1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
|
function [alphahat,epsilonhat,etahat,a,P1,aK,PK,decomp,V, aalphahat,eetahat,d,varargout] = missing_DiffuseKalmanSmootherH3_Z(a_initial,T,Z,R,Q,H,Pinf1,Pstar1,Y,pp,mm,smpl,data_index,nk,kalman_tol,diffuse_kalman_tol,decomp_flag,state_uncertainty_flag, filter_covariance_flag, smoother_redux, occbin_)
% function [alphahat,epsilonhat,etahat,a,P1,aK,PK,decomp,V, aalphahat,eetahat,d] = missing_DiffuseKalmanSmootherH3_Z(a_initial,T,Z,R,Q,H,Pinf1,Pstar1,Y,pp,mm,smpl,data_index,nk,kalman_tol,diffuse_kalman_tol,decomp_flag,state_uncertainty_flag, filter_covariance_flag, smoother_redux, occbin_)
% Computes the diffuse kalman smoother in the case of a singular var-cov matrix.
% Univariate treatment of multivariate time series.
%
% INPUTS
% a_initial:mm*1 vector of initial states
% T: mm*mm matrix state transition matrix
% Z: pp*mm matrix selector matrix for observables in augmented state vector
% R: mm*rr matrix second matrix of the state equation relating the structural innovations to the state variables
% Q: rr*rr matrix covariance matrix of structural errors
% H: pp*1 vector of variance of measurement errors
% Pinf1: mm*mm diagonal matrix with with q ones and m-q zeros
% Pstar1: mm*mm variance-covariance matrix with stationary variables
% Y: pp*1 vector
% pp: number of observed variables
% mm: number of state variables
% smpl: sample size
% data_index: [cell] 1*smpl cell of column vectors of indices.
% nk: number of forecasting periods
% kalman_tol: tolerance for zero divider
% diffuse_kalman_tol: tolerance for zero divider
% decomp_flag: if true, compute filter decomposition
% state_uncertainty_flag: if true, compute uncertainty about smoothed
% state estimate
% decomp_flag: if true, compute filter decomposition
% filter_covariance_flag: if true, compute filter covariance
% smoother_redux: if true, compute smoother on restricted
% state space, recover static variables from this
%
% OUTPUTS
% alphahat: smoothed state variables (a_{t|T})
% epsilonhat: measurement errors
% etahat: smoothed shocks
% a: matrix of updated variables (a_{t|t})
% aK: 3D array of k step ahead filtered state variables (a_{t+k|t})
% (meaningless for periods 1:d)
% P1: 3D array of one-step ahead forecast error variance
% matrices
% PK: 4D array of k-step ahead forecast error variance
% matrices (meaningless for periods 1:d)
% decomp: decomposition of the effect of shocks on filtered values
% V: 3D array of state uncertainty matrices
% aalphahat: filtered states in t-1|t
% eetahat: updated shocks in t|t
% d: number of diffuse periods
%
% Notes:
% Outputs are stored in decision-rule order, i.e. to get variables in order of declaration
% as in M_.endo_names, ones needs code along the lines of:
% variables_declaration_order(dr.order_var,:) = alphahat
%
% Algorithm:
%
% Uses the univariate filter as described in Durbin/Koopman (2012): "Time
% Series Analysis by State Space Methods", Oxford University Press,
% Second Edition, Ch. 6.4 + 7.2.5
% and
% Koopman/Durbin (2000): "Fast Filtering and Smoothing for Multivariatze State Space
% Models", in Journal of Time Series Analysis, vol. 21(3), pp. 281-296.
%
% SPECIAL REQUIREMENTS
% See "Filtering and Smoothing of State Vector for Diffuse State Space
% Models", S.J. Koopman and J. Durbin (2003), in Journal of Time Series
% Analysis, vol. 24(1), pp. 85-98.
