1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
function [endogenousvariables, info] = sim1_lbj(endogenousvariables, exogenousvariables, steadystate, M, options)
% Performs deterministic simulations with lead or lag on one period using the historical LBJ algorithm
%
% INPUTS
% ...
% OUTPUTS
% ...
% ALGORITHM
% Laffargue, Boucekkine, Juillard (LBJ)
% see Juillard (1996) Dynare: A program for the resolution and
% simulation of dynamic models with forward variables through the use
% of a relaxation algorithm. CEPREMAP. Couverture Orange. 9602.
%
% SPECIAL REQUIREMENTS
% None.
% Copyright (C) 1996-2017 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
lead_lag_incidence = M.lead_lag_incidence;
ny = size(endogenousvariables,1);
nyp = nnz(lead_lag_incidence(1,:));
nyf = nnz(lead_lag_incidence(3,:));
nrs = ny+nyp+nyf+1;
nrc = nyf+1;
iyf = find(lead_lag_incidence(3,:)>0);
iyp = find(lead_lag_incidence(1,:)>0);
isp = [1:nyp];
is = [nyp+1:ny+nyp];
isf = iyf+nyp;
isf1 = [nyp+ny+1:nyf+nyp+ny+1];
stop = false;
iz = [1:ny+nyp+nyf];
dynamicmodel = sprintf('%s.dynamic', M.fname);
verbose = options.verbosity;
if verbose
printline(56)
disp(['MODEL SIMULATION :'])
skipline()
end
it_init = M.maximum_lag+1;
h1 = clock;
for iter = 1:options.simul.maxit
h2 = clock;
if ~options.terminal_condition
c = zeros(ny*options.periods, nrc);
else
c = zeros(ny*(options.periods+1), nrc);
end
it_ = it_init;
z = [endogenousvariables(iyp,it_-1) ; endogenousvariables(:,it_) ; endogenousvariables(iyf,it_+1)];
[d1, jacobian] = feval(dynamicmodel, z, exogenousvariables, M.params, steadystate, it_);
jacobian = [jacobian(:,iz), -d1];
ic = [1:ny];
icp = iyp;
c (ic,:) = jacobian(:,is)\jacobian(:,isf1);
for it_ = it_init+(1:options.periods-1)
z = [endogenousvariables(iyp,it_-1) ; endogenousvariables(:,it_) ; endogenousvariables(iyf,it_+1)];
[d1, jacobian] = feval(dynamicmodel, z, exogenousvariables, M.params, steadystate, it_);
jacobian = [jacobian(:,iz), -d1];
jacobian(:,[isf nrs]) = jacobian(:,[isf nrs])-jacobian(:,isp)*c(icp,:);
ic = ic + ny;
icp = icp + ny;
c (ic,:) = jacobian(:,is)\jacobian(:,isf1);
end
if options.terminal_condition == 1
s = eye(ny);
s(:,isf) = s(:,isf)+c(ic,1:nyf);
ic = ic + ny;
c(ic,nrc) = s\c(ic,nrc);
c = bksup1(c, ny, nrc, iyf, options.periods);
c = reshape(c, ny, options.periods+1);
endogenousvariables(:,it_init+(0:options.periods)) = endogenousvariables(:,it_init+(0:options.periods))+options.slowc*c;
else
c = bksup1(c, ny, nrc, iyf, options.periods);
c = reshape(c, ny, options.periods);
endogenousvariables(:,it_init+(0:options.periods-1)) = endogenousvariables(:,it_init+(0:options.periods-1))+options.slowc*c;
end
err = max(max(abs(c./options.scalv')));
if verbose
str = sprintf('Iter: %s,\t err. = %s, \t time = %s', num2str(iter), num2str(err), num2str(etime(clock, h2)));
disp(str);
end
if err < options.dynatol.f
stop = true;
if verbose
skipline()
disp(sprintf('Total time of simulation: %s', num2str(etime(clock,h1))))
end
info.status = 1;% Convergency obtained.
info.error = err;
info.iterations = iter;
break
end
end
if ~stop
if verbose
disp(sprintf('Total time of simulation: %s.', num2str(etime(clock,h1))))
disp('Maximum number of iterations is reached (modify option maxit).')
end
info.status = 0;% more iterations are needed.
info.error = err;
info.errors = c/abs(err);
info.iterations = options.simul.maxit;
end
if verbose
if stop
printline(56)
else
printline(62)
end
skipline()
end
|