File: missing_DiffuseKalmanSmootherH1_Z.m

package info (click to toggle)
dynare 5.3-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 77,852 kB
  • sloc: cpp: 94,481; ansic: 28,551; pascal: 14,532; sh: 5,453; objc: 4,671; yacc: 4,442; makefile: 2,923; lex: 1,612; python: 677; ruby: 469; lisp: 156; xml: 22
file content (430 lines) | stat: -rw-r--r-- 19,462 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
function [alphahat,epsilonhat,etahat,atilde,P,aK,PK,decomp,V,aalphahat,eetahat,d] = missing_DiffuseKalmanSmootherH1_Z(a_initial,T,Z,R,Q,H,Pinf1,Pstar1,Y,pp,mm,smpl,data_index,nk,kalman_tol,diffuse_kalman_tol,decomp_flag,state_uncertainty_flag,filter_covariance_flag,smoother_redux)

% function [alphahat,epsilonhat,etahat,atilde,P,aK,PK,decomp,V,aalphahat,eetahat,d] = missing_DiffuseKalmanSmootherH1_Z(a_initial,T,Z,R,Q,H,Pinf1,Pstar1,Y,pp,mm,smpl,data_index,nk,kalman_tol,diffuse_kalman_tol,decomp_flag,state_uncertainty_flag,filter_covariance_flag,smoother_redux)
% Computes the diffuse kalman smoother without measurement error, in the case of a non-singular var-cov matrix.
%
% INPUTS
%    a_initial:mm*1 vector of initial (predicted) states
%    T:        mm*mm matrix
%    Z:        pp*mm matrix
%    R:        mm*rr matrix
%    Q:        rr*rr matrix
%    H:        pp*pp matrix variance of measurement errors
%    Pinf1:    mm*mm diagonal matrix with with q ones and m-q zeros
%    Pstar1:   mm*mm variance-covariance matrix with stationary variables
%    Y:        pp*1 vector
%    pp:       number of observed variables
%    mm:       number of state variables
%    smpl:     sample size
%    data_index:                [cell]      1*smpl cell of column vectors of indices.
%    nk:                        number of forecasting periods
%    kalman_tol:                tolerance for reciprocal condition number
%    diffuse_kalman_tol:        tolerance for reciprocal condition number (for Finf) and the rank of Pinf
%    decomp_flag:               if true, compute filter decomposition
%    state_uncertainty_flag:    if true, compute uncertainty about smoothed
%                               state estimate
%    decomp_flag:               if true, compute filter decomposition
%    filter_covariance_flag:    if true, compute filter covariance
%    smoother_redux:            if true, compute smoother on restricted
%                               state space, recover static variables from this
%
% OUTPUTS
%    alphahat:      smoothed variables (a_{t|T})
%    epsilonhat:    smoothed measurement errors
%    etahat:        smoothed shocks
%    atilde:        matrix of updated variables (a_{t|t})
%    P:             3D array of one-step ahead forecast error variance
%                   matrices
%    aK:            3D array of k step ahead filtered state variables (a_{t+k|t)
%                   (meaningless for periods 1:d)
%    PK:            4D array of k-step ahead forecast error variance
%                   matrices (meaningless for periods 1:d)
%    decomp:        decomposition of the effect of shocks on filtered values
%    V:             3D array of state uncertainty matrices
%    aalphahat:     filtered states in t-1|t
%    eetahat:       updated shocks in t|t
%    d:             number of diffuse periods
%
% Notes:
%   Outputs are stored in decision-rule order, i.e. to get variables in order of declaration
%   as in M_.endo_names, ones needs code along the lines of:
%   variables_declaration_order(dr.order_var,:) = alphahat
%
% SPECIAL REQUIREMENTS
%   See "Filtering and Smoothing of State Vector for Diffuse State Space
%   Models", S.J. Koopman and J. Durbin (2003, in Journal of Time Series
%   Analysis, vol. 24(1), pp. 85-98).
%   Durbin/Koopman (2012): "Time Series Analysis by State Space Methods", Oxford University Press,
%   Second Edition, Ch. 5

