File: dynare_minimize_objective.m

package info (click to toggle)
dynare 5.3-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 77,852 kB
  • sloc: cpp: 94,481; ansic: 28,551; pascal: 14,532; sh: 5,453; objc: 4,671; yacc: 4,442; makefile: 2,923; lex: 1,612; python: 677; ruby: 469; lisp: 156; xml: 22
file content (669 lines) | stat: -rw-r--r-- 31,847 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
function [opt_par_values,fval,exitflag,hessian_mat,options_,Scale,new_rat_hess_info]=dynare_minimize_objective(objective_function,start_par_value,minimizer_algorithm,options_,bounds,parameter_names,prior_information,Initial_Hessian,varargin)
% function [opt_par_values,fval,exitflag,hessian_mat,options_,Scale,new_rat_hess_info]=dynare_minimize_objective(objective_function,start_par_value,minimizer_algorithm,options_,bounds,parameter_names,prior_information,Initial_Hessian,new_rat_hess_info,varargin)
% Calls a minimizer
%
% INPUTS
%   objective_function  [function handle]                   handle to the objective function
%   start_par_value     [n_params by 1] vector of doubles   starting values for the parameters
%   minimizer_algorithm [scalar double, or string]          code of the optimizer algorithm, or string for the name of a user defined optimization routine (not shipped with dynare).
%   options_            [matlab structure]                  Dynare options structure
%   bounds              [n_params by 2] vector of doubles   2 row vectors containing lower and upper bound for parameters
%   parameter_names     [n_params by 1] cell array          strings containing the parameters names
%   prior_information   [matlab structure]                  Dynare prior information structure (bayestopt_) provided for algorithm 6
%   Initial_Hessian     [n_params by n_params] matrix       initial hessian matrix provided for algorithm 6
%   new_rat_hess_info   [matlab structure]                  step size info used by algorith 5
%   varargin            [cell array]                        Input arguments for objective function
%
% OUTPUTS
%   opt_par_values      [n_params by 1] vector of doubles   optimal parameter values minimizing the objective
%   fval                [scalar double]                     value of the objective function at the minimum
%   exitflag            [scalar double]                     return code of the respective optimizer
%   hessian_mat         [n_params by n_params] matrix       hessian matrix at the mode returned by optimizer
%   options_            [matlab structure]                  Dynare options structure (to return options set by algorithms 5)
%   Scale               [scalar double]                     scaling parameter returned by algorith 6
%
% SPECIAL REQUIREMENTS
%   none.
%
%
% Copyright (C) 2014-2021 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

if isfield(options_,'occbin') && ((options_.occbin.smoother.status && options_.occbin.smoother.inversion_filter) || (options_.occbin.likelihood.status && options_.occbin.likelihood.inversion_filter))
    warning('off','MATLAB:nearlySingularMatrix')    
end
%% set bounds and parameter names if not already set
n_params=size(start_par_value,1);
if isempty(bounds)
    bounds=[-Inf(n_params,1) Inf(n_params,1)];
end

if isempty(parameter_names)
    parameter_names=cellstr([repmat('parameter ',n_params,1),num2str((1:n_params)')]);
end

%% initialize function outputs
hessian_mat=[];
Scale=[];
exitflag=1;
fval=NaN;
opt_par_values=NaN(size(start_par_value));
new_rat_hess_info=[];

switch minimizer_algorithm
  case 1
    if isoctave && ~user_has_octave_forge_package('optim', '1.6')
        error('Optimization algorithm 1 is not available, you need to install the optim Forge package, version 1.6 or above')
    elseif ~isoctave && ~user_has_matlab_license('optimization_toolbox')
        error('Optimization algorithm 1 requires the Optimization Toolbox')
    end
    % Set default optimization options for fmincon.
    if ~isoctave
        optim_options = optimoptions('fmincon','display','iter', 'MaxFunEvals',100000, 'TolFun',1e-8, 'TolX',1e-6);
    else
        optim_options = optimset('display','iter', 'MaxFunEvals',100000, 'TolFun',1e-8, 'TolX',1e-6);
    end
    if isoctave
        % Under Octave, use the active-set (i.e. octave_sqp of nonlin_min)
        % algorithm. On a simple example (fs2000.mod), the default algorithm
        % is not able to even move away from the initial point.