% Copyright (C) 2004-2021 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
% Modified by M. Ratto
% New output argument aK: 1-step to nk-stpe ahed predictions)
% New input argument nk: max order of predictions in aK
if size(H,2)>1
error('missing_DiffuseKalmanSmootherH3_Z:: H is not a vector. This must not happens')
end
d = 0;
decomp = [];
spinf = size(Pinf1);
spstar = size(Pstar1);
v = zeros(pp,smpl);
a = zeros(mm,smpl);
a1 = zeros(mm,smpl+1);
a(:,1) = a_initial;
a1(:,1) = a_initial;
aK = zeros(nk,mm,smpl+nk);
Fstar = zeros(pp,smpl);
Finf = zeros(pp,smpl);
Fi = zeros(pp,smpl);
Ki = zeros(mm,pp,smpl);
Kstar = zeros(mm,pp,smpl);
Kinf = zeros(spstar(1),pp,smpl);
P = zeros(mm,mm,smpl+1);
P1 = P;
if filter_covariance_flag
PK = zeros(nk,mm,mm,smpl+nk);
else
PK = [];
end
Pstar = zeros(spstar(1),spstar(2),smpl);
Pstar(:,:,1) = Pstar1;
Pinf = zeros(spinf(1),spinf(2),smpl);
Pinf(:,:,1) = Pinf1;
Pstar1 = Pstar;
Pinf1 = Pinf;
rr = size(Q,1); % number of structural shocks
isqvec = false;
if ndim(Q)>2
Qvec = Q;
Q=Q(:,:,1);
isqvec = true;
end
QQ = R*Q*transpose(R);
QRt = Q*transpose(R);
alphahat = zeros(mm,smpl);
etahat = zeros(rr,smpl);
if smoother_redux
aalphahat = alphahat;
eetahat = etahat;
else
aalphahat = [];
eetahat = [];
end
epsilonhat = zeros(rr,smpl);
r = zeros(mm,smpl);
if state_uncertainty_flag
if smoother_redux
V = zeros(mm+rr,mm+rr,smpl);
else
V = zeros(mm,mm,smpl);
end
N = zeros(mm,mm,smpl);
else
V=[];
end
if ~occbin_.status
isoccbin = 0;
C=0;
TT=[];
RR=[];
CC=[];
else
isoccbin = 1;
Qt = repmat(Q,[1 1 3]);
options_=occbin_.info{1};
oo_=occbin_.info{2};
M_=occbin_.info{3};
occbin_options=occbin_.info{4};
opts_regime = occbin_options.opts_regime;
% first_period_occbin_update = inf;
if isfield(opts_regime,'regime_history') && ~isempty(opts_regime.regime_history)
opts_regime.regime_history=[opts_regime.regime_history(1) opts_regime.regime_history];
else
opts_regime.binding_indicator=zeros(smpl+2,M_.occbin.constraint_nbr);
end
occbin_options.opts_regime = opts_regime;
[~, ~, ~, regimes_] = occbin.check_regimes([], [], [], opts_regime, M_, oo_, options_);
if length(occbin_.info)>4
if length(occbin_.info)==6 && options_.smoother_redux
TT=repmat(T,1,1,smpl+1);
RR=repmat(R,1,1,smpl+1);
CC=repmat(zeros(mm,1),1,smpl+1);
T0=occbin_.info{5};
R0=occbin_.info{6};
else
TT=occbin_.info{5};
RR=occbin_.info{6};
CC=occbin_.info{7};
% TT = cat(3,TT,T);
% RR = cat(3,RR,R);
% CC = cat(2,CC,zeros(mm,1));
if options_.smoother_redux
my_order_var = oo_.dr.restrict_var_list;
CC = CC(my_order_var,:);
RR = RR(my_order_var,:,:);
TT = TT(my_order_var,my_order_var,:);
T0=occbin_.info{8};
R0=occbin_.info{9};
end
if size(TT,3)<(smpl+1)
TT=repmat(T,1,1,smpl+1);
RR=repmat(R,1,1,smpl+1);
CC=repmat(zeros(mm,1),1,smpl+1);
end
end
else
TT=repmat(T,1,1,smpl+1);
RR=repmat(R,1,1,smpl+1);
CC=repmat(zeros(mm,1),1,smpl+1);
end
if ~smoother_redux
T0=T;
R0=R;
end
if ~isinf(occbin_options.first_period_occbin_update)
% initialize state matrices (otherwise they are set to 0 for
% t<first_period_occbin_update!)