% Copyright (C) 2004-2021 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

% modified by M. Ratto:
% new output argument aK (1-step to k-step predictions)
% new options_.nk: the max step ahed prediction in aK (default is 4)
% new crit1 value for rank of Pinf
% it is assured that P is symmetric

d = 0;
decomp = [];
spinf           = size(Pinf1);
spstar          = size(Pstar1);
v               = zeros(pp,smpl);
a               = zeros(mm,smpl+1);
a(:,1)          = a_initial;
atilde          = zeros(mm,smpl);
aK              = zeros(nk,mm,smpl+nk);
if filter_covariance_flag
    PK              = zeros(nk,mm,mm,smpl+nk);
else
    PK              = [];
end
iF              = zeros(pp,pp,smpl);
Fstar           = zeros(pp,pp,smpl);
iFstar          = zeros(pp,pp,smpl);
iFinf           = zeros(pp,pp,smpl);
K               = zeros(mm,pp,smpl);
L               = zeros(mm,mm,smpl);
Linf            = zeros(mm,mm,smpl);
Lstar           = zeros(mm,mm,smpl);
Kstar           = zeros(mm,pp,smpl);
Kinf            = zeros(mm,pp,smpl);
P               = zeros(mm,mm,smpl+1);
Pstar           = zeros(spstar(1),spstar(2),smpl+1);
Pstar(:,:,1)    = Pstar1;
Pinf            = zeros(spinf(1),spinf(2),smpl+1);
Pinf(:,:,1)     = Pinf1;
rr              = size(Q,1);
isqvec = false;
if ndim(Q)>2
    Qvec = Q;
    Q=Q(:,:,1);
    isqvec = true;
end
QQ              = R*Q*transpose(R);
QRt             = Q*transpose(R);
alphahat        = zeros(mm,smpl);
etahat          = zeros(rr,smpl);
if smoother_redux
    aalphahat       = alphahat;
    eetahat         = etahat;
else
    aalphahat       = [];
    eetahat         = [];
end
epsilonhat      = zeros(rr,smpl);
r               = zeros(mm,smpl+1);
Finf_singular   = zeros(1,smpl);
if state_uncertainty_flag
    if smoother_redux
        V               = zeros(mm+rr,mm+rr,smpl);
    else
        V               = zeros(mm,mm,smpl);
    end
    N               = zeros(mm,mm,smpl+1);
else
    V=[];
end

