| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 
 | function [ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal] = identification_checks_via_subsets(ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal, totparam_nbr, modparam_nbr, options_ident,error_indicator)
%[ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal] = identification_checks_via_subsets(ide_dynamic, ide_reducedform, ide_moments, ide_spectrum, ide_minimal, totparam_nbr, modparam_nbr, options_ident,error_indicator)
% -------------------------------------------------------------------------
% Finds problematic sets of paramters via checking the necessary rank condition
% of the Jacobians for all possible combinations of parameters. The rank is
% computed via an inbuild function based on the SVD, similar to matlab's
% rank. The idea is that once we have the Jacobian for all parameters, we
% can easily set up Jacobians containing all combinations of parameters by
% picking the relevant columns/elements of the full Jacobian. Then the rank
% of these smaller Jacobians indicates whether this paramter combination is
% identified or not. To speed up computations:
% (1) single parameters are removed from possible higher-order sets,
% (2) for parameters that are collinear, i.e. rank failure for 2 element sets,
% we replace the second parameter by the first one, and then compute
% higher-order combinations [uncommented]
% (3) all lower-order problematic sets are removed from higher-order sets
% by an inbuild function
% (4) we could replace nchoosek by a mex version, e.g. VChooseK
% (https://de.mathworks.com/matlabcentral/fileexchange/26190-vchoosek) as
% nchoosek could be the bottleneck in terms of speed (and memory for models
% with totparam_nbr > 150)
% =========================================================================
% INPUTS
%   ide_reducedform:    [structure] Containing results from identification
%                       analysis based on the reduced-form solution (Ratto
%                       and Iskrev, 2011). If either options_ident.no_identification_reducedform
%                       or error_indicator.identification_reducedform are 1 then the search for problematic parameter sets will be skipped
%   ide_moments:        [structure] Containing results from identification
%                       analysis based on moments (Iskrev, 2010). If either
%                       options_ident.no_identification_moments or error_indicator.identification_moments are 1 then the search for
%                       problematic parameter sets will be skipped
%   ide_spectrum:       [structure] Containing results from identification
%                       analysis based on the spectrum (Qu and Tkachenko, 2012).
%                       If either options_ident.no_identification_spectrum or error_indicator.identification_spectrum are 1 then the search for
%                       problematic parameter sets will be skipped
%   ide_minimal:        [structure] Containing results from identification
%                       analysis based on the minimal state space system
%                       (Komunjer and Ng, 2011). If either options_ident.no_identification_minimal or
%                       error_indicator.identification_minimal are 1 then the search for problematic parameter sets will be skipped
%   totparam_nbr:       [integer] number of estimated stderr, corr and model parameters
%   numzerotolrank:     [double] tolerance level for rank compuations
%   error_indicator     [structure] indicators whether objects could be computed
% -------------------------------------------------------------------------
% OUTPUTS
%   ide_reducedform, ide_moments, ide_spectrum, ide_minimal are augmented by the
%   following fields:
%   * problpars:  [1 by totparam_nbr] cell with the following structure for j=1:totparam_nbr
%                  problpars{j}:   [nonidentified_j_set_parameters_nbr by j]
%                  matrix with j collinear parameters in each row
%   * rank:       [integer] rank of Jacobian
% -------------------------------------------------------------------------
% This function is called by
%   * identification_analysis.m
% =========================================================================
% Copyright (C) 2019-2021 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.
