(ip,2),indp2stderrcorr(jp,ip)) = sqrt(Sigma_e(indpcorr(ip,2),indpcorr(ip,2)));
d2Sigma_e(indpcorr(ip,2),indpstderr(jp),indp2stderrcorr(jp,ip)) = sqrt(Sigma_e(indpcorr(ip,2),indpcorr(ip,2))); % symmetry
end
if indpstderr(jp) == indpcorr(ip,2) %if stderr is equal to second index of corr parameter, then derivative is equal to stderr of first index
d2Sigma_e(indpstderr(jp),indpcorr(ip,1),indp2stderrcorr(jp,ip)) = sqrt(Sigma_e(indpcorr(ip,1),indpcorr(ip,1)));
d2Sigma_e(indpcorr(ip,1),indpstderr(jp),indp2stderrcorr(jp,ip)) = sqrt(Sigma_e(indpcorr(ip,1),indpcorr(ip,1))); % symmetry
end
end
end
end
d2Sigma_e = d2Sigma_e(:,:,indp2tottot2); %focus on upper triangular hessian values only
% Construct nonzero derivatives wrt to t+1, i.e. GAM1=-f_{y^+} in Villemot (2011)
GAM1 = zeros(endo_nbr,endo_nbr);
GAM1(:,klead~=0,:) = -g1(:,nonzeros(klead));
dGAM1 = zeros(endo_nbr,endo_nbr,modparam_nbr);
dGAM1(:,klead~=0,:) = -dg1(:,nonzeros(klead),:);
indind = ismember(d2g1(:,2),nonzeros(klead));
tmp = d2g1(indind,:);
tmp(:,end)=-tmp(:,end);
d2GAM1 = tmp;
indklead = find(klead~=0);
for j = 1:size(tmp,1)
inxinx = (nonzeros(klead)==tmp(j,2));
d2GAM1(j,2) = indklead(inxinx);
end
% Construct nonzero derivatives wrt to t, i.e. GAM0=f_{y^0} in Villemot (2011)
GAM0 = zeros(endo_nbr,endo_nbr);
GAM0(:,kcurr~=0,:) = g1(:,nonzeros(kcurr));
dGAM0 = zeros(endo_nbr,endo_nbr,modparam_nbr);
dGAM0(:,kcurr~=0,:) = dg1(:,nonzeros(kcurr),:);
indind = ismember(d2g1(:,2),nonzeros(kcurr));
tmp = d2g1(indind,:);
d2GAM0 = tmp;
indkcurr = find(kcurr~=0);
for j = 1:size(tmp,1)
inxinx = (nonzeros(kcurr)==tmp(j,2));
d2GAM0(j,2) = indkcurr(inxinx);
end
% Construct nonzero derivatives wrt to t-1, i.e. GAM2=-f_{y^-} in Villemot (2011)
% GAM2 = zeros(endo_nbr,endo_nbr);
% GAM2(:,klag~=0) = -g1(:,nonzeros(klag));
% dGAM2 = zeros(endo_nbr,endo_nbr,modparam_nbr);
% dGAM2(:,klag~=0) = -dg1(:,nonzeros(klag),:);
indind = ismember(d2g1(:,2),nonzeros(klag));
tmp = d2g1(indind,:);
tmp(:,end) = -tmp(:,end);
d2GAM2 = tmp;
indklag = find(klag~=0);
for j = 1:size(tmp,1)
inxinx = (nonzeros(klag)==tmp(j,2));
d2GAM2(j,2) = indklag(inxinx);
end
% Construct nonzero derivatives wrt to u_t, i.e. GAM3=-f_{u} in Villemot (2011)
% GAM3 = -g1(:,yy0_nbr+1:end);
% dGAM3 = -dg1(:,yy0_nbr+1:end,:);
cols_ex = yy0_nbr+(1:yy0ex0_nbr);
indind = ismember(d2g1(:,2),cols_ex);
tmp = d2g1(indind,:);
tmp(:,end) = -tmp(:,end);
d2GAM3 = tmp;
for j = 1:size(tmp,1)
inxinx = find(cols_ex==tmp(j,2));
d2GAM3(j,2) = inxinx;
end
clear d2g1 tmp
% Compute Hessian (wrt selected params) of ghx using generalized sylvester equations, see equations 17 and 18 in Ratto and Iskrev (2012)
% solves MM*d2KalmanA+N*d2KalmanA*P = QQ where d2KalmanA are second order derivatives (wrt model parameters) of KalmanA