t = 0;
while rank(Pinf(:,:,t+1),diffuse_kalman_tol) && t<smpl
    t = t+1;
    di = data_index{t};
    if isqvec
        QQ = R*Qvec(:,:,t+1)*transpose(R);
    end
    if isempty(di)
        %no observations, propagate forward without updating based on
        %observations
        atilde(:,t)     = a(:,t);
        a(:,t+1)        = T*atilde(:,t);
        Linf(:,:,t)     = T;
        Pstar(:,:,t+1)  = T*Pstar(:,:,t)*T' + QQ;
        Pinf(:,:,t+1)   = T*Pinf(:,:,t)*T';
    else
        ZZ = Z(di,:);                                                       %span selector matrix
        v(di,t)= Y(di,t) - ZZ*a(:,t);                                       %get prediction error v^(0) in (5.13) DK (2012)
        Finf = ZZ*Pinf(:,:,t)*ZZ';                                          % (5.7) in DK (2012)
        if rcond(Finf) < diffuse_kalman_tol                                 %F_{\infty,t} = 0
            if ~all(abs(Finf(:)) < diffuse_kalman_tol)                      %rank-deficient but not rank 0
                                                                            % The univariate diffuse kalman filter should be used.
                alphahat = Inf;
                return
            else                                                            %rank of F_{\infty,t} is 0
                Finf_singular(1,t) = 1;
                Fstar(di,di,t)  = ZZ*Pstar(:,:,t)*ZZ' + H(di,di);             % (5.7) in DK (2012)
                if rcond(Fstar(di,di,t)) < kalman_tol                         %F_{*} is singular
                    if ~all(all(abs(Fstar(di,di,t))<kalman_tol))
                        % The univariate diffuse kalman filter should be used.
                        alphahat = Inf;
                        return
                    else %rank 0
                        a(:,t+1) = T*a(:,t);
                        Pstar(:,:,t+1) = T*Pstar(:,:,t)*transpose(T)+QQ;
                        Pinf(:,:,t+1)  = T*Pinf(:,:,t)*transpose(T);
                    end
                else
                    iFstar(di,di,t) = inv(Fstar(di,di,t));
                    Kstar(:,di,t)   = Pstar(:,:,t)*ZZ'*iFstar(di,di,t);       %(5.15) of DK (2012) with Kstar=T^{-1}*K^(0)
                    Pinf(:,:,t+1)   = T*Pinf(:,:,t)*transpose(T);           % DK (2012), 5.16
                    Lstar(:,:,t)    = T - T*Kstar(:,di,t)*ZZ;               %L^(0) in DK (2012), eq. 5.12
                    Pstar(:,:,t+1)  = T*Pstar(:,:,t)*Lstar(:,:,t)'+QQ;      % (5.17) DK (2012)
                    a(:,t+1)        = T*(a(:,t)+Kstar(:,di,t)*v(di,t));       % (5.13) DK (2012)
                end
            end
        else
            %see notes in kalman_filter_d.m for details of computations
            iFinf(di,di,t)  = inv(Finf);
            Kinf(:,di,t)    = Pinf(:,:,t)*ZZ'*iFinf(di,di,t);               %define Kinf=T^{-1}*K_0 with M_{\infty}=Pinf*Z'
            atilde(:,t)     = a(:,t) + Kinf(:,di,t)*v(di,t);
            Linf(:,:,t)     = T - T*Kinf(:,di,t)*ZZ;                        %L^(0) in DK (2012), eq. 5.12
            Fstar(di,di,t)  = ZZ*Pstar(:,:,t)*ZZ' + H(di,di);               %(5.7) DK(2012)
            Kstar(:,di,t)   = (Pstar(:,:,t)*ZZ'-Kinf(:,di,t)*Fstar(di,di,t))*iFinf(di,di,t); %(5.12) DK(2012) with Kstar=T^{-1}*K^(1); note that there is a typo in DK (2003) with "+ Kinf" instead of "- Kinf", but it is correct in their appendix
            Pstar(:,:,t+1)  = T*Pstar(:,:,t)*Linf(:,:,t)'-T*Kinf(:,di,t)*Finf*Kstar(:,di,t)'*T' + QQ; %(5.14) DK(2012)
            Pinf(:,:,t+1)   = T*Pinf(:,:,t)*Linf(:,:,t)';                   %(5.14) DK(2012)
        end
        a(:,t+1)            = T*atilde(:,t);
        aK(1,:,t+1)         = a(:,t+1);
        % isn't a meaningless as long as we are in the diffuse part? MJ
        for jnk=2:nk
            aK(jnk,:,t+jnk) = T*dynare_squeeze(aK(jnk-1,:,t+jnk-1));
        end
    end
end
d = t;
P(:,:,d+1) = Pstar(:,:,d+1);
iFinf = iFinf(:,:,1:d);
iFstar= iFstar(:,:,1:d);
Linf  = Linf(:,:,1:d);
Lstar = Lstar(:,:,1:d);
Kstar = Kstar(:,:,1:d);
Pstar = Pstar(:,:,1:d);
Pinf  = Pinf(:,:,1:d);
notsteady = 1;
while notsteady && t<smpl
    t = t+1;
    P(:,:,t)=tril(P(:,:,t))+transpose(tril(P(:,:,t),-1));                   % make sure P is symmetric
    di = data_index{t};
    if isqvec
        QQ = R*Qvec(:,:,t+1)*transpose(R);
    end
    if isempty(di)
        atilde(:,t)     = a(:,t);
        L(:,:,t)        = T;
        P(:,:,t+1)      = T*P(:,:,t)*T' + QQ;                               %p. 111, DK(2012)
    else
        ZZ = Z(di,:);
        v(di,t)      = Y(di,t) - ZZ*a(:,t);
        F = ZZ*P(:,:,t)*ZZ' + H(di,di);
        sig=sqrt(diag(F));