        optim_options = optimset(optim_options, 'Algorithm','active-set');
    end
    if options_.analytic_derivation || (isfield(options_,'mom') && options_.mom.analytic_jacobian==1)
        if ~isoctave
            optim_options = optimoptions(optim_options,'GradObj','on','TolX',1e-7); %alter default TolX
        else
            optim_options = optimset('GradObj','on','TolX',1e-7);
        end
    end
    if ~isempty(options_.optim_opt)
        if ~isoctave
            eval(['optim_options = optimoptions(optim_options,' options_.optim_opt ');']);
        else
            eval(['optim_options = optimset(optim_options,' options_.optim_opt ');']);
        end
    end
    if options_.silent_optimizer
        if ~isoctave
            optim_options = optimoptions(optim_options,'display','off');
        else
            optim_options = optimset(optim_options,'display','off');            
        end
    end
    if options_.analytic_derivation || (isfield(options_,'mom') && options_.mom.analytic_jacobian==1) %use wrapper
        func = @(x) analytic_gradient_wrapper(x,objective_function,varargin{:});
        if ~isoctave
            [opt_par_values,fval,exitflag,output,lamdba,grad,hessian_mat] = ...
                fmincon(func,start_par_value,[],[],[],[],bounds(:,1),bounds(:,2),[],optim_options);
        else
            % Under Octave, use a wrapper, since fmincon() does not have an 11th
            % arg. Also, only the first 4 output arguments are available.
            [opt_par_values,fval,exitflag,output] = ...
                fmincon(func,start_par_value,[],[],[],[],bounds(:,1),bounds(:,2),[],optim_options);
        end
    else
        if ~isoctave
            [opt_par_values,fval,exitflag,output,lamdba,grad,hessian_mat] = ...
                fmincon(objective_function,start_par_value,[],[],[],[],bounds(:,1),bounds(:,2),[],optim_options,varargin{:});
        else
            % Under Octave, use a wrapper, since fmincon() does not have an 11th
            % arg. Also, only the first 4 output arguments are available.
            func = @(x) objective_function(x,varargin{:});
            [opt_par_values,fval,exitflag,output] = ...
                fmincon(func,start_par_value,[],[],[],[],bounds(:,1),bounds(:,2),[],optim_options);
        end    
    end
    
  case 2
    %simulating annealing
    sa_options = options_.saopt;
    if ~isempty(options_.optim_opt)
        options_list = read_key_value_string(options_.optim_opt);
        for i=1:rows(options_list)
            switch options_list{i,1}
              case 'neps'
                sa_options.neps = options_list{i,2};
              case 'rt'
                sa_options.rt = options_list{i,2};
              case 'MaxIter'
                sa_options.MaxIter = options_list{i,2};
              case 'TolFun'
                sa_options.TolFun = options_list{i,2};
              case 'verbosity'
                sa_options.verbosity = options_list{i,2};
              case 'initial_temperature'
                sa_options.initial_temperature = options_list{i,2};
              case 'ns'
                sa_options.ns = options_list{i,2};
              case 'nt'
                sa_options.nt = options_list{i,2};
              case 'step_length_c'
                sa_options.step_length_c = options_list{i,2};
              case 'initial_step_length'
                sa_options.initial_step_length = options_list{i,2};
              otherwise
                warning(['solveopt: Unknown option (' options_list{i,1} ')!'])