QQ = zeros(endo_nbr,endo_nbr,floor(sqrt(modparam_nbr2)));
jcount=0;
cumjcount=0;
jinx = [];
x2x=sparse(endo_nbr*endo_nbr,modparam_nbr2);
dKalmanA = zeros(endo_nbr,endo_nbr,modparam_nbr);
dKalmanA(:,idx_states,:) = dghx;
MM = (GAM0-GAM1*KalmanA);
invMM = inv(MM);
for i=1:modparam_nbr
for j=1:i
elem1 = (get_2nd_deriv(d2GAM0,endo_nbr,endo_nbr,j,i)-get_2nd_deriv(d2GAM1,endo_nbr,endo_nbr,j,i)*KalmanA);
elem1 = get_2nd_deriv(d2GAM2,endo_nbr,endo_nbr,j,i)-elem1*KalmanA;
elemj0 = dGAM0(:,:,j)-dGAM1(:,:,j)*KalmanA;
elemi0 = dGAM0(:,:,i)-dGAM1(:,:,i)*KalmanA;
elem2 = -elemj0*dKalmanA(:,:,i)-elemi0*dKalmanA(:,:,j);
elem2 = elem2 + ( dGAM1(:,:,j)*dKalmanA(:,:,i) + dGAM1(:,:,i)*dKalmanA(:,:,j) )*KalmanA;
elem2 = elem2 + GAM1*( dKalmanA(:,:,i)*dKalmanA(:,:,j) + dKalmanA(:,:,j)*dKalmanA(:,:,i));
jcount=jcount+1;
jinx = [jinx; [j i]];
QQ(:,:,jcount) = elem1+elem2;
if jcount==floor(sqrt(modparam_nbr2)) || (j*i)==modparam_nbr^2
if (j*i)==modparam_nbr^2
QQ = QQ(:,:,1:jcount);
end
xx2=sylvester3(MM,-GAM1,KalmanA,QQ);
flag=1;
icount=0;
while flag && icount<4
[xx2, flag]=sylvester3a(xx2,MM,-GAM1,KalmanA,QQ);
icount = icount + 1;
end
x2x(:,cumjcount+1:cumjcount+jcount)=reshape(xx2,[endo_nbr*endo_nbr jcount]);
cumjcount=cumjcount+jcount;
jcount = 0;
jinx = [];
end
end
end
clear xx2;
jcount = 0;
icount = 0;
cumjcount = 0;
MAX_DIM_MAT = 100000000;
ncol = max(1,floor(MAX_DIM_MAT/(8*endo_nbr*(endo_nbr+1)/2)));
ncol = min(ncol, totparam_nbr2);
d2KalmanA = sparse(endo_nbr*endo_nbr,totparam_nbr2);
d2Om = sparse(endo_nbr*(endo_nbr+1)/2,totparam_nbr2);
d2KalmanA_tmp = zeros(endo_nbr*endo_nbr,ncol);
d2Om_tmp = zeros(endo_nbr*(endo_nbr+1)/2,ncol);
tmpDir = CheckPath('tmp_derivs',dname);
offset = stderrparam_nbr+corrparam_nbr;
% d2B = zeros(m,n,tot_param_nbr,tot_param_nbr);
for j=1:totparam_nbr
for i=1:j
jcount=jcount+1;
if j<=offset %stderr and corr parameters
y = KalmanB*d2Sigma_e(:,:,jcount)*KalmanB';
d2Om_tmp(:,jcount) = dyn_vech(y);
else %model parameters
jind = j-offset;
iind = i-offset;
if i<=offset
y = dghu(:,:,jind)*dSigma_e(:,:,i)*KalmanB'+KalmanB*dSigma_e(:,:,i)*dghu(:,:,jind)';
% y(abs(y)<1.e-8)=0;
d2Om_tmp(:,jcount) = dyn_vech(y);
else
icount=icount+1;
dKalmanAj = reshape(x2x(:,icount),[endo_nbr endo_nbr]);
% x = get_2nd_deriv(x2x,m,m,iind,jind);%xx2(:,:,jcount);
elem1 = (get_2nd_deriv(d2GAM0,endo_nbr,endo_nbr,iind,jind)-get_2nd_deriv(d2GAM1,endo_nbr,endo_nbr,iind,jind)*KalmanA);
elem1 = elem1 -( dGAM1(:,:,jind)*dKalmanA(:,:,iind) + dGAM1(:,:,iind)*dKalmanA(:,:,jind) );
elemj0 = dGAM0(:,:,jind)-dGAM1(:,:,jind)*KalmanA-GAM1*dKalmanA(:,:,jind);
elemi0 = dGAM0(:,:,iind)-dGAM1(:,:,iind)*KalmanA-GAM1*dKalmanA(:,:,iind);
elem0 = elemj0*dghu(:,:,iind)+elemi0*dghu(:,:,jind);