TTT=repmat(T0,1,1,smpl+1);
RRR=repmat(R0,1,1,smpl+1);
CCC=repmat(zeros(length(T0),1),1,smpl+1);
end
end
t = 0;
icc=0;
if ~isempty(Pinf(:,:,1))
newRank = rank(Z*Pinf(:,:,1)*Z',diffuse_kalman_tol);
else
newRank = rank(Pinf(:,:,1),diffuse_kalman_tol);
end
while newRank && t < smpl
t = t+1;
a(:,t) = a1(:,t);
Pstar1(:,:,t) = Pstar(:,:,t);
Pinf1(:,:,t) = Pinf(:,:,t);
di = data_index{t}';
for i=di
Zi = Z(i,:);
v(i,t) = Y(i,t)-Zi*a(:,t); % nu_{t,i} in 6.13 in DK (2012)
Fstar(i,t) = Zi*Pstar(:,:,t)*Zi' +H(i); % F_{*,t} in 5.7 in DK (2012), relies on H being diagonal
Finf(i,t) = Zi*Pinf(:,:,t)*Zi'; % F_{\infty,t} in 5.7 in DK (2012)
Kstar(:,i,t) = Pstar(:,:,t)*Zi'; % KD (2000), eq. (15)
if Finf(i,t) > diffuse_kalman_tol && newRank % F_{\infty,t,i} = 0, use upper part of bracket on p. 175 DK (2012) for w_{t,i}
icc=icc+1;
Kinf(:,i,t) = Pinf(:,:,t)*Zi'; % KD (2000), eq. (15)
Kinf_Finf = Kinf(:,i,t)/Finf(i,t);
a(:,t) = a(:,t) + Kinf_Finf*v(i,t); % KD (2000), eq. (16)
Pstar(:,:,t) = Pstar(:,:,t) + ...
Kinf(:,i,t)*Kinf_Finf'*(Fstar(i,t)/Finf(i,t)) - ...
Kstar(:,i,t)*Kinf_Finf' - ...
Kinf_Finf*Kstar(:,i,t)'; % KD (2000), eq. (16)
Pinf(:,:,t) = Pinf(:,:,t) - Kinf(:,i,t)*Kinf(:,i,t)'/Finf(i,t); % KD (2000), eq. (16)
elseif Fstar(i,t) > kalman_tol
a(:,t) = a(:,t) + Kstar(:,i,t)*v(i,t)/Fstar(i,t); % KD (2000), eq. (17)
Pstar(:,:,t) = Pstar(:,:,t) - Kstar(:,i,t)*Kstar(:,i,t)'/Fstar(i,t); % KD (2000), eq. (17)
% Pinf is passed through unaltered, see eq. (17) of
% Koopman/Durbin (2000)
else
% do nothing as a_{t,i+1}=a_{t,i} and P_{t,i+1}=P_{t,i}, see
% p. 157, DK (2012)
end
end
if newRank
if ~isempty(Pinf(:,:,t))
oldRank = rank(Z*Pinf(:,:,t)*Z',diffuse_kalman_tol);
else
oldRank = rank(Pinf(:,:,t),diffuse_kalman_tol);
end
else
oldRank = 0;
end
if isoccbin,
TT(:,:,t+1)= T;
RR(:,:,t+1)= R;
end
a1(:,t+1) = T*a(:,t);
aK(1,:,t+1) = a1(:,t+1);
for jnk=2:nk
aK(jnk,:,t+jnk) = T*dynare_squeeze(aK(jnk-1,:,t+jnk-1));
end
if isqvec
QQ = R*Qvec(:,:,t+1)*transpose(R);
end
Pstar(:,:,t+1) = T*Pstar(:,:,t)*T'+ QQ;
Pinf(:,:,t+1) = T*Pinf(:,:,t)*T';
if newRank
if ~isempty(Pinf(:,:,t+1))
newRank = rank(Z*Pinf(:,:,t+1)*Z',diffuse_kalman_tol);
else
newRank = rank(Pinf(:,:,t+1),diffuse_kalman_tol);
end
end
if oldRank ~= newRank
disp('univariate_diffuse_kalman_filter:: T does influence the rank of Pinf!')