% =========================================================================
%% initialize output objects and get options
no_identification_dynamic             = 0; %always compute dynamic
no_identification_reducedform         = options_ident.no_identification_reducedform;
no_identification_moments             = options_ident.no_identification_moments;
no_identification_spectrum            = options_ident.no_identification_spectrum;
no_identification_minimal             = options_ident.no_identification_minimal;
tol_rank               = options_ident.tol_rank;
max_dim_subsets_groups = options_ident.max_dim_subsets_groups;
dynamic_problpars      = cell(1,max_dim_subsets_groups);
reducedform_problpars  = cell(1,max_dim_subsets_groups);
moments_problpars      = cell(1,max_dim_subsets_groups);
spectrum_problpars     = cell(1,max_dim_subsets_groups);
minimal_problpars      = cell(1,max_dim_subsets_groups);
indtotparam            = 1:totparam_nbr; %initialize index of parameters
%% Prepare Jacobians and check rank
% initialize linear rational expectations model
if ~no_identification_dynamic
    dDYNAMIC = ide_dynamic.dDYNAMIC;
    dDYNAMIC(ide_dynamic.ind_dDYNAMIC,:) = dDYNAMIC(ide_dynamic.ind_dDYNAMIC,:)./ide_dynamic.norm_dDYNAMIC; %normalize
    if totparam_nbr > modparam_nbr
        dDYNAMIC = [zeros(size(ide_dynamic.dDYNAMIC,1),totparam_nbr-modparam_nbr) dDYNAMIC]; %add derivatives wrt stderr and corr parameters
    end
    if strcmp(tol_rank,'robust')
        rank_dDYNAMIC = rank(full(dDYNAMIC)); %compute rank with imposed tolerance level
    else
        rank_dDYNAMIC = rank(full(dDYNAMIC),tol_rank); %compute rank with imposed tolerance level
    end
    ide_dynamic.rank = rank_dDYNAMIC;
    % check rank criteria for full Jacobian
    if rank_dDYNAMIC == totparam_nbr
        % all parameters are identifiable
        no_identification_dynamic = 1; %skip in the following
        indparam_dDYNAMIC = [];
    else
        % there is lack of identification
        indparam_dDYNAMIC = indtotparam; %initialize for nchoosek
    end
else
    indparam_dDYNAMIC = []; %empty for nchoosek
end
% initialize for reduced form solution criteria
if ~no_identification_reducedform && ~error_indicator.identification_reducedform
    dREDUCEDFORM = ide_reducedform.dREDUCEDFORM;
    dREDUCEDFORM(ide_reducedform.ind_dREDUCEDFORM,:) = dREDUCEDFORM(ide_reducedform.ind_dREDUCEDFORM,:)./ide_reducedform.norm_dREDUCEDFORM; %normalize
    if strcmp(tol_rank,'robust')
        rank_dREDUCEDFORM = rank(full(dREDUCEDFORM)); %compute rank with imposed tolerance level
    else
        rank_dREDUCEDFORM = rank(full(dREDUCEDFORM),tol_rank); %compute rank with imposed tolerance level
    end
    ide_reducedform.rank = rank_dREDUCEDFORM;
    % check rank criteria for full Jacobian
    if rank_dREDUCEDFORM == totparam_nbr
        % all parameters are identifiable
        no_identification_reducedform = 1; %skip in the following
        indparam_dREDUCEDFORM = [];
    else
        % there is lack of identification
        indparam_dREDUCEDFORM = indtotparam; %initialize for nchoosek
    end
else
    indparam_dREDUCEDFORM = []; %empty for nchoosek
end
% initialize for moments criteria
if ~no_identification_moments && ~error_indicator.identification_moments
    dMOMENTS = ide_moments.dMOMENTS;
    dMOMENTS(ide_moments.ind_dMOMENTS,:) = dMOMENTS(ide_moments.ind_dMOMENTS,:)./ide_moments.norm_dMOMENTS; %normalize
    if strcmp(tol_rank,'robust')
        rank_dMOMENTS = rank(full(dMOMENTS)); %compute rank with imposed tolerance level
    else
        rank_dMOMENTS = rank(full(dMOMENTS),tol_rank); %compute rank with imposed tolerance level
    end
    ide_moments.rank = rank_dMOMENTS;
    % check rank criteria for full Jacobian
    if rank_dMOMENTS == totparam_nbr
        % all parameters are identifiable
        no_identification_moments = 1; %skip in the following
        indparam_dMOMENTS = [];
    else
        % there is lack of identification