y = invMM * (get_2nd_deriv(d2GAM3,endo_nbr,exo_nbr,iind,jind)-elem0-(elem1-GAM1*dKalmanAj)*KalmanB);
% d2B(:,:,j+length(indexo),i+length(indexo)) = y;
% d2B(:,:,i+length(indexo),j+length(indexo)) = y;
y = y*Sigma_e*KalmanB'+KalmanB*Sigma_e*y'+ ...
dghu(:,:,jind)*Sigma_e*dghu(:,:,iind)'+dghu(:,:,iind)*Sigma_e*dghu(:,:,jind)';
% x(abs(x)<1.e-8)=0;
d2KalmanA_tmp(:,jcount) = vec(dKalmanAj);
% y(abs(y)<1.e-8)=0;
d2Om_tmp(:,jcount) = dyn_vech(y);
end
end
if jcount==ncol || i*j==totparam_nbr^2
d2KalmanA(:,cumjcount+1:cumjcount+jcount) = d2KalmanA_tmp(:,1:jcount);
% d2KalmanA(:,:,j+length(indexo),i+length(indexo)) = x;
% d2KalmanA(:,:,i+length(indexo),j+length(indexo)) = x;
d2Om(:,cumjcount+1:cumjcount+jcount) = d2Om_tmp(:,1:jcount);
% d2Om(:,:,j+length(indexo),i+length(indexo)) = y;
% d2Om(:,:,i+length(indexo),j+length(indexo)) = y;
save([tmpDir filesep 'd2KalmanA_' int2str(cumjcount+1) '_' int2str(cumjcount+jcount) '.mat'],'d2KalmanA')
save([tmpDir filesep 'd2Om_' int2str(cumjcount+1) '_' int2str(cumjcount+jcount) '.mat'],'d2Om')
cumjcount = cumjcount+jcount;
jcount=0;
% d2KalmanA = sparse(m1*m1,tot_param_nbr*(tot_param_nbr+1)/2);
% d2Om = sparse(m1*(m1+1)/2,tot_param_nbr*(tot_param_nbr+1)/2);
d2KalmanA_tmp = zeros(endo_nbr*endo_nbr,ncol);
d2Om_tmp = zeros(endo_nbr*(endo_nbr+1)/2,ncol);
end
end
end
%Store into structure
DERIVS.d2Yss = d2Yss;
DERIVS.d2KalmanA = d2KalmanA;
DERIVS.d2Om = d2Om;
end
return
%% AUXILIARY FUNCTIONS %%
%%%%%%%%%%%%%%%%%%%%%%%%%
function g22 = get_2nd_deriv(gpp,m,n,i,j)
% inputs:
% - gpp: [#second_order_Jacobian_terms by 5] double Hessian matrix (wrt parameters) of a matrix
% rows: respective derivative term
% 1st column: equation number of the term appearing
% 2nd column: column number of variable in Jacobian
% 3rd column: number of the first parameter in derivative
% 4th column: number of the second parameter in derivative
% 5th column: value of the Hessian term
% - m: scalar number of equations
% - n: scalar number of variables
% - i: scalar number for which first parameter
% - j: scalar number for which second parameter
g22=zeros(m,n);
is=find(gpp(:,3)==i);
is=is(find(gpp(is,4)==j));
if ~isempty(is)
g22(sub2ind([m,n],gpp(is,1),gpp(is,2)))=gpp(is,5)';
end
return
function g22 = get_2nd_deriv_mat(gpp,i,j,npar)
% inputs:
% - gpp: [#second_order_Jacobian_terms by 5] double Hessian matrix of (wrt parameters) of dynamic Jacobian
% rows: respective derivative term
% 1st column: equation number of the term appearing
% 2nd column: column number of variable in Jacobian of the dynamic model
% 3rd column: number of the first parameter in derivative
% 4th column: number of the second parameter in derivative
% 5th column: value of the Hessian term