disp('This may happen for models with order of integration >1.')
end
end
if isoccbin
first_period_occbin_update = max(t+2,occbin_options.first_period_occbin_update);
if occbin_options.opts_regime.waitbar
hh = dyn_waitbar(0,'Occbin: Piecewise Kalman Filter');
set(hh,'Name','Occbin: Piecewise Kalman Filter.');
waitbar_indicator=1;
else
waitbar_indicator=0;
end
else
first_period_occbin_update = inf;
waitbar_indicator=0;
end
d = t;
P(:,:,d+1) = Pstar(:,:,d+1);
Fstar = Fstar(:,1:d);
Finf = Finf(:,1:d);
Kstar = Kstar(:,:,1:d);
Pstar = Pstar(:,:,1:d);
Pinf = Pinf(:,:,1:d);
Pstar1 = Pstar1(:,:,1:d);
Pinf1 = Pinf1(:,:,1:d);
notsteady = 1;
while notsteady && t<smpl
t = t+1;
a(:,t) = a1(:,t);
P1(:,:,t) = P(:,:,t);
di = data_index{t}';
if t>=first_period_occbin_update
if waitbar_indicator
dyn_waitbar(t/smpl, hh, sprintf('Period %u of %u', t,smpl));
end
if isqvec
Qt = Qvec(:,:,t-1:t+1);
end
occbin_options.opts_regime.waitbar=0;
[ax, a1x, Px, P1x, vx, Fix, Kix, Tx, Rx, Cx, tmp, error_flag, M_, aha, etaha,TTx,RRx,CCx] = occbin.kalman_update_algo_3(a(:,t-1),a1(:,t-1:t),P(:,:,t-1),P1(:,:,t-1:t),data_index(t-1:t),Z,v(:,t-1:t),Fi(:,t-1),Ki(:,:,t-1),Y(:,t-1:t),H,Qt,T0,R0,TT(:,:,t-1:t),RR(:,:,t-1:t),CC(:,t-1:t),regimes_(t:t+1),M_,oo_,options_,occbin_options,kalman_tol,nk);
if ~error_flag
regimes_(t:t+2)=tmp;
else
varargout{1} = [];
varargout{2} = [];
varargout{3} = [];
varargout{4} = [];
varargout{5} = [];
varargout{6} = [];
varargout{7} = [];
return
end
if smoother_redux
aalphahat(:,t-1) = aha(:,1);
eetahat(:,t) = etaha(:,2);
end
a(:,t) = ax(:,1);
a1(:,t) = a1x(:,2);
a1(:,t+1) = ax(:,2);
v(di,t) = vx(di,2);
Fi(di,t) = Fix(di,2);
Ki(:,di,t) = Kix(:,di,2);
TT(:,:,t:t+1) = Tx(:,:,1:2);
RR(:,:,t:t+1) = Rx(:,:,1:2);
CC(:,t:t+1) = Cx(:,1:2);
TTT(:,:,t)=TTx;
RRR(:,:,t)=RRx;
CCC(:,t)=CCx;
P(:,:,t) = Px(:,:,1);
P1(:,:,t) = P1x(:,:,2);
P(:,:,t+1) = Px(:,:,2);
aK(1,:,t+1) = a1(:,t+1);
for jnk=1:nk
PK(jnk,:,:,t+jnk) = Px(:,:,1+jnk);
aK(jnk,:,t+jnk) = ax(:,1+jnk);
end
else
for i=di
Zi = Z(i,:);
v(i,t) = Y(i,t) - Zi*a(:,t); % nu_{t,i} in 6.13 in DK (2012)
Fi(i,t) = Zi*P(:,:,t)*Zi' + H(i); % F_{t,i} in 6.13 in DK (2012), relies on H being diagonal
Ki(:,i,t) = P(:,:,t)*Zi'; % K_{t,i}*F_(i,t) in 6.13 in DK (2012)
if Fi(i,t) > kalman_tol
a(:,t) = a(:,t) + Ki(:,i,t)*v(i,t)/Fi(i,t); %filtering according to (6.13) in DK (2012)
P(:,:,t) = P(:,:,t) - Ki(:,i,t)*Ki(:,i,t)'/Fi(i,t); %filtering according to (6.13) in DK (2012)