        indparam_dMOMENTS = indtotparam; %initialize for nchoosek
    end
else
    indparam_dMOMENTS = []; %empty for nchoosek
end
% initialize for spectrum criteria
if ~no_identification_spectrum && ~error_indicator.identification_spectrum
    dSPECTRUM = ide_spectrum.tilda_dSPECTRUM; %tilda dSPECTRUM is normalized dSPECTRUM matrix in identification_analysis.m
    %alternative normalization
    %dSPECTRUM = ide_spectrum.dSPECTRUM;
    %dSPECTRUM(ide_spectrum.ind_dSPECTRUM,:) = dSPECTRUM(ide_spectrum.ind_dSPECTRUM,:)./ide_spectrum.norm_dSPECTRUM; %normalize
    if strcmp(tol_rank,'robust')
        rank_dSPECTRUM = rank(full(dSPECTRUM)); %compute rank with imposed tolerance level
    else
        rank_dSPECTRUM = rank(full(dSPECTRUM),tol_rank); %compute rank with imposed tolerance level
    end
    ide_spectrum.rank = rank_dSPECTRUM;
    % check rank criteria for full Jacobian
    if rank_dSPECTRUM == totparam_nbr
        % all parameters are identifiable
        no_identification_spectrum = 1; %skip in the following
        indparam_dSPECTRUM = [];
    else
        % lack of identification
        indparam_dSPECTRUM = indtotparam; %initialize for nchoosek
    end
else
    indparam_dSPECTRUM = []; %empty for nchoosek
end
% initialize for minimal system criteria
if ~no_identification_minimal && ~error_indicator.identification_minimal
    dMINIMAL = ide_minimal.dMINIMAL;
    dMINIMAL(ide_minimal.ind_dMINIMAL,:) = dMINIMAL(ide_minimal.ind_dMINIMAL,:)./ide_minimal.norm_dMINIMAL; %normalize
    dMINIMAL_par  = dMINIMAL(:,1:totparam_nbr);       %part of dMINIMAL that is dependent on parameters
    dMINIMAL_rest = dMINIMAL(:,(totparam_nbr+1):end); %part of dMINIMAL that is independent of parameters
    if strcmp(tol_rank,'robust')
        rank_dMINIMAL = rank(full(dMINIMAL)); %compute rank via SVD see function below
    else
        rank_dMINIMAL = rank(full(dMINIMAL),tol_rank); %compute rank via SVD see function below
    end
    ide_minimal.rank = rank_dMINIMAL;
    dMINIMAL_fixed_rank_nbr = size(dMINIMAL_rest,2);
    % check rank criteria for full Jacobian
    if rank_dMINIMAL == totparam_nbr + dMINIMAL_fixed_rank_nbr
        % all parameters are identifiable
        no_identification_minimal = 1; %skip in the following
        indparam_dMINIMAL = [];
    else
        % lack of identification
        indparam_dMINIMAL = indtotparam; %initialize for nchoosek
    end
else
    indparam_dMINIMAL = []; %empty for nchoosek
end
%% Check single parameters
for j=1:totparam_nbr
    if ~no_identification_dynamic
        % Columns correspond to single parameters, i.e. full rank would be equal to 1
        if strcmp(tol_rank,'robust')
            if rank(full(dDYNAMIC(:,j))) == 0
                dynamic_problpars{1} = [dynamic_problpars{1};j];
            end
        else
            if rank(full(dDYNAMIC(:,j)),tol_rank) == 0
                dynamic_problpars{1} = [dynamic_problpars{1};j];
            end
        end
    end
    if ~no_identification_reducedform && ~error_indicator.identification_reducedform
        % Columns correspond to single parameters, i.e. full rank would be equal to 1
        if strcmp(tol_rank,'robust')
            if rank(full(dREDUCEDFORM(:,j))) == 0
                reducedform_problpars{1} = [reducedform_problpars{1};j];
            end
        else
            if rank(full(dREDUCEDFORM(:,j)),tol_rank) == 0
                reducedform_problpars{1} = [reducedform_problpars{1};j];
            end
        end
    end
    if ~no_identification_moments && ~error_indicator.identification_moments
        % Columns correspond to single parameters, i.e. full rank would be equal to 1
        if strcmp(tol_rank,'robust')
            if rank(full(dMOMENTS(:,j))) == 0
                moments_problpars{1} = [moments_problpars{1};j];
            end
        else
            if rank(full(dMOMENTS(:,j)),tol_rank) == 0
                moments_problpars{1} = [moments_problpars{1};j];
            end
        end
    end
    if ~no_identification_spectrum && ~error_indicator.identification_spectrum