            end
        end
    end
    if options_.silent_optimizer
        sa_options.verbosity = 0;
    end
    npar=length(start_par_value);
    [LB, UB]=set_bounds_to_finite_values(bounds, options_.huge_number);
    if sa_options.verbosity
        fprintf('\nNumber of parameters= %d, initial temperatur= %4.3f \n', npar,sa_options.initial_temperature);
        fprintf('rt=  %4.3f; TolFun=  %4.3f; ns=  %4.3f;\n',sa_options.rt,sa_options.TolFun,sa_options.ns);
        fprintf('nt=  %4.3f; neps=  %4.3f; MaxIter=  %d\n',sa_options.nt,sa_options.neps,sa_options.MaxIter);
        fprintf('Initial step length(vm): %4.3f; step_length_c: %4.3f\n', sa_options.initial_step_length,sa_options.step_length_c);
        fprintf('%-20s  %-6s    %-6s    %-6s\n','Name:', 'LB;','Start;','UB;');
        for pariter=1:npar
            fprintf('%-20s  %6.4f;   %6.4f;  %6.4f;\n',parameter_names{pariter}, LB(pariter),start_par_value(pariter),UB(pariter));
        end
    end
    sa_options.initial_step_length= sa_options.initial_step_length*ones(npar,1); %bring step length to correct vector size
    sa_options.step_length_c= sa_options.step_length_c*ones(npar,1); %bring step_length_c to correct vector size
    [opt_par_values, fval,exitflag, n_accepted_draws, n_total_draws, n_out_of_bounds_draws, t, vm] =...
        simulated_annealing(objective_function,start_par_value,sa_options,LB,UB,varargin{:});
  case 3
    if isoctave && ~user_has_octave_forge_package('optim')
        error('Optimization algorithm 3 requires the optim package')
    elseif ~isoctave && ~user_has_matlab_license('optimization_toolbox')
        error('Optimization algorithm 3 requires the Optimization Toolbox')
    end
    % Set default optimization options for fminunc.
    if ~isoctave
        optim_options = optimoptions('fminunc','display','iter','MaxFunEvals',100000,'TolFun',1e-8,'TolX',1e-6);
    else
        optim_options = optimset('display','iter','MaxFunEvals',100000,'TolFun',1e-8,'TolX',1e-6);
    end
    if ~isempty(options_.optim_opt)
        if ~isoctave
            eval(['optim_options = optimoptions(optim_options,' options_.optim_opt ');']);
        else
             eval(['optim_options = optimset(optim_options,' options_.optim_opt ');']);
        end
    end
    if options_.silent_optimizer
        if ~isoctave
            optim_options = optimoptions(optim_options,'display','off');
        else
            optim_options = optimset(optim_options,'display','off');            
        end
    end
    if options_.analytic_derivation || (isfield(options_,'mom') && options_.mom.analytic_jacobian==1)
        if ~isoctave
            optim_options = optimoptions(optim_options,'GradObj','on');
            func = @(x) analytic_gradient_wrapper(x,objective_function,varargin{:});
            [opt_par_values,fval,exitflag] = fminunc(func,start_par_value,optim_options);
        else
            optim_options = optimset(optim_options,'GradObj','on');
            % Under Octave, use a wrapper, since fminunc() does not have a 4th arg
            func = @(x) analytic_gradient_wrapper(x,objective_function,varargin{:});
            [opt_par_values,fval,exitflag] = fminunc(func,start_par_value,optim_options);
        end
    else
        if ~isoctave
            [opt_par_values,fval,exitflag] = fminunc(objective_function,start_par_value,optim_options,varargin{:});
        else
            % Under Octave, use a wrapper, since fminunc() does not have a 4th arg
            func = @(x) objective_function(x,varargin{:});
            [opt_par_values,fval,exitflag] = fminunc(func,start_par_value,optim_options);
        end
    end
  case 4
    % Set default options.
