File: mcforecast3.m

package info (click to toggle)
dynare 5.3-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 77,852 kB
  • sloc: cpp: 94,481; ansic: 28,551; pascal: 14,532; sh: 5,453; objc: 4,671; yacc: 4,442; makefile: 2,923; lex: 1,612; python: 677; ruby: 469; lisp: 156; xml: 22
file content (68 lines) | stat: -rw-r--r-- 3,577 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
function [forcs, e]= mcforecast3(cL,H,mcValue,shocks,forcs,T,R,mv,mu)
% [forcs, e] = mcforecast3(cL,H,mcValue,shocks,forcs,T,R,mv,mu)
% Computes the shock values for constrained forecasts necessary to keep
% endogenous variables at their constrained paths
%
% INPUTS
%  o cL             [scalar]                            number of controlled periods
%  o H              [scalar]                            number of forecast periods
%  o mcValue        [n_controlled_vars by cL double]    paths for constrained variables
%  o shocks         [nexo by H double]                  shock values draws (with zeros for controlled_varexo)
%  o forcs          [n_endovars by H+1 double]          matrix of endogenous variables storing the inital condition
%  o T              [n_endovars by n_endovars double]   transition matrix of the state equation.
%  o R              [n_endovars by n_exo double]        matrix relating the endogenous variables to the innovations in the state equation.
%  o mv             [n_controlled_exo by n_endovars boolean]   indicator vector  selecting constrained endogenous variables
%  o mu             [n_controlled_vars by nexo boolean]        indicator vector selecting controlled exogenous variables
% OUTPUTS
%  o forcs          [n_endovars by H+1 double]          matrix of forecasted endogenous variables
%  o e              [nexo by H double]                  matrix of exogenous variables
%
% Algorithm:
%   Relies on state-space form:
%       y_t=T*y_{t-1}+R*shocks(:,t)
%   Shocks are split up into shocks_uncontrolled and shockscontrolled while
%   the endogenous variables are also split up into controlled and
%   uncontrolled ones to get:
%       y_t(controlled_vars_index)=T*y_{t-1}(controlled_vars_index)+R(controlled_vars_index,uncontrolled_shocks_index)*shocks_uncontrolled_t
%                    + R(controlled_vars_index,controlled_shocks_index)*shocks_controlled_t
%
%   This is then solved to get:
%       shocks_controlled_t=(y_t(controlled_vars_index)-(T*y_{t-1}(controlled_vars_index)+R(controlled_vars_index,uncontrolled_shocks_index)*shocks_uncontrolled_t)/R(controlled_vars_index,controlled_shocks_index)
%
%   Variable number of controlled vars are allowed in different
%   periods. Missing control information are indicated by NaN in
%   y_t(controlled_vars_index).
%
%   After obtaining the shocks, and for uncontrolled periods, the state-space representation
%       y_t=T*y_{t-1}+R*shocks(:,t)
%   is used for forecasting
%
% Copyright (C) 2006-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

if cL
    e = zeros(size(mcValue,1),cL);
    for t = 1:cL
        % missing conditional values are indicated by NaN
        k = find(isfinite(mcValue(:,t)));
        e(k,t) = inv(mv(k,:)*R*mu(:,k))*(mcValue(k,t)-mv(k,:)*T*forcs(:,t)-mv(k,:)*R*shocks(:,t));
        forcs(:,t+1) = T*forcs(:,t)+R*(mu(:,k)*e(k,t)+shocks(:,t));
    end
end
for t = cL+1:H
    forcs(:,t+1) = T*forcs(:,t)+R*shocks(:,t);
end