        % Diagonal values correspond to single parameters, absolute value needs to be greater than tolerance level
        if abs(dSPECTRUM(j,j)) < tol_rank
            spectrum_problpars{1} = [spectrum_problpars{1};j];
        end
    end
    if ~no_identification_minimal && ~error_indicator.identification_minimal
        % Columns of dMINIMAL_par correspond to single parameters, needs to be augmented with dMINIMAL_rest (part that is independent of parameters),
        % full rank would be equal to 1+dMINIMAL_fixed_rank_nbr
        if strcmp(tol_rank,'robust')
            if rank(full([dMINIMAL_par(:,j) dMINIMAL_rest])) == dMINIMAL_fixed_rank_nbr
                minimal_problpars{1} = [minimal_problpars{1};j];
            end
        else
            if rank(full([dMINIMAL_par(:,j) dMINIMAL_rest]),tol_rank) == dMINIMAL_fixed_rank_nbr
                minimal_problpars{1} = [minimal_problpars{1};j];
            end
        end
    end
end
% Check whether lack of identification is only due to single parameters
if ~no_identification_dynamic
    if size(dynamic_problpars{1},1) == (totparam_nbr - rank_dDYNAMIC)
        %found all nonidentified parameter sets
        no_identification_dynamic = 1; %skip in the following
    else
        %still parameter sets that are nonidentified
        indparam_dDYNAMIC(dynamic_problpars{1}) = []; %remove single unidentified parameters from higher-order sets of indparam
    end
end
if ~no_identification_reducedform && ~error_indicator.identification_reducedform
    if size(reducedform_problpars{1},1) == (totparam_nbr - rank_dREDUCEDFORM)
        %found all nonidentified parameter sets
        no_identification_reducedform = 1; %skip in the following
    else
        %still parameter sets that are nonidentified
        indparam_dREDUCEDFORM(reducedform_problpars{1}) = []; %remove single unidentified parameters from higher-order sets of indparam
    end
end
if ~no_identification_moments && ~error_indicator.identification_moments
    if size(moments_problpars{1},1) == (totparam_nbr - rank_dMOMENTS)
        %found all nonidentified parameter sets
        no_identification_moments = 1; %skip in the following
    else
        %still parameter sets that are nonidentified
        indparam_dMOMENTS(moments_problpars{1}) = []; %remove single unidentified parameters from higher-order sets of indparam
    end
end
if ~no_identification_spectrum && ~error_indicator.identification_spectrum
    if size(spectrum_problpars{1},1) == (totparam_nbr - rank_dSPECTRUM)
        %found all nonidentified parameter sets
        no_identification_spectrum = 1; %skip in the following
    else
        %still parameter sets that are nonidentified
        indparam_dSPECTRUM(spectrum_problpars{1}) = []; %remove single unidentified parameters from higher-order sets of indparam
    end
end
if ~no_identification_minimal && ~error_indicator.identification_minimal
    if size(minimal_problpars{1},1) == (totparam_nbr + dMINIMAL_fixed_rank_nbr - rank_dMINIMAL)
        %found all nonidentified parameter sets
        no_identification_minimal = 1; %skip in the following
    else
        %still parameter sets that are nonidentified
        indparam_dMINIMAL(minimal_problpars{1}) = []; %remove single unidentified parameters from higher-order sets of indparam
    end
end
%% check higher order (j>1) parameter sets
%get common parameter indices from which to sample higher-order sets using nchoosek (we do not want to run nchoosek three times), most of the times indparamdMOMENTS, indparamdSPECTRUM, and indparamdMINIMAL are equal anyways
indtotparam = unique([indparam_dDYNAMIC indparam_dREDUCEDFORM indparam_dMOMENTS indparam_dSPECTRUM indparam_dMINIMAL]);
for j=2:min(length(indtotparam),max_dim_subsets_groups) % Check j-element subsets
    h = dyn_waitbar(0,['Brute force collinearity for ' int2str(j) ' parameters.']);
    %Step1: get all possible unique subsets of j elements
    if ~no_identification_dynamic ...