    H0 = 1e-4*eye(n_params);
    crit = options_.csminwel.tolerance.f;
    nit = options_.csminwel.maxiter;
    numgrad = options_.gradient_method;
    epsilon = options_.gradient_epsilon;
    Verbose = options_.csminwel.verbosity;
    Save_files = options_.csminwel.Save_files;
    % Change some options.
    if ~isempty(options_.optim_opt)
        options_list = read_key_value_string(options_.optim_opt);
        for i=1:rows(options_list)
            switch options_list{i,1}
              case 'MaxIter'
                nit = options_list{i,2};
              case 'InitialInverseHessian'
                H0 = eval(options_list{i,2});
              case 'TolFun'
                crit = options_list{i,2};
              case 'NumgradAlgorithm'
                numgrad = options_list{i,2};
              case 'NumgradEpsilon'
                epsilon = options_list{i,2};
              case 'verbosity'
                Verbose = options_list{i,2};
              case 'SaveFiles'
                Save_files = options_list{i,2};
              otherwise
                warning(['csminwel: Unknown option (' options_list{i,1} ')!'])
            end
        end
    end
    if options_.silent_optimizer
        Save_files = 0;
        Verbose = 0;
    end
    % Set flag for analytical gradient.
    if options_.analytic_derivation
        analytic_grad=1;
    else
        analytic_grad=[];
    end
    % Call csminwell.
    [fval,opt_par_values,grad,inverse_hessian_mat,itct,fcount,exitflag] = ...
        csminwel1(objective_function, start_par_value, H0, analytic_grad, crit, nit, numgrad, epsilon, Verbose, Save_files, varargin{:});
    hessian_mat=inv(inverse_hessian_mat);
  case 5
    if isempty(prior_information) %mr_hessian requires it, but can be NaN
        prior_information.p2=NaN(n_params,1);
    end
    if options_.analytic_derivation 
        old_analytic_derivation = options_.analytic_derivation;
        options_.analytic_derivation=-1; %force analytic outer product gradient hessian for each iteration
        analytic_grad=1;
        crit = options_.newrat.tolerance.f_analytic;
        newratflag = 0; %analytical Hessian
    else
        analytic_grad=0;
        crit=options_.newrat.tolerance.f;
        newratflag = options_.newrat.hess; %default
    end
    nit=options_.newrat.maxiter;
    Verbose = options_.newrat.verbosity;
    Save_files = options_.newrat.Save_files;
    if ~isempty(options_.optim_opt)
        options_list = read_key_value_string(options_.optim_opt);
        for i=1:rows(options_list)
            switch options_list{i,1}
              case 'MaxIter'
                nit = options_list{i,2};
              case 'Hessian'
                flag=options_list{i,2};
                if options_.analytic_derivation && flag~=0
                    error('newrat: analytic_derivation is incompatible with numerical Hessian. Using analytic Hessian')
                else
                    newratflag=flag;
                end
              case 'TolFun'
                crit = options_list{i,2};
              case 'verbosity'
                Verbose = options_list{i,2};
              case 'SaveFiles'
                Save_files = options_list{i,2};
              otherwise
                warning(['newrat: Unknown option (' options_list{i,1} ')!'])
            end
        end
    end
    if options_.silent_optimizer
        Save_files = 0;
        Verbose = 0;
    end
    hess_info.gstep=options_.gstep;
    hess_info.htol = 1.e-4;
    hess_info.h1=options_.gradient_epsilon*ones(n_params,1);
    % here we force 7th input argument (flagg) to be 0, since outer product
    % gradient Hessian is handled in dynare_estimation_1
    [opt_par_values,hessian_mat,gg,fval,invhess,new_rat_hess_info] = newrat(objective_function,start_par_value,bounds,analytic_grad,crit,nit,0,Verbose,Save_files,hess_info,prior_information.p2,options_.gradient_epsilon,parameter_names,varargin{:});    %hessian_mat is the plain outer product gradient Hessian
    new_rat_hess_info.new_rat_hess_info = new_rat_hess_info;
    new_rat_hess_info.newratflag = newratflag;
    if options_.analytic_derivation 
        options_.analytic_derivation = old_analytic_derivation;
    end
  case 6
    if isempty(prior_information) %Inf will be reset
        prior_information.p2=Inf(n_params,1);
    end
    [opt_par_values, hessian_mat, Scale, fval] = gmhmaxlik(objective_function, start_par_value, ...