else
% do nothing as a_{t,i+1}=a_{t,i} and P_{t,i+1}=P_{t,i}, see
% p. 157, DK (2012)
end
end
if isqvec
QQ = R*Qvec(:,:,t)*transpose(R);
end
if smoother_redux
ri=zeros(mm,1);
for st=t:-1:max(d+1,t-1)
di = flipud(data_index{st})';
for i = di
if Fi(i,st) > kalman_tol
Li = eye(mm)-Ki(:,i,st)*Z(i,:)/Fi(i,st);
ri = Z(i,:)'/Fi(i,st)*v(i,st)+Li'*ri; % DK (2012), 6.15, equation for r_{t,i-1}
end
end
if st==t-1
aalphahat(:,st) = a1(:,st) + P1(:,:,st)*ri;
else
if isoccbin
if isqvec
QRt = Qvec(:,:,st)*transpose(RR(:,:,st));
else
QRt = Q*transpose(RR(:,:,st));
end
T = TT(:,:,st);
else
if isqvec
QRt = Qvec(:,:,st)*transpose(R);
end
end
eetahat(:,st) = QRt*ri;
end
ri = T'*ri; % KD (2003), eq. (23), equation for r_{t-1,p_{t-1}}
end
end
if isoccbin
if isqvec
QQ = RR(:,:,t+1)*Qvec(:,:,t+1)*transpose(RR(:,:,t+1));
else
QQ = RR(:,:,t+1)*Q*transpose(RR(:,:,t+1));
end
T = TT(:,:,t+1);
C = CC(:,t+1);
else
if isqvec
QQ = R*Qvec(:,:,t+1)*transpose(R);
end
end
a1(:,t+1) = T*a(:,t)+C; %transition according to (6.14) in DK (2012)
P(:,:,t+1) = T*P(:,:,t)*T' + QQ; %transition according to (6.14) in DK (2012)
if filter_covariance_flag
Pf = P(:,:,t+1);
end
aK(1,:,t+1) = a1(:,t+1);
if ~isempty(nk) && nk>1 && isoccbin && (t>=first_period_occbin_update || isinf(first_period_occbin_update))
opts_simul = occbin_options.opts_regime;
opts_simul.SHOCKS = zeros(nk,M_.exo_nbr);
if smoother_redux
tmp=zeros(M_.endo_nbr,1);
tmp(oo_.dr.restrict_var_list)=a(:,t);
opts_simul.endo_init = tmp(oo_.dr.inv_order_var);
else
opts_simul.endo_init = a(oo_.dr.inv_order_var,t);
end
opts_simul.init_regime = []; %regimes_(t);
opts_simul.waitbar=0;
options_.occbin.simul=opts_simul;
[~, out, ss] = occbin.solver(M_,oo_,options_);
end
for jnk=1:nk
if filter_covariance_flag
if jnk>1
Pf = T*Pf*T' + QQ;
end
PK(jnk,:,:,t+jnk) = Pf;
end
if jnk>1
if isoccbin && (t>=first_period_occbin_update || isinf(first_period_occbin_update))
if smoother_redux
aK(jnk,:,t+jnk) = out.piecewise(jnk,oo_.dr.order_var(oo_.dr.restrict_var_list)) - out.ys(oo_.dr.order_var(oo_.dr.restrict_var_list))';
else
aK(jnk,oo_.dr.inv_order_var,t+jnk) = out.piecewise(jnk,:) - out.ys';
end
else
aK(jnk,:,t+jnk) = T*dynare_squeeze(aK(jnk-1,:,t+jnk-1));
end
end
end
end
end
if waitbar_indicator
dyn_waitbar_close(hh);
end
P1(:,:,t+1) = P(:,:,t+1);
if ~isinf(first_period_occbin_update) && isoccbin
