File: wblinv.m

package info (click to toggle)
dynare 5.3-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 77,852 kB
  • sloc: cpp: 94,481; ansic: 28,551; pascal: 14,532; sh: 5,453; objc: 4,671; yacc: 4,442; makefile: 2,923; lex: 1,612; python: 677; ruby: 469; lisp: 156; xml: 22
file content (167 lines) | stat: -rw-r--r-- 3,653 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
function t = wblinv(proba, scale, shape)   % --*-- Unitary tests --*--

% Inverse cumulative distribution function.
%
% INPUTS
% - proba [double] Probability, scalar between 0 and 1.
% - scale [double] Positive hyperparameter.
% - shape [double] Positive hyperparameter.
%
% OUTPUTS
% - t     [double] scalar such that P(X<=t)=proba

% Copyright (C) 2015-2020 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

% Check input arguments.

if nargin<3
    error('Three input arguments required!')
end

if ~isnumeric(proba) || ~isscalar(proba) || ~isreal(proba) || proba<0 || proba>1
    error('First input argument must be a real scalar between 0 and 1 (probability)!')
end

if ~isnumeric(scale) || ~isscalar(scale) || ~isreal(scale) || scale<=0
    error('Second input argument must be a real positive scalar (scale parameter of the Weibull distribution)!')
end

if ~isnumeric(shape) || ~isscalar(shape) || ~isreal(shape) || shape<=0
    error('Third input argument must be a real positive scalar (shape parameter of the Weibull distribution)!')
end


if proba<2*eps()
    t = 0;
    return
end

if proba>1-2*eps()
    t = Inf;
    return
end

t = exp(log(scale)+log(-log(1-proba))/shape);

%@test:1
%$ try
%$    x = wblinv(0, 1, 2);
%$    t(1) = true;
%$ catch
%$    t(1) = false;
%$ end
%$
%$ if t(1)
%$    t(2) = isequal(x, 0);
%$ end
%$ T = all(t);
%@eof:1

%@test:2
%$ try
%$    x = wblinv(1, 1, 2);
%$    t(1) = true;
%$ catch
%$    t(1) = false;
%$ end
%$
%$ if t(1)
%$    t(2) = isinf(x);
%$ end
%$ T = all(t);
%@eof:2

%@test:3
%$ scales = [.5, 1, 5];
%$ shapes = [.1, 1, 2];
%$ x = NaN(9,1);
%$
%$ try
%$    k = 0;
%$    for i=1:3
%$       for j=1:3
%$           k = k+1;
%$           x(k) = wblinv(.5, scales(i), shapes(j));
%$       end
%$    end
%$    t(1) = true;
%$ catch
%$    t(1) = false;
%$ end
%$
%$ if t(1)
%$    k = 1;
%$    for i=1:3
%$       for j=1:3
%$           k = k+1;
%$           t(k) = abs(x(k-1)-scales(i)*log(2)^(1/shapes(j)))<1e-12;
%$       end
%$    end
%$ end
%$ T = all(t);
%@eof:3

%@test:4
%$ debug = false;
%$ scales = [ .5, 1, 5];
%$ shapes = [ 1, 2, 3];
%$ x = NaN(9,1);
%$ p = 1e-1;
%$
%$ try
%$    k = 0;
%$    for i=1:3
%$       for j=1:3
%$           k = k+1;
%$           x(k) = wblinv(p, scales(i), shapes(j));
%$       end
%$    end
%$    t(1) = true;
%$ catch
%$    t(1) = false;
%$ end
%$
%$ if t(1)
%$    k = 1;
%$    for i=1:3
%$       for j=1:3
%$           k = k+1;
%$           shape = shapes(j);
%$           scale = scales(i);
%$           density = @(z) exp(lpdfgweibull(z,shape,scale));
%$           if debug
%$               [shape, scale, x(k-1)]
%$           end
%$           if isoctave
%$               s = quadv(density, 0, x(k-1),1e-10);
%$           else
%$               s = integral(density, 0, x(k-1));
%$           end
%$           if debug
%$               [s, abs(p-s)]
%$           end
%$         if isoctave
%$           t(k) = abs(p-s)<1e-9;
%$         else
%$           t(k) = abs(p-s)<1e-12;
%$         end
%$       end
%$    end
%$ end
%$ T = all(t);
%@eof:4