                                                      Initial_Hessian, options_.mh_jscale, bounds, prior_information.p2, options_.gmhmaxlik, options_.optim_opt, varargin{:});
  case 7
    % Matlab's simplex (Optimization toolbox needed).
    if isoctave && ~user_has_octave_forge_package('optim')
        error('Option mode_compute=7 requires the optim package')
    elseif ~isoctave && ~user_has_matlab_license('optimization_toolbox')
        error('Option mode_compute=7 requires the Optimization Toolbox')
    end
    optim_options = optimset('display','iter','MaxFunEvals',1000000,'MaxIter',6000,'TolFun',1e-8,'TolX',1e-6);
    if ~isempty(options_.optim_opt)
        eval(['optim_options = optimset(optim_options,' options_.optim_opt ');']);
    end
    if options_.silent_optimizer
        optim_options = optimset(optim_options,'display','off');
    end
    if ~isoctave
        [opt_par_values,fval,exitflag] = fminsearch(objective_function,start_par_value,optim_options,varargin{:});
    else
        % Under Octave, use a wrapper, since fminsearch() does not have a
        % 4th arg, and only has two output args
        func = @(x) objective_function(x,varargin{:});
        [opt_par_values,fval] = fminsearch(func,start_par_value,optim_options);
    end
  case 8
    % Dynare implementation of the simplex algorithm.
    simplexOptions = options_.simplex;
    if ~isempty(options_.optim_opt)
        options_list = read_key_value_string(options_.optim_opt);
        for i=1:rows(options_list)
            switch options_list{i,1}
              case 'MaxIter'
                simplexOptions.maxiter = options_list{i,2};
              case 'TolFun'
                simplexOptions.tolerance.f = options_list{i,2};
              case 'TolX'
                simplexOptions.tolerance.x = options_list{i,2};
              case 'MaxFunEvals'
                simplexOptions.maxfcall = options_list{i,2};
              case 'MaxFunEvalFactor'
                simplexOptions.maxfcallfactor = options_list{i,2};
              case 'InitialSimplexSize'
                simplexOptions.delta_factor = options_list{i,2};
              case 'verbosity'
                simplexOptions.verbosity = options_list{i,2};
              otherwise
                warning(['simplex: Unknown option (' options_list{i,1} ')!'])
            end
        end
    end
    if options_.silent_optimizer
        simplexOptions.verbosity = 0;
    end
    [opt_par_values,fval,exitflag] = simplex_optimization_routine(objective_function,start_par_value,simplexOptions,parameter_names,varargin{:});
  case 9
    % Set defaults
    H0 = (bounds(:,2)-bounds(:,1))*0.2;
    H0(~isfinite(H0)) = 0.01;
    while max(H0)/min(H0)>1e6 %make sure initial search volume (SIGMA) is not badly conditioned
        H0(H0==max(H0))=0.9*H0(H0==max(H0));
    end
    cmaesOptions = options_.cmaes;
    cmaesOptions.LBounds = bounds(:,1);
    cmaesOptions.UBounds = bounds(:,2);
    % Modify defaults
    if ~isempty(options_.optim_opt)
        options_list = read_key_value_string(options_.optim_opt);
        for i=1:rows(options_list)
            switch options_list{i,1}
              case 'MaxIter'
                cmaesOptions.MaxIter = options_list{i,2};
              case 'TolFun'
                cmaesOptions.TolFun = options_list{i,2};
              case 'TolX'
                cmaesOptions.TolX = options_list{i,2};
              case 'MaxFunEvals'
                cmaesOptions.MaxFunEvals = options_list{i,2};
              case 'verbosity'
                if options_list{i,2}==0
                    cmaesOptions.DispFinal  = 'off';   % display messages like initial and final message';
                    cmaesOptions.DispModulo = '0';   % [0:Inf], disp messages after every i-th iteration';
                end
              case 'SaveFiles'
                if options_list{i,2}==0
                    cmaesOptions.SaveVariables='off';
                    cmaesOptions.LogModulo = '0';    % [0:Inf] if >1 record data less frequently after gen=100';
                    cmaesOptions.LogTime   = '0';    % [0:100] max. percentage of time for recording data';
                end
              case 'CMAESResume'
                if options_list{i,2}==1
                    cmaesOptions.Resume = 'yes';
                end
              otherwise
                warning(['cmaes: Unknown option (' options_list{i,1}  ')!'])