regimes_ = regimes_(2:smpl+1);
else
regimes_ = struct();
TTT=TT;
RRR=RR;
CCC=CC;
% return
end
varargout{1} = regimes_;
varargout{2} = TTT;
varargout{3} = RRR;
varargout{4} = CCC;
varargout{5} = TT;
varargout{6} = RR;
varargout{7} = CC;
% $$$ P_s=tril(P(:,:,t))+tril(P(:,:,t),-1)';
% $$$ P1_s=tril(P1(:,:,t))+tril(P1(:,:,t),-1)';
% $$$ Fi_s = Fi(:,t);
% $$$ Ki_s = Ki(:,:,t);
% $$$ L_s =Li(:,:,:,t);
% $$$ if t<smpl
% $$$ P = cat(3,P(:,:,1:t),repmat(P_s,[1 1 smpl-t]));
% $$$ P1 = cat(3,P1(:,:,1:t),repmat(P1_s,[1 1 smpl-t]));
% $$$ Fi = cat(2,Fi(:,1:t),repmat(Fi_s,[1 1 smpl-t]));
% $$$ Li = cat(4,Li(:,:,:,1:t),repmat(L_s,[1 1 smpl-t]));
% $$$ Ki = cat(3,Ki(:,:,1:t),repmat(Ki_s,[1 1 smpl-t]));
% $$$ end
% $$$ while t<smpl
% $$$ t=t+1;
% $$$ a(:,t) = a1(:,t);
% $$$ di = data_index{t}';
% $$$ for i=di
% $$$ Zi = Z(i,:);
% $$$ v(i,t) = Y(i,t) - Zi*a(:,t);
% $$$ if Fi_s(i) > kalman_tol
% $$$ a(:,t) = a(:,t) + Ki_s(:,i)*v(i,t)/Fi_s(i);
% $$$ end
% $$$ end
% $$$ a1(:,t+1) = T*a(:,t);
% $$$ Pf = P(:,:,t);
% $$$ for jnk=1:nk,
% $$$ Pf = T*Pf*T' + QQ;
% $$$ aK(jnk,:,t+jnk) = T^jnk*a(:,t);
% $$$ PK(jnk,:,:,t+jnk) = Pf;
% $$$ end
% $$$ end
%% do backward pass
ri=zeros(mm,1);
if state_uncertainty_flag
Ni=zeros(mm,mm);
end
t = smpl+1;
while t > d+1
t = t-1;
di = flipud(data_index{t})';
for i = di
if Fi(i,t) > kalman_tol
Li = eye(mm)-Ki(:,i,t)*Z(i,:)/Fi(i,t);
ri = Z(i,:)'/Fi(i,t)*v(i,t)+Li'*ri; % DK (2012), 6.15, equation for r_{t,i-1}
if state_uncertainty_flag
Ni = Z(i,:)'/Fi(i,t)*Z(i,:)+Li'*Ni*Li; % KD (2000), eq. (23)
end
end
end
r(:,t) = ri; % DK (2012), below 6.15, r_{t-1}=r_{t,0}
alphahat(:,t) = a1(:,t) + P1(:,:,t)*r(:,t);
if isoccbin
if isqvec
QRt = Qvec(:,:,t)*transpose(RR(:,:,t));
else
QRt = Q*transpose(RR(:,:,t));
end
R = RR(:,:,t);
T = TT(:,:,t);
else
if isqvec
QRt = Qvec(:,:,t)*transpose(R);
end
end
etahat(:,t) = QRt*r(:,t);
ri = T'*ri; % KD (2003), eq. (23), equation for r_{t-1,p_{t-1}}
if state_uncertainty_flag
N(:,:,t) = Ni; % DK (2012), below 6.15, N_{t-1}=N_{t,0}
if smoother_redux
ptmp = [P1(:,:,t) R*Q; (R*Q)' Q];
ntmp = [N(:,:,t) zeros(mm,rr); zeros(rr,mm+rr)];
V(:,:,t) = ptmp - ptmp*ntmp*ptmp;
else
V(:,:,t) = P1(:,:,t)-P1(:,:,t)*N(:,:,t)*P1(:,:,t); % KD (2000), eq. (7) with N_{t-1} stored in N(:,:,t)
end
Ni = T'*Ni*T; % KD (2000), eq. (23), equation for N_{t-1,p_{t-1}}
end
end
if d
r0 = zeros(mm,d);
r0(:,d) = ri;
r1 = zeros(mm,d);