            || (~no_identification_reducedform && ~error_indicator.identification_reducedform)...
            || (~no_identification_moments && ~error_indicator.identification_moments)...
            || (~no_identification_spectrum && ~error_indicator.identification_spectrum)...
            || (~no_identification_minimal && ~error_indicator.identification_minimal)
        indexj=nchoosek(int16(indtotparam),j);  %  int16 speeds up nchoosek
        % One could also use a mex version of nchoosek to speed this up, e.g.VChooseK from https://de.mathworks.com/matlabcentral/fileexchange/26190-vchoosek
    end
    
    %Step 2: remove already problematic sets and initialize rank vector
    if ~no_identification_dynamic
        indexj_dDYNAMIC = RemoveProblematicParameterSets(indexj,dynamic_problpars);
        rankj_dDYNAMIC  = zeros(size(indexj_dDYNAMIC,1),1);
    else
        indexj_dDYNAMIC = [];
    end
    if ~no_identification_reducedform && ~error_indicator.identification_reducedform
        indexj_dREDUCEDFORM = RemoveProblematicParameterSets(indexj,reducedform_problpars);
        rankj_dREDUCEDFORM  = zeros(size(indexj_dREDUCEDFORM,1),1);
    else
        indexj_dREDUCEDFORM = [];
    end
    if ~no_identification_moments && ~error_indicator.identification_moments
        indexj_dMOMENTS = RemoveProblematicParameterSets(indexj,moments_problpars);
        rankj_dMOMENTS = zeros(size(indexj_dMOMENTS,1),1);
    else
        indexj_dMOMENTS = [];
    end
    if ~no_identification_spectrum && ~error_indicator.identification_spectrum
        indexj_dSPECTRUM = RemoveProblematicParameterSets(indexj,spectrum_problpars);
        rankj_dSPECTRUM = zeros(size(indexj_dSPECTRUM,1),1);
    else
        indexj_dSPECTRUM = [];
    end
    if ~no_identification_minimal && ~error_indicator.identification_minimal
        indexj_dMINIMAL = RemoveProblematicParameterSets(indexj,minimal_problpars);
        rankj_dMINIMAL = zeros(size(indexj_dMINIMAL,1),1);
    else
        indexj_dMINIMAL = [];
    end
    %Step3: Check rank criteria on submatrices
    k_dDYNAMIC=0; k_dREDUCEDFORM=0; k_dMOMENTS=0; k_dSPECTRUM=0; k_dMINIMAL=0; %initialize counters
    maxk = max([size(indexj_dDYNAMIC,1), size(indexj_dREDUCEDFORM,1), size(indexj_dMOMENTS,1), size(indexj_dMINIMAL,1), size(indexj_dSPECTRUM,1)]);
    for k=1:maxk
        if ~no_identification_dynamic
            k_dDYNAMIC = k_dDYNAMIC+1;
            if k_dDYNAMIC <= size(indexj_dDYNAMIC,1)
                dDYNAMIC_j = dDYNAMIC(:,indexj_dDYNAMIC(k_dDYNAMIC,:)); % pick columns that correspond to parameter subset
                if strcmp(tol_rank,'robust')
                    rankj_dDYNAMIC(k_dDYNAMIC,1) = rank(full(dDYNAMIC_j)); %compute rank with imposed tolerance
                else
                    rankj_dDYNAMIC(k_dDYNAMIC,1) = rank(full(dDYNAMIC_j),tol_rank); %compute rank with imposed tolerance
                end
            end
        end
        if ~no_identification_reducedform && ~error_indicator.identification_reducedform
            k_dREDUCEDFORM = k_dREDUCEDFORM+1;
            if k_dREDUCEDFORM <= size(indexj_dREDUCEDFORM,1)
                dREDUCEDFORM_j = dREDUCEDFORM(:,indexj_dREDUCEDFORM(k_dREDUCEDFORM,:)); % pick columns that correspond to parameter subset
                if strcmp(tol_rank,'robust')
                    rankj_dREDUCEDFORM(k_dREDUCEDFORM,1) = rank(full(dREDUCEDFORM_j)); %compute rank with imposed tolerance
