File: write_expectations.m

package info (click to toggle)
dynare 5.3-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 77,852 kB
  • sloc: cpp: 94,481; ansic: 28,551; pascal: 14,532; sh: 5,453; objc: 4,671; yacc: 4,442; makefile: 2,923; lex: 1,612; python: 677; ruby: 469; lisp: 156; xml: 22
file content (172 lines) | stat: -rw-r--r-- 6,892 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
function [expression, growthneutralitycorrection] = write_expectations(eqname, expectationmodelname, expectationmodelkind, iscrlf)

% Prints the exansion of the VAR_EXPECTATION or PAC_EXPECTATION term in files.
%
% INPUTS
% - eqname                      [string]    Name of the equation.
% - epxpectationmodelname       [string]    Name of the expectation model.
% - expectationmodelkind        [string]    Kind of the expectation model ('var' or 'pac').
% - iscrlf                      [string]    Adds carriage return after each additive term if true.
%
% OUTPUTS
% - expression                  [string]    Unrolled expectation expression.
% - growthneutralitycorrection  [string]

% Copyright © 2019-2021 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <https://www.gnu.org/licenses/>.

global M_

if ismember(expectationmodelkind, {'var', 'pac'})
    if isequal(expectationmodelkind, 'var')
        expectationmodelfield = 'var_expectation';
    else
        expectationmodelfield = 'pac';
        % Get the equation tag (in M_.pac.(pacmodl).equations)
        eqtag = M_.pac.(expectationmodelname).tag_map{strcmp(M_.pac.(expectationmodelname).tag_map(:,1), eqname),2};
    end
else
    error('Value of third input argument must be ''var'' or ''pac''.')
end

expectationmodel = M_.(expectationmodelfield).(expectationmodelname);

if nargout>1 && isequal(expectationmodelkind, 'var')
    error('Cannot return more than one argument if the expectation model is a VAR.')
end

if nargin<4
    iscrlf = false;
end

% Get the name of the associated VAR model and test its existence.
if ~isfield(M_.(expectationmodel.auxiliary_model_type), expectationmodel.auxiliary_model_name)
    switch expectationmodelkind
      case 'var-expectations'
        error('Unknown VAR/TREND_COMPONENT model (%s) in VAR_EXPECTATION_MODEL (%s)!', expectationmodel.auxiliary_model_name, expectationmodelname)
      case 'pac-expectations'
        error('Unknown VAR/TREND_COMPONENT model (%s) in PAC_EXPECTATION_MODEL (%s)!', expectationmodel.auxiliary_model_name, expectationmodelname)
      otherwise
    end
end

auxmodel = M_.(expectationmodel.auxiliary_model_type).(expectationmodel.auxiliary_model_name);

maxlag = max(auxmodel.max_lag);
if isequal(expectationmodel.auxiliary_model_type, 'trend_component')
    % Need to add a lag since the error correction equations are rewritten in levels.
    maxlag = maxlag+1;
end

id = 0;

if isequal(expectationmodelkind, 'var')
    timeindices = (0:(maxlag-1))+abs(expectationmodel.time_shift);
end

if isequal(expectationmodelkind, 'var') && isequal(expectationmodel.auxiliary_model_type, 'var')
    id = id+1;
    expression = sprintf('%s', M_.param_names{expectationmodel.param_indices(id)});
end

if isequal(expectationmodelkind, 'pac') && isequal(expectationmodel.auxiliary_model_type, 'var')
    id = id+1;
    expression = sprintf('%s+%s', M_.param_names{expectationmodel.equations.(eqtag).h0_param_indices(id)}, ...
                         M_.param_names{expectationmodel.equations.(eqtag).h1_param_indices(id)});
end

for i=1:maxlag
    for j=1:length(auxmodel.list_of_variables_in_companion_var)
        id = id+1;
        variable = auxmodel.list_of_variables_in_companion_var{j};
        transformations = {};
        ida = get_aux_variable_id(variable);
        op = 0;
        while ida
            op = op+1;
            if isequal(M_.aux_vars(ida).type, 8)
                transformations(op) = {'diff'};
                variable = M_.endo_names{M_.aux_vars(ida).orig_index};
                ida = get_aux_variable_id(variable);
            elseif isequal(M_.aux_vars(ida).type, 10)
                transformations(op) = {M_.aux_vars(ida).unary_op};
                variable = M_.endo_names{M_.aux_vars(ida).orig_index};
                ida = get_aux_variable_id(variable);
            else
                error('This case is not implemented.')
            end
        end
        switch expectationmodelkind
          case 'var'
            parameter = M_.param_names{expectationmodel.param_indices(id)};
          case 'pac'
            parameter = '';
            if ~isempty(expectationmodel.equations.(eqtag).h0_param_indices)
                parameter = M_.param_names{expectationmodel.equations.(eqtag).h0_param_indices(id)};
            end
            if ~isempty(expectationmodel.equations.(eqtag).h1_param_indices)
                if isempty(parameter)
                    parameter = M_.param_names{expectationmodel.equations.(eqtag).h1_param_indices(id)};
                else
                    parameter = sprintf('(%s+%s)', parameter, M_.param_names{expectationmodel.equations.(eqtag).h1_param_indices(id)});
                end
            end
          otherwise
        end
        switch expectationmodelkind
          case 'var'
            if timeindices(i)
                variable = sprintf('%s(-%d)', variable, timeindices(i));
            end
          case 'pac'
            variable = sprintf('%s(-%d)', variable, i);
          otherwise
        end
        if ~isempty(transformations)
            for k=length(transformations):-1:1
                variable = sprintf('%s(%s)', transformations{k}, variable);
            end
        end
        if isequal(id, 1)
            if iscrlf
                expression = sprintf('%s*%s\n', parameter, variable);
            else
                expression = sprintf('%s*%s', parameter, variable);
            end
        else
            if iscrlf
                expression = sprintf('%s + %s*%s\n', expression, parameter, variable);
            else
                expression = sprintf('%s + %s*%s', expression, parameter, variable);
            end
        end
    end
end

if isfield(expectationmodel, 'growth_neutrality_param_index')
    if numel(expectationmodel.growth_linear_comb) == 1
        growthneutralitycorrection = sprintf('%s*%s', M_.param_names{expectationmodel.growth_neutrality_param_index}, expectationmodel.growth_str);
    else
        growthneutralitycorrection = sprintf('%s*(%s)', M_.param_names{expectationmodel.growth_neutrality_param_index}, expectationmodel.growth_str);
    end
else
    growthneutralitycorrection = '';
end

if nargout==1 && ~isempty(growthneutralitycorrection)
    expression = sprintf('%s + %s', expression, growthneutralitycorrection);
end