if state_uncertainty_flag
%N_0 at (d+1) is N(d+1), so we can use N for continuing and storing N_0-recursion
N_0=zeros(mm,mm,d); %set N_1_{d}=0, below KD (2000), eq. (24)
N_0(:,:,d) = Ni;
N_1=zeros(mm,mm,d); %set N_1_{d}=0, below KD (2000), eq. (24)
N_2=zeros(mm,mm,d); %set N_2_{d}=0, below KD (2000), eq. (24)
end
for t = d:-1:1
di = flipud(data_index{t})';
for i = di
if Finf(i,t) > diffuse_kalman_tol
% recursions need to be from highest to lowest term in order to not
% overwrite lower terms still needed in this step
Linf = eye(mm) - Kinf(:,i,t)*Z(i,:)/Finf(i,t);
L0 = (Kinf(:,i,t)*(Fstar(i,t)/Finf(i,t))-Kstar(:,i,t))*Z(i,:)/Finf(i,t);
r1(:,t) = Z(i,:)'*v(i,t)/Finf(i,t) + ...
L0'*r0(:,t) + ...
Linf'*r1(:,t); % KD (2000), eq. (25) for r_1
r0(:,t) = Linf'*r0(:,t); % KD (2000), eq. (25) for r_0
if state_uncertainty_flag
N_2(:,:,t)=Z(i,:)'/Finf(i,t)^2*Z(i,:)*Fstar(i,t) ...
+ Linf'*N_2(:,:,t)*Linf...
+ Linf'*N_1(:,:,t)*L0...
+ L0'*N_1(:,:,t)'*Linf...
+ L0'*N_0(:,:,t)*L0; % DK (2012), eq. 5.29
N_1(:,:,t)=Z(i,:)'/Finf(i,t)*Z(i,:)+Linf'*N_1(:,:,t)*Linf...
+L0'*N_0(:,:,t)*Linf; % DK (2012), eq. 5.29; note that, compared to DK (2003) this drops the term (L_1'*N(:,:,t+1)*Linf(:,:,t))' in the recursion due to it entering premultiplied by Pinf when computing V, and Pinf*Linf'*N=0
N_0(:,:,t)=Linf'*N_0(:,:,t)*Linf; % DK (2012), eq. 5.19, noting that L^(0) is named Linf
end
elseif Fstar(i,t) > kalman_tol % step needed whe Finf == 0
L_i=eye(mm) - Kstar(:,i,t)*Z(i,:)/Fstar(i,t);
r0(:,t) = Z(i,:)'/Fstar(i,t)*v(i,t)+L_i'*r0(:,t); % propagate r0 and keep r1 fixed
if state_uncertainty_flag
N_0(:,:,t)=Z(i,:)'/Fstar(i,t)*Z(i,:)+L_i'*N_0(:,:,t)*L_i; % propagate N_0 and keep N_1 and N_2 fixed
end
end
end
alphahat(:,t) = a1(:,t) + Pstar1(:,:,t)*r0(:,t) + Pinf1(:,:,t)*r1(:,t); % KD (2000), eq. (26)
r(:,t) = r0(:,t);
if isoccbin
if isqvec
QRt = Qvec(:,:,t)*transpose(RR(:,:,t));
else
QRt = Q*transpose(RR(:,:,t));
end
R = RR(:,:,t);
T = TT(:,:,t);
else
if isqvec
QRt = Qvec(:,:,t)*transpose(R);
end
end
etahat(:,t) = QRt*r(:,t); % KD (2000), eq. (27)
if state_uncertainty_flag
if smoother_redux
pstmp = [Pstar(:,:,t) R*Q; (R*Q)' Q];
pitmp = [Pinf(:,:,t) zeros(mm,rr); zeros(rr,mm+rr)];
ntmp0 = [N_0(:,:,t) zeros(mm,rr); zeros(rr,mm+rr)];
ntmp1 = [N_1(:,:,t) zeros(mm,rr); zeros(rr,mm+rr)];
ntmp2 = [N_2(:,:,t) zeros(mm,rr); zeros(rr,mm+rr)];
V(:,:,t) = pstmp - pstmp*ntmp0*pstmp...