                else
                    rankj_dREDUCEDFORM(k_dREDUCEDFORM,1) = rank(full(dREDUCEDFORM_j),tol_rank); %compute rank with imposed tolerance
                end
            end
        end
        if ~no_identification_moments && ~error_indicator.identification_moments
            k_dMOMENTS = k_dMOMENTS+1;
            if k_dMOMENTS <= size(indexj_dMOMENTS,1)
                dMOMENTS_j = dMOMENTS(:,indexj_dMOMENTS(k_dMOMENTS,:)); % pick columns that correspond to parameter subset
                if strcmp(tol_rank,'robust')
                    rankj_dMOMENTS(k_dMOMENTS,1) = rank(full(dMOMENTS_j)); %compute rank with imposed tolerance
                else
                    rankj_dMOMENTS(k_dMOMENTS,1) = rank(full(dMOMENTS_j),tol_rank); %compute rank with imposed tolerance
                end
            end
        end
        if ~no_identification_minimal && ~error_indicator.identification_minimal
            k_dMINIMAL = k_dMINIMAL+1;
            if k_dMINIMAL <= size(indexj_dMINIMAL,1)
                dMINIMAL_j = [dMINIMAL_par(:,indexj_dMINIMAL(k_dMINIMAL,:)) dMINIMAL_rest]; % pick columns in dMINIMAL_par that correspond to parameter subset and augment with parameter-indepdendet part dMINIMAL_rest
                if strcmp(tol_rank,'robust')
                    rankj_dMINIMAL(k_dMINIMAL,1) = rank(full(dMINIMAL_j)); %compute rank with imposed tolerance
                else
                    rankj_dMINIMAL(k_dMINIMAL,1) = rank(full(dMINIMAL_j),tol_rank); %compute rank with imposed tolerance
                end
            end
        end
        if ~no_identification_spectrum && ~error_indicator.identification_spectrum
            k_dSPECTRUM = k_dSPECTRUM+1;
            if k_dSPECTRUM <= size(indexj_dSPECTRUM,1)
                dSPECTRUM_j = dSPECTRUM(indexj_dSPECTRUM(k_dSPECTRUM,:),indexj_dSPECTRUM(k_dSPECTRUM,:)); % pick rows and columns that correspond to parameter subset
                if strcmp(tol_rank,'robust')
                    rankj_dSPECTRUM(k_dSPECTRUM,1) = rank(full(dSPECTRUM_j)); % Compute rank with imposed tol
                else
                    rankj_dSPECTRUM(k_dSPECTRUM,1) = rank(full(dSPECTRUM_j),tol_rank); % Compute rank with imposed tol
                end
            end
        end
        dyn_waitbar(k/maxk,h)
    end
    %Step 4: Compare rank conditions for all possible subsets. If rank condition is violated, then the corresponding numbers of the parameters are stored
    if ~no_identification_dynamic
        dynamic_problpars{j} = indexj_dDYNAMIC(rankj_dDYNAMIC < j,:);
    end
    if ~no_identification_reducedform && ~error_indicator.identification_reducedform
        reducedform_problpars{j} = indexj_dREDUCEDFORM(rankj_dREDUCEDFORM < j,:);
    end
    if ~no_identification_moments && ~error_indicator.identification_moments
        moments_problpars{j} = indexj_dMOMENTS(rankj_dMOMENTS < j,:);
    end
    if ~no_identification_minimal && ~error_indicator.identification_minimal
        minimal_problpars{j} = indexj_dMINIMAL(rankj_dMINIMAL < (j+dMINIMAL_fixed_rank_nbr),:);
    end
    if ~no_identification_spectrum && ~error_indicator.identification_spectrum
        spectrum_problpars{j} = indexj_dSPECTRUM(rankj_dSPECTRUM < j,:);
    end