            end
        end
    end
    if options_.silent_optimizer
        cmaesOptions.DispFinal  = 'off';   % display messages like initial and final message';
        cmaesOptions.DispModulo = '0';   % [0:Inf], disp messages after every i-th iteration';
        cmaesOptions.SaveVariables='off';
        cmaesOptions.LogModulo = '0';    % [0:Inf] if >1 record data less frequently after gen=100';
        cmaesOptions.LogTime   = '0';    % [0:100] max. percentage of time for recording data';
    end
    warning('off','CMAES:NonfinitenessRange');
    warning('off','CMAES:InitialSigma');
    [x, fval, COUNTEVAL, STOPFLAG, OUT, BESTEVER] = cmaes(func2str(objective_function),start_par_value,H0,cmaesOptions,varargin{:});
    opt_par_values=BESTEVER.x;
    fval=BESTEVER.f;
  case 10
    simpsaOptions = options_.simpsa;
    if ~isempty(options_.optim_opt)
        options_list = read_key_value_string(options_.optim_opt);
        for i=1:rows(options_list)
            switch options_list{i,1}
              case 'MaxIter'
                simpsaOptions.MAX_ITER_TOTAL = options_list{i,2};
              case 'TolFun'
                simpsaOptions.TOLFUN = options_list{i,2};
              case 'TolX'
                tolx = options_list{i,2};
                if tolx<0
                    simpsaOptions = rmfield(simpsaOptions,'TOLX'); % Let simpsa choose the default.
                else
                    simpsaOptions.TOLX = tolx;
                end
              case 'EndTemparature'
                simpsaOptions.TEMP_END = options_list{i,2};
              case 'MaxFunEvals'
                simpsaOptions.MAX_FUN_EVALS = options_list{i,2};
              case 'verbosity'
                if options_list{i,2} == 0
                    simpsaOptions.DISPLAY = 'none';
                else
                    simpsaOptions.DISPLAY = 'iter';
                end
              otherwise
                warning(['simpsa: Unknown option (' options_list{i,1}  ')!'])
            end
        end
    end
    if options_.silent_optimizer
        simpsaOptions.DISPLAY = 'none';
    end
    simpsaOptionsList = options2cell(simpsaOptions);
    simpsaOptions = simpsaset(simpsaOptionsList{:});
    [LB, UB]=set_bounds_to_finite_values(bounds, options_.huge_number);
    [opt_par_values, fval, exitflag] = simpsa(func2str(objective_function),start_par_value,LB,UB,simpsaOptions,varargin{:});
  case 11
    options_.cova_compute = 0;
    subvarargin = [varargin(1), varargin(3:6), varargin(8)];
    [opt_par_values, stdh, lb_95, ub_95, med_param] = online_auxiliary_filter(start_par_value, subvarargin{:});
  case 12
    if isoctave
        error('Option mode_compute=12 is not available under Octave')
    elseif ~user_has_matlab_license('GADS_Toolbox')
        error('Option mode_compute=12 requires the Global Optimization Toolbox')
    end
    [LB, UB] = set_bounds_to_finite_values(bounds, options_.huge_number);
    tmp = transpose([fieldnames(options_.particleswarm), struct2cell(options_.particleswarm)]);
    particleswarmOptions = optimoptions(@particleswarm);
    particleswarmOptions = optimoptions(particleswarmOptions, tmp{:});
    if ~isempty(options_.optim_opt)
        options_list = read_key_value_string(options_.optim_opt);
        SupportedListOfOptions = {'CreationFcn', 'Display', 'DisplayInterval', 'FunctionTolerance', ...
                            'FunValCheck', 'HybridFcn', 'InertiaRange', 'InitialSwarmMatrix', 'InitialSwarmSpan', ...
                            'MaxIterations', 'MaxStallIterations', 'MaxStallTime', 'MaxTime', ...