-(pitmp*ntmp1*pstmp)'...
- pitmp*ntmp1*pstmp...
- pitmp*ntmp2*Pinf(:,:,t); % DK (2012), eq. 5.30
else
V(:,:,t)=Pstar(:,:,t)-Pstar(:,:,t)*N_0(:,:,t)*Pstar(:,:,t)...
-(Pinf(:,:,t)*N_1(:,:,t)*Pstar(:,:,t))'...
- Pinf(:,:,t)*N_1(:,:,t)*Pstar(:,:,t)...
- Pinf(:,:,t)*N_2(:,:,t)*Pinf(:,:,t); % DK (2012), eq. 5.30
end
end
if t > 1
r0(:,t-1) = T'*r0(:,t); % KD (2000), below eq. (25) r_{t-1,p_{t-1}}=T'*r_{t,0}
r1(:,t-1) = T'*r1(:,t); % KD (2000), below eq. (25) r_{t-1,p_{t-1}}=T'*r_{t,0}
if state_uncertainty_flag
N_0(:,:,t-1)= T'*N_0(:,t)*T; % KD (2000), below eq. (25) N_{t-1,p_{t-1}}=T'*N_{t,0}*T
N_1(:,:,t-1)= T'*N_1(:,t)*T; % KD (2000), below eq. (25) N^1_{t-1,p_{t-1}}=T'*N^1_{t,0}*T
N_2(:,:,t-1)= T'*N_2(:,t)*T; % KD (2000), below eq. (25) N^2_{t-1,p_{t-1}}=T'*N^2_{t,0}*T
end
end
end
else
alphahat0 = 0*a1(:,1) + P1(:,:,1)*ri;
end
if decomp_flag
decomp = zeros(nk,mm,rr,smpl+nk);
ZRQinv = inv(Z*QQ*Z');
for t = max(d,1):smpl
ri_d = zeros(mm,1);
di = flipud(data_index{t})';
for i = di
if Fi(i,t) > kalman_tol
ri_d = Z(i,:)'/Fi(i,t)*v(i,t)+ri_d-Ki(:,i,t)'*ri_d/Fi(i,t)*Z(i,:)';
end
end
% calculate eta_tm1t
if isoccbin
if isqvec
QRt = Qvec(:,:,t)*transpose(RR(:,:,t));
else
QRt = Q*transpose(RR(:,:,t));
end
R = RR(:,:,t);
T = TT(:,:,t);
else
if isqvec
QRt = Qvec(:,:,t)*transpose(R);
end
end
eta_tm1t = QRt*ri_d;
% calculate decomposition
Ttok = eye(mm,mm);
AAA = P1(:,:,t)*Z'*ZRQinv*Z*R;
for h = 1:nk
BBB = Ttok*AAA;
for j=1:rr
decomp(h,:,j,t+h) = eta_tm1t(j)*BBB(:,j);
end
Ttok = T*Ttok;
end
end
end
epsilonhat = Y - Z*alphahat;
if (d==smpl)
warning(['missing_DiffuseKalmanSmootherH3_Z:: There isn''t enough information to estimate the initial conditions of the nonstationary variables']);
return
end
|