        if any(diag(F)<kalman_tol) || rcond(F./(sig*sig')) < kalman_tol
            alphahat = Inf;
            return
        end
        iF(di,di,t)   = inv(F./(sig*sig'))./(sig*sig');
        PZI         = P(:,:,t)*ZZ'*iF(di,di,t);
        atilde(:,t) = a(:,t) + PZI*v(di,t);
        K(:,di,t)    = T*PZI;
        L(:,:,t)    = T-K(:,di,t)*ZZ;
        P(:,:,t+1)  = T*P(:,:,t)*L(:,:,t)' + QQ;
    end
    if smoother_redux
        ri=zeros(mm,1);
        for st=t:-1:max(d+1,t-1)
            di = data_index{st};
            if isempty(di)
                % in this case, L is simply T due to Z=0, so that DK (2012), eq. 4.93 obtains
                ri = L(:,:,t)'*ri;                                        %compute r_{t-1}, DK (2012), eq. 4.38 with Z=0
            else
                ZZ = Z(di,:);
                ri = ZZ'*iF(di,di,st)*v(di,st) + L(:,:,st)'*ri;              %compute r_{t-1}, DK (2012), eq. 4.38
            end
            if st==t-1
                % get states in t-1|t
                aalphahat(:,st)       = a(:,st) + P(:,:,st)*ri;                         %DK (2012), eq. 4.35
            else
                % get shocks in t|t
                eetahat(:,st) = QRt*ri;                                               %DK (2012), eq. 4.63
            end
        end
    end
    a(:,t+1)    = T*atilde(:,t);
    if filter_covariance_flag
        Pf          = P(:,:,t+1);
    end
    aK(1,:,t+1) = a(:,t+1);
    for jnk=1:nk
        if filter_covariance_flag
            if jnk>1
                Pf = T*Pf*T' + QQ;
            end
            PK(jnk,:,:,t+jnk) = Pf;
        end
        if jnk>1
            aK(jnk,:,t+jnk) = T*dynare_squeeze(aK(jnk-1,:,t+jnk-1));
        end
    end
    %    notsteady   = ~(max(max(abs(P(:,:,t+1)-P(:,:,t))))<kalman_tol);
end

% $$$ if t<smpl
% $$$     PZI_s = PZI;
% $$$     K_s = K(:,:,t);
% $$$     iF_s = iF(:,:,t);
% $$$     P_s = P(:,:,t+1);
% $$$     P  = cat(3,P(:,:,1:t),repmat(P_s,[1 1 smpl-t]));
% $$$     iF = cat(3,iF(:,:,1:t),repmat(iF_s,[1 1 smpl-t]));
% $$$     L  = cat(3,L(:,:,1:t),repmat(T-K_s*Z,[1 1 smpl-t]));
% $$$     K  = cat(3,K(:,:,1:t),repmat(T*P_s*Z'*iF_s,[1 1 smpl-t]));
% $$$ end
% $$$ while t<smpl
% $$$     t=t+1;
% $$$     v(:,t) = Y(:,t) - Z*a(:,t);
% $$$     atilde(:,t) = a(:,t) + PZI*v(:,t);
% $$$     a(:,t+1) = T*atilde(:,t);
% $$$     Pf          = P(:,:,t);
% $$$     for jnk=1:nk,
% $$$   Pf = T*Pf*T' + QQ;
% $$$         aK(jnk,:,t+jnk) = T^jnk*atilde(:,t);
% $$$   PK(jnk,:,:,t+jnk) = Pf;
% $$$     end
% $$$ end
%% backward pass; r_T and N_T, stored in entry (smpl+1) were initialized at 0
t = smpl+1;
while t>d+1
    t = t-1;
    di = data_index{t};
    if isempty(di)
        % in this case, L is simply T due to Z=0, so that DK (2012), eq. 4.93 obtains
        r(:,t) = L(:,:,t)'*r(:,t+1);                                        %compute r_{t-1}, DK (2012), eq. 4.38 with Z=0
        if state_uncertainty_flag
            N(:,:,t)=L(:,:,t)'*N(:,:,t+1)*L(:,:,t);                         %compute N_{t-1}, DK (2012), eq. 4.42 with Z=0
        end
    else
        ZZ = Z(di,:);
        r(:,t) = ZZ'*iF(di,di,t)*v(di,t) + L(:,:,t)'*r(:,t+1);              %compute r_{t-1}, DK (2012), eq. 4.38
        if state_uncertainty_flag
            N(:,:,t)=ZZ'*iF(di,di,t)*ZZ+L(:,:,t)'*N(:,:,t+1)*L(:,:,t);      %compute N_{t-1}, DK (2012), eq. 4.42
        end
    end
    alphahat(:,t)       = a(:,t) + P(:,:,t)*r(:,t);                         %DK (2012), eq. 4.35
    if isqvec
        QRt = Qvec(:,:,t)*transpose(R);
    end
    etahat(:,t) = QRt*r(:,t);                                               %DK (2012), eq. 4.63
    if state_uncertainty_flag
        if smoother_redux
            ptmp = [P(:,:,t) R*Q; (R*Q)' Q];
            ntmp = [N(:,:,t) zeros(mm,rr); zeros(rr,mm+rr)];
            V(:,:,t)    = ptmp - ptmp*ntmp*ptmp;
        else
            V(:,:,t)    = P(:,:,t)-P(:,:,t)*N(:,:,t)*P(:,:,t);                      %DK (2012), eq. 4.43
        end
    end
end