                            'MinNeighborsFraction', 'ObjectiveLimit', 'OutputFcn', 'PlotFcn', 'SelfAdjustmentWeight', ...
                            'SocialAdjustmentWeight', 'SwarmSize', 'UseParallel', 'UseVectorized'};
        for i=1:rows(options_list)
            if ismember(options_list{i,1}, SupportedListOfOptions)
                particleswarmOptions = optimoptions(particleswarmOptions, options_list{i,1}, options_list{i,2});
            else
                warning(['particleswarm: Unknown option (' options_list{i,1} ')!'])
            end
        end
    end
    % Get number of instruments.
    numberofvariables = length(start_par_value);
    % Set objective function.
    objfun = @(x) objective_function(x, varargin{:});
    if ischar(particleswarmOptions.SwarmSize)
        eval(['particleswarmOptions.SwarmSize = ' particleswarmOptions.SwarmSize ';'])
    end
    if isempty(particleswarmOptions.InitialSwarmMatrix)
        particleswarmOptions.InitialSwarmMatrix = zeros(particleswarmOptions.SwarmSize, numberofvariables);
        p = 1;
        FVALS = zeros(particleswarmOptions.SwarmSize, 1);
        while p<=particleswarmOptions.SwarmSize
            candidate = rand(numberofvariables, 1).*(UB-LB)+LB;
            [fval, info, exit_flag] = objfun(candidate);
            if exit_flag
                particleswarmOptions.InitialSwarmMatrix(p,:) = transpose(candidate);
                FVALS(p) = fval;
                p = p + 1;
            end
        end
    end
    % Set penalty to the worst value of the objective function.
    TMP = [particleswarmOptions.InitialSwarmMatrix, FVALS];
    TMP = sortrows(TMP, length(start_par_value)+1);
    penalty = TMP(end,end);
    % Define penalized objective.
    objfun = @(x) penalty_objective_function(x, objective_function, penalty, varargin{:});
    % Minimize the penalized objective (note that the penalty is not updated).
    [opt_par_values, fval, exitflag, output] = particleswarm(objfun, length(start_par_value), LB, UB, particleswarmOptions);
    opt_par_values = opt_par_values(:);
  case 13
    % Matlab's lsqnonlin (Optimization toolbox needed).
    if ~isfield(options_,'mom')
        error('Option mode_compute=13 is available only for method_of_moments estimation.')
    end
    if isoctave && ~user_has_octave_forge_package('optim')
        error('Option mode_compute=13 requires the optim package')
    elseif ~isoctave && ~user_has_matlab_license('optimization_toolbox')
        error('Option mode_compute=13 requires the Optimization Toolbox')
    end
    if ~isoctave
        optim_options = optimoptions('lsqnonlin','display','iter','MaxFunEvals',5000,'MaxIter',5000,'TolFun',1e-6,'TolX',1e-6);
    else
        optim_options = optimset('display','iter','MaxFunEvals',5000,'MaxIter',5000,'TolFun',1e-6,'TolX',1e-6);
    end
    if ~isempty(options_.optim_opt)
        if ~isoctave
            eval(['optim_options = optimoptions(optim_options,' options_.optim_opt ');']);
        else
            eval(['optim_options = optimset(optim_options,' options_.optim_opt ');']);
        end
    end
    if options_.silent_optimizer
        optim_options.Display='off';
    end
    if options_.analytic_derivation || (isfield(options_,'mom') && options_.mom.analytic_jacobian==1)
        if isoctave || matlab_ver_less_than('9.0') % Option names changed in MATLAB R2016a
            optim_options.Jacobian = 'on';
        else
            optim_options.SpecifyObjectiveGradient = true;
        end
        func = @(x) analytic_gradient_wrapper(x,objective_function,varargin{:});
        [opt_par_values,Resnorm,fval,exitflag,OUTPUT,LAMBDA,JACOB] = ...