%     % Optional Step 5: % remove redundant 2-sets, eg. if the problematic sets are [(p1,p2);(p1,p3);(p2,p3)], then the unique problematic parameter sets are actually only [(p1,p2),(p1,p3)]        
%     if j == 2        
%         for jj=1:max([size(dynamic_problpars{2},1), size(reducedform_problpars{2},1), size(moments_problpars{2},1), size(spectrum_problpars{2},1), size(minimal_problpars{2},1)])
%             if jj <= size(dynamic_problpars{2},1)
%                 dynamic_problpars{2}(dynamic_problpars{2}(jj,2)==dynamic_problpars{2}(:,1)) = dynamic_problpars{2}(jj,1);
%             end
%             if jj <= size(reducedform_problpars{2},1)
%                 reducedform_problpars{2}(reducedform_problpars{2}(jj,2)==reducedform_problpars{2}(:,1)) = reducedform_problpars{2}(jj,1);
%             end
%             if jj <= size(moments_problpars{2},1)
%                 moments_problpars{2}(moments_problpars{2}(jj,2)==moments_problpars{2}(:,1)) = moments_problpars{2}(jj,1);
%             end
%             if jj <= size(spectrum_problpars{2},1)
%                 spectrum_problpars{2}(spectrum_problpars{2}(jj,2)==spectrum_problpars{2}(:,1)) = spectrum_problpars{2}(jj,1);
%             end
%             if jj <= size(minimal_problpars{2},1)
%                 minimal_problpars{2}(minimal_problpars{2}(jj,2)==minimal_problpars{2}(:,1)) = minimal_problpars{2}(jj,1);
%             end
%         end
%         dynamic_problpars{2} = unique(dynamic_problpars{2},'rows');
%         reducedform_problpars{2} = unique(reducedform_problpars{2},'rows');
%         moments_problpars{2} = unique(moments_problpars{2},'rows');
%         spectrum_problpars{2} = unique(spectrum_problpars{2},'rows');
%         minimal_problpars{2} = unique(minimal_problpars{2},'rows');
%         % in indparam we replace the second parameter of problematic 2-sets by the observational equivalent first parameter to speed up nchoosek
%         idx2 = unique([dynamic_problpars{2}; reducedform_problpars{2}; moments_problpars{2}; spectrum_problpars{2}; minimal_problpars{2}],'rows');
%         if ~isempty(idx2)
%             indtotparam(ismember(indtotparam,idx2(:,2))) = [];
%         end
%     end
    dyn_waitbar_close(h);
end
%% Save output variables
if ~isempty(dynamic_problpars{1})
    dynamic_problpars{1}(ismember(dynamic_problpars{1},1:(totparam_nbr-modparam_nbr))) = []; % get rid of stderr and corr variables for dynamic
end
ide_dynamic.problpars         = dynamic_problpars;
ide_reducedform.problpars = reducedform_problpars;
ide_moments.problpars     = moments_problpars;
ide_spectrum.problpars    = spectrum_problpars;
ide_minimal.problpars     = minimal_problpars;
%% Auxiliary functions
function idx = RemoveProblematicParameterSets(idx,problparset)
% Remove already problematic parameters
% INPUTS:
%   * idx:         complete index of possible combinations
%   * problparset  [cell] of all lower order combinations that are problematic
%   * iset         [integer] number of elements in set to consider
% OUTPUTS:
%   * idx:         index of possible combinations without already
%                  problematic lower order sets
    iset = size(idx,2);
    for iii=1:(iset-1)
        if ~isempty(problparset{iii})
            for kkk=1:size(problparset{iii},1)                
                idx((sum(ismember(idx,problparset{iii}(kkk,:)),2)==iii),:) = [];
            end
        end
    end 
end%RemoveProblematicParameterSets ed
end %main function end
 |