if d %diffuse periods
     % initialize r_d^(0) and r_d^(1) as below DK (2012), eq. 5.23
    r0 = zeros(mm,d+1);
    r0(:,d+1) = r(:,d+1);   %set r0_{d}, i.e. shifted by one period
    r1 = zeros(mm,d+1);     %set r1_{d}, i.e. shifted by one period
    if state_uncertainty_flag
        %N_0 at (d+1) is N(d+1), so we can use N for continuing and storing N_0-recursion
        N_1=zeros(mm,mm,d+1);   %set N_1_{d}=0, i.e. shifted by one period, below  DK (2012), eq. 5.26
        N_2=zeros(mm,mm,d+1);   %set N_2_{d}=0, i.e. shifted by one period, below  DK (2012), eq. 5.26
    end
    for t = d:-1:1
        di = data_index{t};
        if isempty(di)
            r1(:,t) = Linf(:,:,t)'*r1(:,t+1);
        else
            if ~Finf_singular(1,t)
                r0(:,t) = Linf(:,:,t)'*r0(:,t+1);                                   % DK (2012), eq. 5.21 where L^(0) is named Linf
                r1(:,t) = Z(di,:)'*(iFinf(di,di,t)*v(di,t)-Kstar(:,di,t)'*T'*r0(:,t+1)) ...
                          + Linf(:,:,t)'*r1(:,t+1);                                       % DK (2012), eq. 5.21, noting that i) F^(1)=(F^Inf)^(-1)(see 5.10), ii) where L^(0) is named Linf, and iii) Kstar=T^{-1}*K^(1)
                if state_uncertainty_flag
                    L_1=(-T*Kstar(:,di,t)*Z(di,:));                                     % noting that Kstar=T^{-1}*K^(1)
                    N(:,:,t)=Linf(:,:,t)'*N(:,:,t+1)*Linf(:,:,t);                       % DK (2012), eq. 5.19, noting that L^(0) is named Linf
                    N_1(:,:,t)=Z(di,:)'*iFinf(di,di,t)*Z(di,:)+Linf(:,:,t)'*N_1(:,:,t+1)*Linf(:,:,t)...
                        +L_1'*N(:,:,t+1)*Linf(:,:,t);                                   % DK (2012), eq. 5.29; note that, compared to DK (2003) this drops the term (L_1'*N(:,:,t+1)*Linf(:,:,t))' in the recursion due to it entering premultiplied by Pinf when computing V, and Pinf*Linf'*N=0
                    N_2(:,:,t)=Z(di,:)'*(-iFinf(di,di,t)*Fstar(di,di,t)*iFinf(di,di,t))*Z(di,:) ...
                        + Linf(:,:,t)'*N_2(:,:,t+1)*Linf(:,:,t)...
                        + Linf(:,:,t)'*N_1(:,:,t+1)*L_1...
                        + L_1'*N_1(:,:,t+1)'*Linf(:,:,t)...
                        + L_1'*N(:,:,t+1)*L_1;                            % DK (2012), eq. 5.29
                end
            else
                r0(:,t) = Z(di,:)'*iFstar(di,di,t)*v(di,t)-Lstar(:,:,t)'*r0(:,t+1); % DK (2003), eq. (14)
                r1(:,t) = T'*r1(:,t+1);                                             % DK (2003), eq. (14)
                if state_uncertainty_flag
                    N(:,:,t)=Z(di,:)'*iFstar(di,di,t)*Z(di,:)...
                             +Lstar(:,:,t)'*N(:,:,t+1)*Lstar(:,:,t);                     % DK (2003), eq. (14)
                    N_1(:,:,t)=T'*N_1(:,:,t+1)*Lstar(:,:,t);                            % DK (2003), eq. (14)
                    N_2(:,:,t)=T'*N_2(:,:,t+1)*T';                                      % DK (2003), eq. (14)
                end
            end
        end
        alphahat(:,t)   = a(:,t) + Pstar(:,:,t)*r0(:,t) + Pinf(:,:,t)*r1(:,t);      % DK (2012), eq. 5.23
        if isqvec
            QRt = Qvec(:,:,t)*transpose(R);
        end
        etahat(:,t)     = QRt*r0(:,t);                                              % DK (2012), p. 135
        if state_uncertainty_flag
            if smoother_redux
                pstmp = [Pstar(:,:,t) R*Q; (R*Q)' Q];
                pitmp = [Pinf(:,:,t) zeros(mm,rr); zeros(rr,mm+rr)];
                ntmp = [N(:,:,t) zeros(mm,rr); zeros(rr,mm+rr)];
                ntmp1 = [N_1(:,:,t) zeros(mm,rr); zeros(rr,mm+rr)];
                ntmp2 = [N_2(:,:,t) zeros(mm,rr); zeros(rr,mm+rr)];
                V(:,:,t)    = pstmp - pstmp*ntmp*pstmp...
                    -(pitmp*ntmp1*pstmp)'...
                    - pitmp*ntmp1*pstmp...
                    - pitmp*ntmp2*Pinf(:,:,t);                                   % DK (2012), eq. 5.30
                    
