1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
function p = wblcdf(x, scale, shape) % --*-- Unitary tests --*--
% Cumulative distribution function for the Weibull distribution.
%
% INPUTS
% - x [double] Positive real scalar.
% - scale [double] Positive hyperparameter.
% - shape [double] Positive hyperparameter.
%
% OUTPUTS
% - p [double] Positive scalar between
% Copyright (C) 2015-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
% Check input arguments.
if nargin<3
error('Three input arguments required!')
end
if ~isnumeric(x) || ~isscalar(x) || ~isreal(x)
error('First input argument must be a real scalar!')
end
if ~isnumeric(scale) || ~isscalar(scale) || ~isreal(scale) || scale<=0
error('Second input argument must be a real positive scalar (scale parameter of the Weibull distribution)!')
end
if ~isnumeric(shape) || ~isscalar(shape) || ~isreal(shape) || shape<=0
error('Third input argument must be a real positive scalar (shape parameter of the Weibull distribution)!')
end
% Filter trivial polar cases.
if x<=0
p = 0;
return
end
if isinf(x)
p = 1;
return
end
% Evaluate the CDF.
p = 1-exp(-(x/scale)^shape);
%@test:1
%$ try
%$ p = wblcdf(-1, .5, .1);
%$ t(1) = true;
%$ catch
%$ t(1) = false;
%$ end
%$
%$ % Check the results
%$ if t(1)
%$ t(2) = isequal(p, 0);
%$ end
%$ T = all(t);
%@eof:1
%@test:2
%$ try
%$ p = wblcdf(Inf, .5, .1);
%$ t(1) = true;
%$ catch
%$ t(1) = false;
%$ end
%$
%$ % Check the results
%$ if t(1)
%$ t(2) = isequal(p, 1);
%$ end
%$ T = all(t);
%@eof:2
%@test:3
%$ % Set the hyperparameters of a Weibull definition.
%$ scale = .5;
%$ shape = 1.5;
%$
%$ % Compute the median of the weibull distribution.
%$ m = scale*log(2)^(1/shape);
%$
%$ try
%$ p = wblcdf(m, scale, shape);
%$ t(1) = true;
%$ catch
%$ t(1) = false;
%$ end
%$
%$ % Check the results
%$ if t(1)
%$ t(2) = abs(p-.5)<1e-12;
%$ end
%$ T = all(t);
%@eof:3
%@test:4
%$ % Consistency check between wblinv and wblcdf.
%$
%$ % Set the hyperparameters of a Weibull definition.
%$ scale = .5;
%$ shape = 1.5;
%$
%$ % Compute quatiles of the weibull distribution.
%$ q = 0:.05:1;
%$ m = zeros(size(q));
%$ p = zeros(size(q));
%$ for i=1:length(q)
%$ m(i) = wblinv(q(i), scale, shape);
%$ end
%$
%$ try
%$ for i=1:length(q)
%$ p(i) = wblcdf(m(i), scale, shape);
%$ end
%$ t(1) = true;
%$ catch
%$ t(1) = false;
%$ end
%$
%$ % Check the results
%$ if t(1)
%$ for i=1:length(q)
%$ t(i+1) = abs(p(i)-q(i))<1e-12;
%$ end
%$ end
%$ T = all(t);
%@eof:4
|