% - i: scalar number for which model equation
% - j: scalar number for which variable in Jacobian of dynamic model
% - npar: scalar Number of model parameters, i.e. equals param_nbr
%
% output:
% g22: [npar by npar] Hessian matrix (wrt parameters) of Jacobian of dynamic model for equation i
% rows: first parameter in Hessian
% columns: second paramater in Hessian
g22=zeros(npar,npar);
is=find(gpp(:,1)==i);
is=is(find(gpp(is,2)==j));
if ~isempty(is)
g22(sub2ind([npar,npar],gpp(is,3),gpp(is,4)))=gpp(is,5)';
end
return
function r22 = get_all_resid_2nd_derivs(rpp,m,npar)
% inputs:
% - rpp: [#second_order_residual_terms by 4] double Hessian matrix (wrt paramters) of model equations
% rows: respective derivative term
% 1st column: equation number of the term appearing
% 2nd column: number of the first parameter in derivative
% 3rd column: number of the second parameter in derivative
% 4th column: value of the Hessian term
% - m: scalar Number of residuals (or model equations), i.e. equals endo_nbr
% - npar: scalar Number of model parameters, i.e. equals param_nbr
%
% output:
% r22: [endo_nbr by param_nbr by param_nbr] Hessian matrix of model equations with respect to parameters
% rows: equations in order of declaration
% 1st columns: first parameter number in derivative
% 2nd columns: second parameter in derivative
r22=zeros(m,npar,npar);
for is=1:size(rpp,1)
% Keep symmetry in hessian, hence 2 and 3 as well as 3 and 2, i.e. d2f/(dp1 dp2) = d2f/(dp2 dp1)
r22(rpp(is,1),rpp(is,2),rpp(is,3))=rpp(is,4);
r22(rpp(is,1),rpp(is,3),rpp(is,2))=rpp(is,4);
end
return
function h2 = get_hess_deriv(hp,i,j,m,npar)
% inputs:
% - hp: [#first_order_Hessian_terms by 5] double Jacobian matrix (wrt paramters) of dynamic Hessian
% rows: respective derivative term
% 1st column: equation number of the term appearing
% 2nd column: column number of first variable in Hessian of the dynamic model
% 3rd column: column number of second variable in Hessian of the dynamic model
% 4th column: number of the parameter in derivative
% 5th column: value of the Hessian term
% - i: scalar number for which model equation
% - j: scalar number for which first variable in Hessian of dynamic model variable
% - m: scalar Number of dynamic model variables + exogenous vars, i.e. yy0_nbr + exo_nbr
% - npar: scalar Number of model parameters, i.e. equals param_nbr
%
% output:
% h2: [(yy0_nbr + exo_nbr) by param_nbr] Jacobian matrix (wrt parameters) of dynamic Hessian
% rows: second dynamic or exogenous variables in Hessian of specific model equation of the dynamic model
% columns: parameters
h2=zeros(m,npar);
is1=find(hp(:,1)==i);
is=is1(find(hp(is1,2)==j));
if ~isempty(is)
h2(sub2ind([m,npar],hp(is,3),hp(is,4)))=hp(is,5)';
end
return
|