            else
                V(:,:,t)=Pstar(:,:,t)-Pstar(:,:,t)*N(:,:,t)*Pstar(:,:,t)...
                    -(Pinf(:,:,t)*N_1(:,:,t)*Pstar(:,:,t))'...
                    - Pinf(:,:,t)*N_1(:,:,t)*Pstar(:,:,t)...
                    - Pinf(:,:,t)*N_2(:,:,t)*Pinf(:,:,t);                                   % DK (2012), eq. 5.30
            end
        end
    end
end

if decomp_flag
    decomp = zeros(nk,mm,rr,smpl+nk);
    ZRQinv = inv(Z*QQ*Z');
    for t = max(d,1):smpl
        di = data_index{t};
        % calculate eta_tm1t
        if isqvec
            QRt = Qvec(:,:,t)*transpose(R);
        end
        eta_tm1t = QRt*Z(di,:)'*iF(di,di,t)*v(di,t);
        AAA = P(:,:,t)*Z(di,:)'*ZRQinv(di,di)*bsxfun(@times,Z(di,:)*R,eta_tm1t');
        % calculate decomposition
        decomp(1,:,:,t+1) = AAA;
        for h = 2:nk
            AAA = T*AAA;
            decomp(h,:,:,t+h) = AAA;
        end
    end
end

epsilonhat = Y-Z*alphahat;