            lsqnonlin(func,start_par_value,bounds(:,1),bounds(:,2),optim_options);
    else
        if ~isoctave
            [opt_par_values,Resnorm,fval,exitflag,OUTPUT,LAMBDA,JACOB] = lsqnonlin(objective_function,start_par_value,bounds(:,1),bounds(:,2),optim_options,varargin{:});
        else
            % Under Octave, use a wrapper, since lsqnonlin() does not have a 6th arg
            func = @(x)objective_function(x,varargin{:});
            [opt_par_values,Resnorm,fval,exitflag,OUTPUT,LAMBDA,JACOB] = lsqnonlin(func,start_par_value,bounds(:,1),bounds(:,2),optim_options);
        end
    end    
  case 101
    solveoptoptions = options_.solveopt;
    if ~isempty(options_.optim_opt)
        options_list = read_key_value_string(options_.optim_opt);
        for i=1:rows(options_list)
            switch options_list{i,1}
              case 'TolX'
                solveoptoptions.TolX = options_list{i,2};
              case 'TolFun'
                solveoptoptions.TolFun = options_list{i,2};
              case 'MaxIter'
                solveoptoptions.MaxIter = options_list{i,2};
              case 'verbosity'
                solveoptoptions.verbosity = options_list{i,2};
              case 'SpaceDilation'
                solveoptoptions.SpaceDilation = options_list{i,2};
              case 'LBGradientStep'
                solveoptoptions.LBGradientStep = options_list{i,2};
              otherwise
                warning(['solveopt: Unknown option (' options_list{i,1} ')!'])
            end
        end
    end
    if options_.silent_optimizer
        solveoptoptions.verbosity = 0;
    end
    if options_.analytic_derivation || (isfield(options_,'mom') && options_.mom.analytic_jacobian==1)
        func = @(x) analytic_gradient_wrapper(x,objective_function,varargin{:});
        [opt_par_values,fval]=solvopt(start_par_value,func,1,[],[],solveoptoptions);
    else
        [opt_par_values,fval]=solvopt(start_par_value,objective_function,[],[],[],solveoptoptions,varargin{:});
    end
  case 102
    if isoctave
        error('Optimization algorithm 2 is not available under Octave')
    elseif ~user_has_matlab_license('GADS_Toolbox')
        error('Optimization algorithm 2 requires the Global Optimization Toolbox')
    end
    % Set default optimization options for simulannealbnd.
    if ~isoctave
        optim_options = optimoptions('simulannealbnd','display','iter','TolFun',1e-8);
    else
        optim_options = saoptimset('display','iter','TolFun',1e-8);
    end
    if ~isempty(options_.optim_opt)
        if ~isoctave
            eval(['optim_options = optimoptions(optim_options,' options_.optim_opt ');']);
        else
            eval(['optim_options = saoptimset(optim_options,' options_.optim_opt ');']);
        end
    end
    if options_.silent_optimizer
        if ~isoctave
            optim_options = optimoptions(optim_options,'display','off');
        else
            optim_options = saoptimset(optim_options,'display','off');
        end
    end
    func = @(x)objective_function(x,varargin{:});
    [opt_par_values,fval,exitflag,output] = simulannealbnd(func,start_par_value,bounds(:,1),bounds(:,2),optim_options);
  otherwise
    if ischar(minimizer_algorithm)
        if exist(minimizer_algorithm)
            [opt_par_values, fval, exitflag] = feval(minimizer_algorithm,objective_function,start_par_value,varargin{:});
        else
            error('No minimizer with the provided name detected.')
        end
    else
        error(['Optimization algorithm ' int2str(minimizer_algorithm) ' is unknown!'])
    end
end

if isfield(options_,'occbin') && ((options_.occbin.smoother.status && options_.occbin.smoother.inversion_filter) || (options_.occbin.likelihood.status && options_.occbin.likelihood.inversion_filter))
    warning('on','MATLAB:nearlySingularMatrix')
end

end

function [LB, UB]=set_bounds_to_finite_values(bounds, huge_number)
LB=bounds(:,1);
LB(isinf(LB))=-huge_number;
UB=bounds(:,2);
UB(isinf(UB))=huge_number;
end